Recommendation System for a Delivery Food Application Based on Number of Orders
Abstract
:1. Introduction
2. Literature Review
2.1. Recommendation Systems for Restaurants
2.2. Recommendation-System Approaches
2.3. K-Nearest Neighbors
3. Description of Data
3.1. Sales over Time
3.2. Preferred Restaurants of the Top Five Clients
3.3. Groups of Clients and Restaurants
4. Proposed Recommendation System
4.1. Clients and Restaurants Vectors
4.2. Clients’ Preferred Restaurants
4.3. Calculation of Nearest Clients and Recommendation
4.4. Proposal’s Algorithm
Algorithm 1. Pseudocode of the proposed recommendation system. |
Input: Historic number of orders from clients to restaurants, represented as clients’ vectors, cj, and the vector of the client who wants a recommendation, cx. |
Output: List of recommended restaurants. |
Hyperparameters: k and pmin.
|
4.5. Metric for Calculating the Recommendations’ Performance
Algorithm 2. Pseudocode of the performance metric. |
Input: Historic number of orders from clients to restaurants, represented as clients’ vectors, cj, and the vector of the client who wants a recommendation, cx. |
Output: 1 if the recommendation was successful, or 0 otherwise. |
Hyperparameters: k and pmin.
|
5. Experiments and Results
5.1. Number of Preferred Restaurants According to the Value of Parameter Pmin
5.2. Recommendations’ Performance of Our Proposed Recommendation System
5.3. Comparison of Our Proposed Recommendation System and a Collaborative Filtering Technique Based on Matrix Factorization
5.4. Analysis of Real Application
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
18,480 | 18,984 | 19,740 | 24,276 | 24,906 | 25,032 | 26,418 | 27,174 | 27,678 | 28,308 | 32,340 | 32,718 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
463 | 0.021 | 0.000 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.021 | 0.010 | 0.000 |
743 | 0.000 | 0.032 | 0.000 | 0.097 | 0.048 | 0.000 | 0.000 | 0.016 | 0.065 | 0.000 | 0.000 | 0.081 |
6224 | 0.000 | 0.075 | 0.275 | 0.000 | 0.025 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 |
15,413 | 0.000 | 0.000 | 0.070 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 |
1265 | 0.000 | 0.000 | 0.058 | 0.000 | 0.000 | 0.101 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 |
185,054 | 0.000 | 0.022 | 0.022 | 0.000 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
33,348 | 39,522 | 40,908 | 43,428 | 47,712 | 48,216 | 48,972 | 51,618 | 52,122 | 57,792 | 60,186 | 64,722 | |
463 | 0.000 | 0.000 | 0.000 | 0.063 | 0.031 | 0.000 | 0.010 | 0.021 | 0.031 | 0.000 | 0.240 | 0.000 |
743 | 0.000 | 0.065 | 0.000 | 0.016 | 0.016 | 0.016 | 0.000 | 0.000 | 0.097 | 0.000 | 0.161 | 0.032 |
6224 | 0.000 | 0.000 | 0.000 | 0.000 | 0.075 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.125 | 0.000 |
15,413 | 0.023 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.000 |
1265 | 0.000 | 0.000 | 0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.029 | 0.043 | 0.000 | 0.000 | 0.000 |
185,054 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | 0.067 | 0.111 |
66,234 | 67,494 | 67,998 | 69,510 | 74,298 | 74,676 | 76,818 | 77,322 | 80,094 | 80,598 | 80,724 | 84,126 | |
463 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.010 | 0.000 |
743 | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
6224 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.175 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
15,413 | 0.000 | 0.000 | 0.000 | 0.000 | 0.116 | 0.000 | 0.000 | 0.116 | 0.000 | 0.000 | 0.000 | 0.047 |
1265 | 0.000 | 0.029 | 0.029 | 0.000 | 0.000 | 0.058 | 0.000 | 0.000 | 0.000 | 0.014 | 0.000 | 0.014 |
185,054 | 0.000 | 0.089 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 | 0.022 | 0.000 | 0.044 | 0.000 |
85,134 | 93,828 | 94,458 | 96,726 | 98,364 | 102,396 | 102,522 | 130,116 | 133,140 | 135,786 | 136,416 | 137,802 | |
463 | 0.010 | 0.021 | 0.000 | 0.000 | 0.167 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
