Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Properties
3.2. Structural and Surface Properties
3.3. Gas-Sensing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henning, R.A.; Leichtweiss, T.; Dorow-Gerspach, D.; Schmidt, R.; Wolff, N.; Schürmann, U.; Decker, Y.; Kienle, L.; Wuttig, M.; Janek, J. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications. Z. Kristallogr. Cryst. Mater. 2017, 232, 161–183. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Insights in the Application of Stoichiometric and Non-Stoichiometric Titanium Oxides for the Design of Sensors for the Determination of Gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 2020, 20, 6833. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sohn, H.Y.; Mohassab, Y.; Lan, Y. Structures, preparation and applications of titanium suboxides. RSC Adv. 2016, 6, 79706–79722. [Google Scholar] [CrossRef]
- Hasan, M.M.; Haseeb, A.S.M.A.; Saidur, R.; Masjuki, H.H. Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films. World J. Nucl. Sci. Technol. 2009, 40, 221–225. [Google Scholar]
- Zapata-Torres, M.; Hernández-Rodríguez, E.; Mis-Fernandez, R.; Meléndez-Lira, M.; Amaya, O.C.; Bahena, D.; Rejon, V.; Peña, J. Visible and infrared photocatalytic activity of TiO thin films prepared by reactive sputtering. Mater. Sci. Semicond. Process. 2015, 40, 720–726. [Google Scholar] [CrossRef]
- Reddy, Y.A.K.; Kang, I.-K.; Shin, Y.B.; Lee, H.C.; Reddy, P.S. Oxygen partial pressure and thermal annealing dependent properties of RF magnetron sputtered TiO2−x films. Mater. Sci. Semicond. Process. 2015, 32, 107–116. [Google Scholar] [CrossRef]
- Mazur, M. Analysis of the properties of functional titanium dioxide thin films deposited by pulsed DC magnetron sputtering with various O2:Ar ratios. Opt. Mater. 2017, 69, 96–104. [Google Scholar] [CrossRef]
- Rafieian, D.; Ogieglo, W.; Savenije, T.; Lammertink, R.G.H. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering. AIP Adv. 2015, 5, 097168. [Google Scholar] [CrossRef]
- Hassanien, A.; Akl, A.A. Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Phys. B Condens. Matter 2020, 576, 411718. [Google Scholar] [CrossRef]
- Mohamed, S.; Kappertz, O.; Pedersen, T.P.L.; Drese, R.J.; Wuttig, M. Properties of TiOx coatings prepared by dc magnetron sputtering. Phys. Status Solidi (A) 2003, 198, 224–237. [Google Scholar] [CrossRef]
- Ju, Y.; Li, L.; Wu, Z.; Jiang, Y. Effect of Oxygen Partial Pressure on the Optical Property of Amorphous Titanium Oxide Thin Films. Energy Procedia 2011, 12, 450–455. [Google Scholar] [CrossRef]
- Dorow-Gerspach, D.; Wuttig, M. Metal-like conductivity in undoped TiO2−x: Understanding an unconventional transparent conducting oxide. Thin Solid Films 2019, 669, 1–7. [Google Scholar] [CrossRef]
- Villarroel, R.; Espinoza-González, R.; Lisoni, J.; González-Moraga, G. Influence of the oxygen consumption on the crystalline structure of titanium oxides thin films prepared by DC reactive magnetron sputtering. Vacuum 2018, 154, 52–57. [Google Scholar] [CrossRef]
- Chen, G.; Lee, C.; Niu, H.; Huang, W.; Jann, R.; Schütte, T. Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy. Thin Solid Films 2008, 516, 8473–8478. [Google Scholar] [CrossRef]
- Mao, Q.; Liu, M.; Li, Y.; Wei, Y.; Yang, Y.; Huang, Z. Black TiOx Films with Photothermal-Assisted Photocatalytic Activity Prepared by Reactive Sputtering. Materials 2021, 14, 2508. [Google Scholar] [CrossRef]
