Selection of a Photovoltaic Panel Cooling Technique Using Multi-Criteria Decision Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods and Criteria
- Technology feasibility in terms of efficiency increase;
- Economic performance;
- Environmental aspects;
- Reliability;
- Ergonomics.
2.1. Technology Feasibility
2.2. Technology Reliability
- A.
- Corrosion, coating formation and scaling of heat transfer surfaces;
- B.
- Physical degradation of heat transfer fluids;
- C.
- Leakage of fluid conduits;
- D.
- Electric equipment failure.
2.3. Economic Performance
2.4. Environmental Aspects
2.5. Ergonomics
3. MCDM Approach to Evaluate PV Panel Cooling Methods Evaluation
3.1. Structure of the Decision Matrix and its Standardization
3.2. Estimation of Criterion Entropy Weights
3.3. The Decision Matrix Normalization
3.4. Determine the Best and Worst PV Panel Cooling Methods for a Given Criterion
3.5. Calculate Each Alternative PV Panel Cooling Method’s Proximity to the Best Solution for a Specific Criterion before Rating the Alternatives
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skoplaki, E.; Palyvos, J.A. On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Taqwa, A.; Dewi, T.; Kusumanto, R.D.; Sitompul, C.R. Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang. J. Phys. 2020, 1500, 012013. [Google Scholar] [CrossRef]
- Al-Ghezi, M.; Tariq Ahmedhamdi, R.; Chaichan, M. The Influence of Temperature and Irradiance on Performance of the Photovoltaic Panel in the Middle of Iraq. Int. J. Renew. Energy Dev. 2022, 11, 501–553. [Google Scholar] [CrossRef]
- Kumar, R.; Rosen, M.A. A Critical Review of Photovoltaic–Thermal Solar Collectors for Air Heating. Appl. Energy 2011, 88, 3603–3614. [Google Scholar] [CrossRef]
- Daghigh, R.; Ruslan, M.H.; Sopian, K. Advances in Liquid Based Photovoltaic/Thermal (PV/T) Collectors. Renew. Sustain. Energy Rev. 2011, 15, 4156–4170. [Google Scholar] [CrossRef]
- Adeeb, J.; Farhan, A.; Al-Salaymeh, A. Temperature Effect on Performance of Different Solar Cell Technologies. J. Ecol. Eng. 2019, 20, 249–254. [Google Scholar] [CrossRef]
- Makki, A.; Omer, S.; Sabir, H. Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance. Renew. Sustain. Energy Rev. 2015, 41, 658–684. [Google Scholar] [CrossRef]
- Tonui, J.K.; Tripanagnostopoulos, Y. Improved PV/T Solar Collectors with Heat Extraction by Forced or Natural Air Circulation. Renew. Energy 2007, 32, 623–637. [Google Scholar] [CrossRef]
- Arifin, Z.; Suyitno, S.; Tjahjana, D.D.D.P.; Juwana, W.E.; Putra, M.R.A.; Prabowo, A.R. The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Appl. Sci. 2020, 10, 7919. [Google Scholar] [CrossRef]
- Popovici, C.G.; Hudişteanu, S.V.; Mateescu, T.D.; Cherecheş, N.-C. Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks. Energy Procedia 2016, 85, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Gang, P.; Huide, F.; Huijuan, Z.; Jie, J. Performance Study and Parametric Analysis of a Novel Heat Pipe PV/T System. Energy 2012, 37, 384–395. [Google Scholar] [CrossRef]
- Liu, F. Draw of Infinite Energy from Space and Negations of Two Important Laws. Energy Power Eng. 2010, 2, 137–142. [Google Scholar] [CrossRef]
- Tang, X. Experimental Investigation of Solar Panel Cooling by a Novel Micro Heat Pipe Array. Energy Power Eng. 2010, 2, 171–174. [Google Scholar] [CrossRef]
- Arıcı, M.; Bilgin, F.; Nižetić, S.; Papadopoulos, A.M. Phase Change Material Based Cooling of Photovoltaic Panel: A Simplified Numerical Model for the Optimization of the Phase Change Material Layer and General Economic Evaluation. J. Clean. Prod. 2018, 189, 738–745. [Google Scholar] [CrossRef]