743 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.048 | 0.000 | 0.000 | 0.032 | 0.048 | 0.000 | 0.000 |
6224 | 0.000 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
15,413 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.140 |
1265 | 0.000 | 0.000 | 0.014 | 0.029 | 0.043 | 0.000 | 0.072 | 0.000 | 0.000 | 0.000 | 0.029 | 0.014 |
185,054 | 0.022 | 0.000 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 | 0.067 | 0.067 | 0.000 | 0.000 | 0.000 |
138,054 | 144,732 | 153,678 | 158,340 | 159,726 | 159,852 | 161,868 | 164,010 | 166,278 | 184,926 | 186,690 | 201,432 | |
463 | 0.000 | 0.000 | 0.146 | 0.010 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.031 | 0.021 | 0.021 |
743 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 |
6224 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.025 | 0.100 | 0.000 |
15,413 | 0.000 | 0.000 | 0.116 | 0.047 | 0.023 | 0.000 | 0.163 | 0.000 | 0.000 | 0.047 | 0.000 | 0.000 |
1265 | 0.000 | 0.058 | 0.159 | 0.000 | 0.000 | 0.014 | 0.000 | 0.130 | 0.000 | 0.000 | 0.000 | 0.000 |
185,054 | 0.356 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
References
- Poniszewska-Maranda, A.; Matusiak, R.; Kryvinska, N.; Yasar, A.U.H. A real-time service system in the cloud. J. Ambient Intell. Humaniz. Comput. 2020, 11, 961–977. [Google Scholar] [CrossRef]
- Poniszewska-Maranda, A.; Kaczmarek, D.; Kryvinska, N.; Xhafa, F. Studying usability of AI in the IoT systems/paradigm through embedding NN techniques into mobile smart service system. Computing 2019, 101, 1661–1685. [Google Scholar] [CrossRef]
- Tegene, A.; Liu, Q.; Gan, Y.; Dai, T.; Leka, H.; Ayenew, M. Deep Learning and Embedding Based Latent Factor Model for Collaborative Recommender Systems. Appl. Sci. 2023, 13, 726. [Google Scholar] [CrossRef]
- Palomares, I.; Porcel, C.; Pizzato, L.; Guy, I.; Herrera-Viedma, E. Reciprocal Recommender Systems: Analysis of state-of-art literature, challenges and opportunities towards social recommendation. Inf. Fusion 2021, 69, 103–127. [Google Scholar] [CrossRef]
- Ali, S.M.; Nayak, G.K.; Lenka, R.K.; Barik, R.K. Movie recommendation system using genome tags and content-based filtering. In Advances in Data and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 85–94. [Google Scholar]
- Wang, S.; Gong, M.; Wu, Y.; Zhang, M. Multi-objective optimization for location-based and preferences-aware recommendation. Inf. Sci. 2020, 513, 614–626. [Google Scholar] [CrossRef]
- Wang, F.; Hu, L.; Sun, R.; Hu, J.; Zhao, K. SRMCS: A semantic-aware recommendation framework for mobile crowd sensing. Inf. Sci. 2018, 433, 333–345. [Google Scholar] [CrossRef]
- Fedushko, S.; Ustyianovych, T.; Syerov, Y. Intelligent academic specialties selection in higher education for Ukrainian entrants: A recommendation system. J. Intell. 2022, 10, 32. [Google Scholar] [CrossRef]
- Lee, S.K.; Cho, Y.H.; Kim, S.H. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Inf. Sci. 2010, 180, 2142–2155. [Google Scholar] [CrossRef]
- Iwendi, C.; Khan, S.; Anajemba, J.H.; Bashir, A.K.; Noor, F. Realizing an efficient IoMT-assisted patient diet recommendation system through machine learning model. IEEE Access 2020, 8, 28462–28474. [Google Scholar] [CrossRef]
- Addagarla, S.K.; Amalanathan, A. Probabilistic Unsupervised Machine Learning Approach for a Similar Image Recommender System for E-Commerce. Symmetry 2020, 12, 1783. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Chen, X.; Zhong, J.; Wang, D. A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf. Sci. 2020, 519, 306–316. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, X. Comparative study of deep learning models for analyzing online restaurant reviews in the era of the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 94, 102849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, H.; Wang, J. Personalized restaurant recommendation method combining group correlations and customer preferences. Inf. Sci. 2018, 454, 128–143. [Google Scholar] [CrossRef]