- Barros, H.W.S.; Duarte, D.A.; Sagás, J.C. Optical and electrical properties of Ti suboxides grown by reactive grid-assisted magnetron sputtering. Thin Solid Films 2020, 696, 137762. [Google Scholar] [CrossRef]
- Hasan, M.; Haseeb, A.; Saidur, R.; Masjuki, H.; Hamdi, M. Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films. Opt. Mater. 2010, 32, 690–695. [Google Scholar] [CrossRef]
- Karunagaran, B.; Kim, K.; Mangalaraj, D.; Yi, J.; Velumani, S. Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Sol. Energy Mater. Sol. Cells 2005, 88, 199–208. [Google Scholar] [CrossRef]
- Miller, M.J.; Wang, J. Coupled effects of deposition and annealing temperatures on optical, electrical and mechanical properties of titanium oxide thin films. Vacuum 2015, 120, 155–161. [Google Scholar] [CrossRef]
- Mittireddi, R.T.; Patel, N.M.; Gautam, A.R.S.; Soppina, V.; Panda, E. Non-stoichiometric amorphous TiOx as a highly reactive, transparent anti-viral surface coating. J. Alloys Compd. 2021, 881, 160610. [Google Scholar] [CrossRef]
- Leichtweiss, T.; Henning, R.A.; Koettgen, J.; Schmidt, R.M.; Holländer, B.; Martin, M.; Wuttig, M.; Janek, J. Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. J. Mater. Chem. A 2014, 2, 6631–6640. [Google Scholar] [CrossRef]
- Radecka, M.; Zakrzewska, K.; Czternastek, H.; Stapiński, T.; Debrus, S. The influence of thermal annealing on the structural, electrical and optical properties of TiO2−x thin films. Appl. Surf. Sci. 1993, 65–66, 227–234. [Google Scholar] [CrossRef]
- Huang, J.-H.; Wong, M.-S. Structures and properties of titania thin films annealed under different atmosphere. Thin Solid Films 2011, 520, 1379–1384. [Google Scholar] [CrossRef]
- Yao, J.; Shao, J.; He, H.; Fan, Z. Optical and electrical properties of TiOx thin films deposited by electron beam evaporation. Vacuum 2007, 81, 1023–1028. [Google Scholar] [CrossRef]
- Chodun, R.; Dypa, M.; Wicher, B.; Langier, K.N.; Okrasa, S.; Minikayev, R.; Zdunek, K. The sputtering of titanium magnetron target with increased temperature in reactive atmosphere by gas injection magnetron sputtering technique. Appl. Surf. Sci. 2022, 574, 151597. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Mazur, M.; Pokora, P.; Wrona, A.; Bilewska, K.; Kijaszek, W.; Kotwica, T.; Posadowski, W.; Domaradzki, J. Properties of Metallic and Oxide Thin Films Based on Ti and Co Prepared by Magnetron Sputtering from Sintered Targets with Different Co-Content. Materials 2021, 14, 3797. [Google Scholar] [CrossRef]
- Mazur, M.; Lubańska, A.; Domaradzki, J.; Wojcieszak, D. Complex Research on Amorphous Vanadium Oxide Thin Films Deposited by Gas Impulse Magnetron Sputtering. Appl. Sci. 2022, 12, 8966. [Google Scholar] [CrossRef]
- Khan, A.F.; Mehmood, M.; Durrani, S.; Ali, M.; Rahim, N. Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing. Mater. Sci. Semicond. Process. 2015, 29, 161–169. [Google Scholar] [CrossRef]
- Hou, Y.-Q.; Zhuang, D.-M.; Zhang, G.; Zhao, M.; Wu, M.-S. Influence of annealing temperature on the properties of titanium oxide thin film. Appl. Surf. Sci. 2003, 218, 98–106. [Google Scholar] [CrossRef]
- Yildirim, G.; Akdogan, M.; Varilci, A.; Terzioglu, C. Role of annealing environment and partial pressure on structure and optical performance of TiO2 thin films fabricated by rf sputter method. Cryst. Res. Technol. 2010, 45, 1161–1165. [Google Scholar] [CrossRef]