- Kiwan, S.; Ahmad, H.; Alkhalidi, A.; Wahib, W.O.; Al-Kouz, W. Photovoltaic Cooling Utilizing Phase Change Materials. E3S Web Conf. 2020, 160, 02004. [Google Scholar] [CrossRef]
- Amelia, A.R.; Irwan, Y.M.; Irwanto, M.; Leow, W.Z.; Gomesh, N.; Safwati, I.; Anuar, M.A.M. Cooling on Photovoltaic Panel Using Forced Air Convection Induced by DC Fan. Int. J. Electr. Comput. Eng. 2016, 6, 526. [Google Scholar] [CrossRef]
- Sharaf, M.; Yousef, M.S.; Huzayyin, A.S. Review of Cooling Techniques Used to Enhance the Efficiency of Photovoltaic Power Systems. Env. Sci. Pollut. Res. 2022, 29, 26131–26159. [Google Scholar] [CrossRef]
- Teo, H.G.; Lee, P.S.; Hawlader, M.N.A. An Active Cooling System for Photovoltaic Modules. Appl. Energy 2012, 90, 309–315. [Google Scholar] [CrossRef]
- Arcuri, N.; Reda, F.; De Simone, M. Energy and Thermo-Fluid-Dynamics Evaluations of Photovoltaic Panels Cooled by Water and Air. Sol. Energy 2014, 105, 147–156. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Bruno, R.; Arcuri, N. Comparing the Performances of Different Cooling Strategies to Increase Photovoltaic Electric Performance in Different Meteorological Conditions. Energy 2020, 195, 116950. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, J. Lightweight Neural Networks-Based Safety Evaluation for Smart Construction Devices. Comput. Intell. Neurosci. 2022, 2022, e3192552. [Google Scholar] [CrossRef]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of Multi-Criteria Decision Making to Sustainable Energy Planning—A Review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Arriola, E.R.; Ubando, A.T.; Chen, W.-H. A Bibliometric Review on the Application of Fuzzy Optimization to Sustainable Energy Technologies. Int. J. Energy Res. 2022, 46, 6–27. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Habeeb, L.J.; Mutasher, D.G. Solar Panel Cooling and Water Heating with an Economical Model Using Thermosiphon. Jordan J. Mech. Ind. Eng. 2018, 12, 189–196. [Google Scholar]
- Waqas, A.; Ji, J. Thermal Management of Conventional PV Panel Using PCM with Movable Shutters—A Numerical Study. Sol. Energy 2017, 158, 797–807. [Google Scholar] [CrossRef]
- Abd Ali, F.; Habeeb, L. Cooling Photovoltaic Thermal Solar Panel by Using Heat Pipe at Baghdad Climate. Int. J. Mech. Mechatron. Eng. 2021, 17, 171–185. [Google Scholar]
- Owhaib, W.; Qanadah, Y.; Al-Ajalin, H.; Tuffaha, A.; Al-Kouz, W. Photovoltaic Panel Efficiency Improvement by Using Direct Water Passive Cooling with Clay Pot. In Proceedings of the 2021 12th International Renewable Engineering Conference (IREC), Amman, Jordan, 14–15 April 2021; pp. 1–4. [Google Scholar]
- Mazón-Hernández, R.; García-Cascales, J.R.; Vera-García, F.; Káiser, A.S.; Zamora, B. Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream. Int. J. Photoenergy 2013, 2013, e830968. [Google Scholar] [CrossRef]
- Grubišić-Čabo, F.; Nižetić, S.; Giuseppe Marco, T. Photovoltaic Panels: A Review of the Cooling Techniques. Trans. FAMENA 2016, 40, 63–74. [Google Scholar]
- Alami, A.H. Effects of Evaporative Cooling on Efficiency of Photovoltaic Modules. Energy Convers. Manag. 2014, 77, 668–679. [Google Scholar] [CrossRef]
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichnikova, I. Advanced Cooling Techniques of P.V. Modules: A State of Art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Dhokane, N.; Ramesh, S. Enhancement of Reliability and Efficiency of Solar Panel Using Cooling Methods; Springer: Cham, Switzerland, 2021; Available online: https://link.springer.com/chapter/10.1007/978-3-030-69925-3_13 (accessed on 23 December 2022).