- Wang, L.; Yi, B. Research on O2O take-away restaurant recommendation system: Taking ele. me APP as an example. Clust. Comput. 2019, 22, 6069–6077. [Google Scholar] [CrossRef]
- Marques, G.; Respício, A.; Afonso, A.P. A mobile recommendation system supporting group collaborative decision making. Procedia Comput. Sci. 2016, 96, 560–567. [Google Scholar] [CrossRef]
- Gartrell, M.; Alanezi, K.; Tian, L.; Han, R.; Lv, Q.; Mishra, S. SocialDining: Design and analysis of a group recommendation application in a mobile context. Comput. Sci. Tech. Rep. 2014, 10, 1034. [Google Scholar]
- Utama, D.N.; Handayani, T.; Devi, D.K.; Putri, E.L.; Ramadhan, W. Worth Eat II: An extended intelligent application for finding restaurant. Int. J. Mech. Eng. Technol. 2018, 9, 1448–1457. [Google Scholar]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com. Tour. Manag. 2017, 59, 281–297. [Google Scholar] [CrossRef]
- Hartanto, M.; Utama, D.N. Intelligent decision support model for recommending restaurant. Cogent Eng. 2020, 7, 1763888. [Google Scholar] [CrossRef]
- Asani, E.; Vahdat-Nejad, H.; Sadri, J. Restaurant recommender system based on sentiment analysis. Mach. Learn. Appl. 2021, 6, 100114. [Google Scholar] [CrossRef]
- Zhai, S.; Xu, X.; Yang, L.; Zhou, M.; Zhang, L.; Qiu, B. Mapping the popularity of urban restaurants using social media data. Appl. Geogr. 2015, 63, 113–120. [Google Scholar] [CrossRef]
- Chatterjee, S. Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach. Int. J. Hosp. Manag. 2020, 85, 102356. [Google Scholar] [CrossRef]
- Mathayomchan, B.; Taecharungroj, V. “How was your meal?” Examining customer experience using Google maps reviews. Int. J. Hosp. Manag. 2020, 90, 102641. [Google Scholar] [CrossRef]
- Roy, A.; Banerjee, S.; Sarkar, M.; Darwish, A.; Elhoseny, M.; Hassanien, A.E. Exploring new vista of intelligent collaborative filtering: A restaurant recommendation paradigm. J. Comput. Sci. 2018, 27, 168–182. [Google Scholar] [CrossRef]
- Da’u, A.; Salim, N.; Idris, R. An adaptive deep learning method for item recommendation system. Knowl.-Based Syst. 2021, 213, 106681. [Google Scholar] [CrossRef]
- Son, J.; Kim, S.B. Content-based filtering for recommendation systems using multiattribute networks. Expert Syst. Appl. 2017, 89, 404–412. [Google Scholar] [CrossRef]
- Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [Google Scholar] [CrossRef]
- Del Olmo, F.H.; Gaudioso, E. Evaluation of recommender systems: A new approach. Expert Syst. Appl. 2008, 35, 790–804. [Google Scholar] [CrossRef]
- Vanetti, M.; Binaghi, E.; Carminati, B.; Carullo, M.; Ferrari, E. Content-based filtering in on-line social networks. In Proceedings of the International Workshop on Privacy and Security Issues in Data Mining and Machine Learning, Barcelona, Spain, 24 September 2010; pp. 127–140. [Google Scholar]
- Park, M.H.; Park, H.S.; Cho, S.B. Restaurant recommendation for group of people in mobile environments using probabilistic multi-criteria decision making. In Proceedings of the Asia-Pacific Conference on Computer Human Interaction, Seoul, Republic of Korea, 6–9 July 2008; pp. 114–122. [Google Scholar]
- Hafez, M.M.; Redondo, R.P.D.; Vilas, A.F.; Pazó, H.O. Multi-Criteria Recommendation Systems to Foster Online Grocery. Sensors 2021, 21, 3747. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, X.; Fei, X.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 2020, 13, 685–695. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, C.; Li, M.; Ren, X.; Liu, P. Mobile e-commerce recommendation system based on multi-source information fusion for sustainable e-business. Sustainability 2018, 10, 147. [Google Scholar] [CrossRef]
- Iwendi, C.; Ibeke, E.; Eggoni, H.; Velagala, S.; Srivastava, G. Pointer-based item-to-item collaborative filtering recommendation system using a machine learning model. Int. J. Inf. Technol. Decis. Mak. 2022, 21, 463–484. [Google Scholar] [CrossRef]
- Song, C.; Yu, Q.; Jose, E.; Zhuang, J.; Geng, H. A Hybrid Recommendation Approach for Viral Food Based on Online Reviews. Foods 2021, 10, 1801. [Google Scholar] [CrossRef]
- Chen, T. A fuzzy ubiquitous traveler clustering and hotel recommendation system by differentiating travelers’ decision-making behaviors. Appl. Soft Comput. 2020, 96, 106585. [Google Scholar] [CrossRef]
- Bobadilla, J.; Hernando, A.; Ortega, F.; Gutiérrez, A. Collaborative filtering based on significances. Inf. Sci. 2012, 185, 1–17. [Google Scholar] [CrossRef]
- Khan, Z.A.; Zubair, S.; Alquhayz, H.; Azeem, M.; Ditta, A. Design of momentum fractional stochastic gradient descent for recommender systems. IEEE Access 2019, 7, 179575–179590. [Google Scholar] [CrossRef]
- Guan, N.; Tao, D.; Luo, Z.; Yuan, B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Process. 2011, 20, 2030–2048. [Google Scholar] [CrossRef]
- Gemulla, R.; Nijkamp, E.; Haas, P.J.; Sismanis, Y. Large-scale matrix factorization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 69–77. [Google Scholar]
- Wu, H.; Zhang, Z.; Yue, K.; Zhang, B.; He, J.; Sun, L. Dual-regularized matrix factorization with deep neural networks for recommender systems. Knowl.-Based Syst. 2018, 145, 46–58. [Google Scholar] [CrossRef]
- Wu, K.; Guo, Y.; Zhang, C. Compressing deep neural networks with sparse matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3828–3838. [Google Scholar] [CrossRef]
- Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. Adv. Neural Inf. Process. Syst. 2004, 17, 8. [Google Scholar]
Reference | Data | Data Source | Model | Objective |
---|---|---|---|---|
SocialDining proposed by Gartrell et al. [17] | Ratings of users (n = 31) over 15 weeks and information of restaurants (n = 500) | Own app and Foursquare | Social Likelihood Bayesian | Recommendations for small groups of users who want to meet for food or drink |
Zhai et al. [22] | Consumer review scores (food, service, and decoration), number of reviews, number of recommendations, evaluation frequency, and geographic-location data for restaurants (n = 8259) | Dianping.com | Principal Component Analysis Kernel Density Estimation, Local Moran’s I | Locate the most popular urban restaurants |
BomApetite proposed by Marques et al. [16] | Users’ (n = 10) votes for restaurants, using a 5-rating scale. Restaurants’ data: type of cuisine, cost, distance, opening hours, number of votes, and restaurants’ ratings | Zomato, TripAdvisor, Foursquare, Yelp, and Google Places | After voting, five restaurants having the highest overall ratings are recommended | Mobile system to recommend restaurants to a group, based on the preferences of all the group participants |
Zhang et al. [19] | Overall ratings; number of reviews; and the ratings of food, service, and atmosphere, using a 5-rating scale. Total of 14,562 records related to 451 tourists and 4820 restaurants | TripAdvisor | Fuzzy sets, Bonferroni, Entropy-based similarity measurement | Restaurant decision support model |
Zhang et al. [14] | Total of 6269 ratings involving 60 restaurants in New York and 1945 customers. The overall rating in a 5-scale was used | TripAdvisor | Probabilistic linguistic term, groups identification, similarity measurement between customer and groups | Restaurant recommendation that combines group correlations and customer preferences |
Roy et al. [25] | Ratings and users’ information of 20 clients. Smokers (binary feature), drinking level, activity, and budget | [29] | Altered Client-Based Collaborative Filtering | Grouping restaurant recommendation |
Worth eat II proposed by Utama et al. [18] | Food price, taste rating, and cleanliness rating, valued on a five-point scale | Own app | Fuzzy logic, Euclidean distance, and hill-climbing | Application for finding restaurants |
Wang and Yi [15] | Food, price, and service factors, valued with a five-point scale | Chinese App O2O | Rank-Centroid/Analytic Hierarchy Process | Restaurant recommendation |