- Peyghambarzadeh, S.M.; Shahpouri, S.; Aslanzadeh, N.; Rahimnejad, M. Thermal performance of different working fluids in a dual diameter circular heat pipe. Ain Shams Eng. J. 2013, 4, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, U.; Amer, M.; Ali, H.M.; Dahiya, A.; Abbas, N. Cost Effective Cooling of Photovoltaic Modules to Improve Efficiency. Case Stud. Therm. Eng. 2019, 14, 100420. [Google Scholar] [CrossRef]
- Elbreki, A.M.; Muftah, A.F.; Sopian, K.; Jarimi, H.; Fazlizan, A.; Ibrahim, A. Experimental and Economic Analysis of Passive Cooling PV Module Using Fins and Planar Reflector. Case Stud. Therm. Eng. 2021, 23, 100801. [Google Scholar] [CrossRef]
- Heat Pipes—Heat Exchanger Pipe Latest Price, Manufacturers & Suppliers. Available online: https://dir.indiamart.com/impcat/heat-pipes.html (accessed on 23 December 2022).
- Sahu, P.P.; Swain, A.; Sarangi, R.K. Role of PCM in Solar Photovoltaic Cooling: An Overview. In Proceedings of International Conference on Thermofluids; Revankar, S., Sen, S., Sahu, D., Eds.; Springer: Singapore, 2021; pp. 245–259. Available online: https://dokumen.pub/proceedings-of-international-conference-on-thermofluids-kiit-thermo-2020-1st-ed-9789811578304-9789811578311.html (accessed on 2 December 2022).
- Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F. Water Spray Cooling Technique Applied on a Photovoltaic Panel: The Performance Response. Energy Convers. Manag. 2016, 108, 287–296. [Google Scholar] [CrossRef]
- Javaid, M.S. Groundwater Hydrology; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83880-621-7. [Google Scholar]
- Chunbao Charles, X.U.; Cang, D.Q. A Brief Overview of Low CO2 Emission Technologies for Iron and Steel Making. J. Iron Steel Res. Int. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental Impacts of Solar Photovoltaic Systems: A Critical Review of Recent Progress and Future Outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Available online: https://www.mindat.org/climate.php (accessed on 22 January 2023).
S.No | Cooling Method | Temperature Drop (°C) | Panel Area and Type (cm × cm) | Peak Power W | % Efficiency Enhancement | Net Power gain W/m2 | Reference |
---|---|---|---|---|---|---|---|
1 | Aluminum fins | 12.5 | 50 × 50 | 20 | 4% | 40 | [14] |
2 | Heat pipe cooling | 14.2 | 1240 × 541 | 80 | 8% | 80 | [25] |
3 | Phase change material | 23 | 48.5 × 34.5 | 20 | 10% | 100 | [26] |
4 | Thermosiphon cooling | 23 | 1240 × 541 | 80 | 8% | 80 | [27] |
5 | Thermosiphon/clay pot cooling | 28 | 43 × 43 | 20 | 10% | 100 | [28] |
6 | Forced convection fan cooling | 22 | 88 × 88 | 55 | 7% | 70 | [29] |
7 | Water spraying | 40 | 75 × 75 | 50 | 15% | 150 | [30] |
8 | Evaporative cooling | 40 | 75 × 75 | 50 | 15% | 150 | [16] |