Chatterjee (2020) [23] | Rating scale and text reviews; 40 hotels with 942 observations | TripAdvisor | Artificial Neural Networks, Random Forest, Support Vector Machines | Explain and predict reviews help select a hotel |
Hartanto and Utama [20] | Questionnaires and reviews of 75 restaurants and 8 customers | Zomato | Fuzzy logic, cosine similarity distance | Restaurant recommendation for individuals or groups |
Asani et al. [21] | Users’ (n = 100) text reviews on restaurants | TripAdvisor | Hierarchical and partitioning clustering | Restaurant recommendation system based on sentiment analysis |
a | b | C | d | Difference with x | |
---|---|---|---|---|---|
x | 0.19 | 0.01 | 0.80 | 0.00 | |
o | 0.03 | 0.03 | 0.91 | 0.03 | (|0.19 − 0.03|+|0.80 − 0.91|)/2 = 0.135 |
p | 0.06 | 0.09 | 0.50 | 0.35 | (|0.19 − 0.06|+|0.80 − 0.50|)/2 = 0.215 |
q | 0.29 | 0.05 | 0.21 | 0.45 | (|0.19 − 0.29|+|0.80 − 0.21|)/2 = 0.345 |
r | 0.30 | 0.15 | 0.15 | 0.40 | (|0.19 − 0.30|+|0.80 − 0.15|)/2 = 0.380 |
s | 0.00 | 0.92 | 0.03 | 0.05 | (|0.19 − 0.00|+|0.80 − 0.03|)/2 = 0.480 |
Year | pmin | |||||
---|---|---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.35 | |
2019 | 5.55 | 2.70 | 1.59 | 1.01 | 0.63 | 0.29 |
2020 | 5.54 | 2.63 | 1.43 | 0.81 | 0.54 | 0.29 |
2021 | 4.54 | 2.48 | 1.70 | 1.21 | 0.93 | 0.62 |
Year | pmin | ||||||
---|---|---|---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | |
Average of the percentage of correct recommendations | |||||||
2019 | 0.39 | 0.27 | 0.25 | 0.24 | 0.27 | 0.22 | 0.19 |
2020 | 0.33 | 0.25 | 0.22 | 0.19 | 0.25 | 0.16 | 0.16 |
2021 | 0.31 | 0.21 | 0.17 | 0.17 | 0.19 | 0.18 | 0.18 |
Average of the number of recommended restaurants | |||||||
2019 | 16.31 | 7.58 | 3.77 | 1.79 | 0.85 | 0.57 | 0.39 |
2020 | 16.83 | 7.74 | 3.58 | 1.31 | 0.74 | 0.45 | 0.28 |
2021 | 15.57 | 7.78 | 4.89 | 2.69 | 1.77 | 1.16 | 0.90 |
Year | K | |||||
---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | |
Average of the percentage of correct recommendations | ||||||
2019 | 0.16 | 0.20 | 0.26 | 0.30 | 0.33 | 0.36 |
2020 | 0.19 | 0.22 | 0.25 | 0.28 | 0.29 | 0.32 |
2021 | 0.14 | 0.16 | 0.21 | 0.24 | 0.29 | 0.30 |
Average of the number of recommended restaurants | ||||||
2019 | 4.55 | 6.07 | 7.60 | 8.98 | 10.36 | 11.89 |
2020 | 4.72 | 6.09 | 7.71 | 9.25 | 10.55 | 11.97 |
2021 | 4.66 | 6.23 | 7.74 | 9.34 | 10.89 | 12.34 |
Year | pmin | ||||||
---|---|---|---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | |
Average of the percentage of correct recommendations | |||||||
2019 | 0.45 | 0.37 | 0.19 | 0.09 | 0.03 | 0.02 | 0.00 |
2020 | 0.44 | 0.32 | 0.17 | 0.05 | 0.02 | 0.01 | 0.01 |
2021 | 0.39 | 0.32 | 0.24 | 0.14 | 0.06 | 0.03 | 0.01 |
Average of the number of recommended restaurants | |||||||
2019 | 86.68 | 73.42 | 38.20 | 17.93 | 5.51 | 2.43 | 0.00 |
2020 | 85.00 | 62.04 | 32.03 | 10.06 | 4.02 | 1.05 | 0.30 |
2021 | 74.38 | 64.27 | 45.83 | 24.85 | 11.75 | 4.87 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, C.N.; Domínguez-Soberanes, J.; Arreola, A.; Graff, M. Recommendation System for a Delivery Food Application Based on Number of Orders. Appl. Sci. 2023, 13, 2299. https://doi.org/10.3390/app13042299
Sánchez CN, Domínguez-Soberanes J, Arreola A, Graff M. Recommendation System for a Delivery Food Application Based on Number of Orders. Applied Sciences. 2023; 13(4):2299. https://doi.org/10.3390/app13042299
Chicago/Turabian StyleSánchez, Claudia N., Julieta Domínguez-Soberanes, Alejandra Arreola, and Mario Graff. 2023. "Recommendation System for a Delivery Food Application Based on Number of Orders" Applied Sciences 13, no. 4: 2299. https://doi.org/10.3390/app13042299
APA StyleSánchez, C. N., Domínguez-Soberanes, J., Arreola, A., & Graff, M. (2023). Recommendation System for a Delivery Food Application Based on Number of Orders. Applied Sciences, 13(4), 2299. https://doi.org/10.3390/app13042299