Sr. No. | Cooling Method | Weights of the Reliability Factors | Total Rank | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
1 | Aluminum fins | −1 | 0 | 0 | 0 | −1 |
2 | Heat pipe cooling | 0 | −2 | −2 | 0 | −4 |
3 | Phase change material | 0 | −1 | −1 | 0 | −2 |
4 | Thermosiphon cooling | −1 | −1 | −2 | 0 | −4 |
5 | Thermosiphon with clay pot cooling | −1 | −1 | −3 | 0 | −5 |
6 | Forced convection fan cooling | −1 | 0 | 0 | −2 | −3 |
7 | Water spraying | −1 | −1 | −1 | −2 | −5 |
8 | Evaporative cooling | −2 | −1 | −1 | −2 | −5 |
Sr. No. | Cooling Method | Total Cost USD/m2 | |
---|---|---|---|
1 | Aluminum fins | 58 | [37] |
2 | Heat pipe cooling | 168 | [37] |
3 | Phase change material | 1125 | [14] |
4 | Thermosiphon cooling | 25 | [40] |
5 | Thermosiphon with clay pot cooling | 25 | [40] |
6 | Forced convection fan cooling | 68 | [38] |
7 | Water spraying | 75 | [39] |
8 | Evaporative cooling | 75 | [39] |
Cooling Method | Ergonomic Ranking |
---|---|
Aluminum fins | 1 |
Forced convection fan cooling | 2 |
Phase change material | 3 |
Thermosiphon cooling | 4 |
Heat pipe cooling | 5 |
Thermosiphon with clay pot cooling | 6 |
Water spraying | 7 |
Evaporative cooling | 8 |
Alternative Cooling Method | %Efficiency Enhancement (MAX) | Reliability Negative Rank (MAX) | Cost USD/m2 (MIN) | Emission CO2 in Kg (MIN) | Ergonomics Ranks (MIN) | |||
---|---|---|---|---|---|---|---|---|
BWh | Dwa | |||||||
Summer C1 | Winter C2 | Summer C3 | Winter C4 | C5 | C6 | C7 | C8 | |
Aluminum fins cooling (AFC) | 4% | 2% | 3% | 0% | −1 | 58 | Good | 1 |
Heat pipe cooling (HPC) | 8% | 2% | 6% | 0% | −4 | 168 | Acceptable | 5 |
Phase change material cooling (PCC) | 10% | 2% | 8% | 0% | −2 | 1125 | Poor | 3 |
Thermosiphon cooling (TCC) | 8% | 2% | 6% | 0% | −4 | 25 | Poor | 4 |
Thermosiphon with clay pot cooling (TPC) | 10% | 2% | 8% | 0% | −5 | 25 | Good | 6 |
Forced convection fan cooling (FCC) | 7% | 2% | 1% | 0% | −3 | 68 | Good | 2 |
Water spray cooling (WSC) | 15% | 2% | 12% | 0% | −5 | 75 | Good | 7 |
Evaporative cooling (EVC) | 15% | 2% | 12% | 0% | −5 | 75 | Good | 8 |
Alternative PV Panel Cooling Method (i) | Evaluation Criterion (j) | |||
---|---|---|---|---|
1 | 2 | . | n | |
1 | PP11 | P12 | . | P1n |
2 | P21 | P22 | . | P2n |
. | . | . | . | . |
. | . | . | . | . |
M | Pm1 | Pm2 | . | Pmn |
Criterion Weight → | W1 | W2 | . | Wn |
Evaluation Criterion (j) | Alternative PV Panel Cooling Methods (i) | |||||||
---|---|---|---|---|---|---|---|---|
AFC $ | HPC | PCC | TCC | TPC | FFC | WSC | ESC | |
C1 $ | 0.04 | 0.08 | 0.1 | 0.08 | 0.1 | 0.07 | 0.15 | 0.15 |
C2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
C3 | 0.03 | 0.06 | 0.08 | 0.06 | 0.08 | 0.01 | 0.12 | 0.12 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5 | −1 | −4 | −2 | −4 | −5 | −3 | −5 | −5 |
C6 | 58 | 168 | 1125 | 25 | 25 | 68 | 75 | 75 |
C7 | Good | Acceptable | Poor | Poor | Good | Good | Good | Good |
C8 | 1 | 5 | 3 | 4 | 6 | 2 | 7 | 8 |
Evaluation Criterion (j) | Entropy Weight Values (EWj) |
---|---|
C1 $ | 0.039418 |
C2 | 0.24979 |
C3 | 0.057353 |
C4 | 0.24979 |
C5 | 0.098977 |
C6 | 0.216416 |
C7 | 0.041632 |
C8 | 0.046626 |
Evaluation Criterion (j) | Alternative PV Panel Cooling Methods (i) | |||||||
---|---|---|---|---|---|---|---|---|
AFC $ | HPC | PCC | TCC | TPC | FFC | WSC | ESC | |
C1 $ | 0.1378 | 0.2755 | 0.3444 | 0.2755 | 0.3444 | 0.2411 | 0.5166 | 0.5166 |
C2 | 0.0000 | 0.3780 | 0.3780 | 0.3780 | 0.3780 | 0.3780 | 0.3780 | 0.3780 |
C3 | 0.1344 | 0.2689 | 0.3585 | 0.2689 | 0.3585 | 0.0448 | 0.5377 | 0.5377 |
C4 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
C5 | −0.0909 | −0.3636 | −0.1818 | −0.3636 | −0.4545 | −0.2727 | −0.4545 | −0.4545 |
C6 | 0.0506 | 0.1465 | 0.9813 | 0.0218 | 0.0218 | 0.0593 | 0.0654 | 0.0654 |
C7 | 0.4508 | 0.3607 | 0.2705 | 0.2705 | 0.3607 | 0.3607 | 0.3607 | 0.3607 |
C8 | 0.0700 | 0.3501 | 0.2100 | 0.2801 | 0.4201 | 0.1400 | 0.4901 | 0.5601 |
Evaluation Criterion (j) | PV Panel Cooling Method | |||
---|---|---|---|---|
V+ | Cooling Strategy | V− | Cooling Strategy | |
C1 $ | 0.020364 | WSC $ | 0.00543 | AFC |
C2 | 0.094412 | HPC to EVC | 0 | AFC |
C3 | 0.030841 | WSC, EVC | 0.00257 | FCC |
C4 | 0.24979 | AFC | 0 | HPC to EVC |
C5 | 0.0000 | AFC | −0.04499 | TPC, WSC, EVC |
C6 | 0.004719 | TCC | 0.212367 | PCC |
C7 | 0.011261 | PCC, TCC | 0.018769 | AFC |
C8 | 0.003264 | AFC | 0.026116 | EVC |
PV Panel Cooling Method (i) | Scenario 1: Entropy Weights | ||||
---|---|---|---|---|---|
Di+ (Distance from the Best Ideal) | Di− (Distance from the Worst Ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC $ | 0.0988 | 0.3237 | 0.7661 | 1 | |
HPC | 0.2537 | 0.2048 | 0.4466 | 7 | |
PCC | 0.3253 | 0.1018 | 0.2383 | 8 | |
TCC | 0.2521 | 0.2292 | 0.4762 | 2 | |
TPC | 0.2532 | 0.2291 | 0.4750 | 3 | |
FFC | 0.2524 | 0.2224 | 0.4684 | 4 | |
WSC | 0.2533 | 0.2219 | 0.4670 | 5 | |
ESC | 0.2536 | 0.2219 | 0.4667 | 6 | |
PV panel cooling method (i) | Scenario 2: 65% weight to reliability and the rest equal to 5% each | ||||
Di+ (distance from the best ideal) | Di− (distance from the worst ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC | 0.0347 | 0.2473 | 0.8769 | 1 | |
HPC | 0.1858 | 0.0768 | 0.2924 | 5 | |
PCC | 0.0922 | 0.1803 | 0.6618 | 2 | |
TCC | 0.1854 | 0.0812 | 0.3047 | 4 | |
TPC | 0.2426 | 0.0555 | 0.1862 | 8 | |
FFC | 0.1315 | 0.1301 | 0.4974 | 3 | |
WSC | 0.2426 | 0.0588 | 0.1950 | 6 | |
ESC | 0.2429 | 0.0587 | 0.1945 | 7 | |
PV panel cooling method (i) | Scenario 3: Equal weights to all | ||||
Di+ (distance from the best ideal) | Di− (distance from the worst ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC | 0.0868 | 0.1874 | 0.6834 | 1 | |
HPC | 0.1429 | 0.1231 | 0.4627 | 7 | |
PCC | 0.1772 | 0.0896 | 0.3357 | 8 | |
TCC | 0.1397 | 0.1399 | 0.5003 | 3 | |
TPC | 0.1439 | 0.1388 | 0.4910 | 5 | |
FFC | 0.1461 | 0.1381 | 0.4860 | 6 | |
WSC | 0.1435 | 0.1469 | 0.5058 | 2 | |
ESC | 0.1470 | 0.1466 | 0.4994 | 4 | |
PV panel cooling method (i) | Scenario 4: 60% weight to cost and the rest total 40% | ||||
Di+ (distance from the best ideal) | Di− (distance from the worst ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC | 0.0301 | 0.5623 | 0.9492 | 1 | |
HPC | 0.0890 | 0.5016 | 0.8493 | 7 | |
PCC | 0.5765 | 0.0497 | 0.0794 | 8 | |
TCC | 0.0435 | 0.5768 | 0.9299 | 2 | |
TPC | 0.0574 | 0.5761 | 0.9094 | 4 | |
FFC | 0.0423 | 0.5552 | 0.9292 | 3 | |
WSC | 0.0669 | 0.5499 | 0.8915 | 5 | |
ESC | 0.0715 | 0.5499 | 0.8849 | 6 | |
PV panel cooling method (i) | Scenario 5: 50% weight to emission and the rest total 50% | ||||
Di+ (distance from the best ideal) | Di− (distance from the worst ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC | 0.1076 | 0.1040 | 0.4916 | 3 | |
HPC | 0.1054 | 0.0744 | 0.4137 | 7 | |
PCC | 0.1025 | 0.1039 | 0.5035 | 2 | |
TCC | 0.0946 | 0.1108 | 0.5394 | 1 | |
TPC | 0.1039 | 0.0810 | 0.4380 | 6 | |
FFC | 0.1106 | 0.0765 | 0.4090 | 8 | |
WSC | 0.1023 | 0.0905 | 0.4695 | 4 | |
ESC | 0.1031 | 0.0905 | 0.4674 | 5 | |
PV panel cooling method (i) | Scenario 6: 60% weight to efficiency and the rest total 40% | ||||
Di+ (distance from the best ideal) | Di− (distance from the worst ideal) | Di−/(Di+ + Di−) | Rank Ci | ||
AFC | 0.1022 | 0.1873 | 0.6470 | 1 | |
HPC | 0.1649 | 0.1111 | 0.4025 | 7 | |
PCC | 0.1827 | 0.0932 | 0.3378 | 8 | |
TCC | 0.1632 | 0.1232 | 0.4302 | 5 | |
TPC | 0.1628 | 0.1260 | 0.4362 | 4 | |
FFC | 0.1736 | 0.1189 | 0.4064 | 6 | |
WSC | 0.1603 | 0.1429 | 0.4714 | 2 | |
ESC | 0.1622 | 0.1428 | 0.4681 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneesamkandi, Z.; Rehman, A.U. Selection of a Photovoltaic Panel Cooling Technique Using Multi-Criteria Decision Analysis. Appl. Sci. 2023, 13, 1949. https://doi.org/10.3390/app13031949
Kaneesamkandi Z, Rehman AU. Selection of a Photovoltaic Panel Cooling Technique Using Multi-Criteria Decision Analysis. Applied Sciences. 2023; 13(3):1949. https://doi.org/10.3390/app13031949
Chicago/Turabian StyleKaneesamkandi, Zakariya, and Ateekh Ur Rehman. 2023. "Selection of a Photovoltaic Panel Cooling Technique Using Multi-Criteria Decision Analysis" Applied Sciences 13, no. 3: 1949. https://doi.org/10.3390/app13031949