- Amor, S.; Guedri, L.; Baud, G.; Jacquet, M.; Ghedira, M. Influence of the temperature on the properties of sputtered titanium oxide films. Mater. Chem. Phys. 2003, 77, 903–911. [Google Scholar] [CrossRef]
- Wiatrowski, A.; Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Domaradzki, J.; Kalisz, M.; Kijaszek, W.; Pokora, P.; Mańkowska, E.; Lubanska, A.; et al. Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels. J. Mater. Eng. Perform. 2022, 31, 6998–7008. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Wiatrowski, A.; Kaczmarek, D.; Lubańska, A.; Domaradzki, J.; Mazur, P.; Kalisz, M. Analysis of amorphous tungsten oxide thin films deposited by magnetron sputtering for application in transparent electronics. Appl. Surf. Sci. 2021, 570, 151151. [Google Scholar] [CrossRef]
- Zakrzewska, K.; Radecka, M. TiO2-Based Nanomaterials for Gas Sensing—Influence of Anatase and Rutile Contributions. Nanoscale Res. Lett. 2017, 12, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Lu, H.; Zhang, J.; Gao, J.; Zhu, G.; Yang, Z.; Yin, F.; Wang, C. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuators B Chem. 2018, 263, 557–567. [Google Scholar] [CrossRef]
- Hazra, A.; Das, S.; Kanungo, J.; Sarkar, C.; Basu, S. Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B Chem. 2013, 183, 87–95. [Google Scholar] [CrossRef]
TiOxORC Coating | Tλ = 550 nm | Rλ = 550 nm | λcut-off | Egopt | Eu | |
---|---|---|---|---|---|---|
as deposited | 67.3 | 34.5 | 325.5 | 2.01 | 0.61 | |
annealed at: | 100 °C | 67.5 | 34.1 | 318.7 | 2.06 | 0.59 |
200 °C | 66.2 | 35.5 | 321.4 | 2.03 | 0.64 | |
300 °C | 63.9 | 36.5 | 317.9 | 2.05 | 0.66 | |
400 °C | 63.8 | 30.9 | 329.4 | 2.10 | 0.62 | |
600 °C | 57.2 | 34.5 | 335.9 | 2.08 | 0.51 | |
800 °C | 35.5 | 30.7 | 337.8 | 1.75 | 0.66 |
TiOxODC Coating | Tλ = 550 nm | Rλ = 550 nm | λcut-off | Egopt | Eu | |
---|---|---|---|---|---|---|
as deposited | 0.0 | 14.3 | – | – | – | |
annealed at: | 100 °C | 0.0 | 16.2 | – | – | – |
200 °C | 13.4 | 20.5 | 449.5 | 0.70 | 0.77 | |
300 °C | 7.0 | 28.1 | 544.0 | 0.50 | 0.37 | |
400 °C | 6.3 | 21.6 | 537.0 | 0.49 | 0.43 | |
600 °C | 5.3 | 20.3 | 547.7 | 0.44 | 0.40 | |
800 °C | 4.2 | 19.6 | 549.7 | 0.30 | 0.47 |
Thin Film | Annealing Temperature | Phase | 2θ | (hkl) | d (nm) | dPDF (nm) | D (nm) | |
---|---|---|---|---|---|---|---|---|
TiOxORC | as deposited | amorphous | - | - | - | - | - | - |
200 °C | amorphous | - | - | - | - | - | - | |
400 °C | amorphous | - | - | - | - | - | - | |
600 °C | amorphous | - | - | - | - | - | - | |
TiOxODC | as deposited | amorphous | - | - | - | - | - | - |
200 °C | Ti | 35.53° | (100) | 0.2524 | 0.2555 | 11.4 | 65-3362 | |
Ti | 38.67° | (002) | 0.2327 | 0.2342 | 10.1 | 65-3362 | ||
400 °C | TiO2-anatase | 25.16° | (101) | 0.3536 | 0.3520 | 10.8 | 21-1272 | |
Ti | 35.44° | (100) | 0.2531 | 0.2555 | 13.5 | 65-3362 | ||
Ti | 38.56° | (002) | 0.2333 | 0.2342 | 11.2 | 65-3362 | ||
600 °C | TiO2-anatase | 25.23° | (101) | 0.3526 | 0.3520 | 21.1 | 21-1272 | |
TiO2-anatase | 32.48° | (020) | 0.2755 | 0.2749 | 20.0 | 21-1236 | ||
Ti | 35.50° | (100) | 0.2527 | 0.2555 | 19.7 | 65-3362 | ||
Ti | 38.68° | (002) | 0.2326 | 0.2342 | 14.5 | 65-3362 | ||
TiO2-anatase | 48.41° | (200) | 0.1879 | 0.1892 | 12.8 | 21-1272 | ||
TiO2-anatase | 48.91° | (312) | 0.1861 | 0.1852 | 15.8 | 65-2448 | ||
TiO2-anatase | 53.82° | (105) | 0.1702 | 0.1700 | 16.1 | 21-1272 | ||
TiO2-anatase | 55.12° | (211) | 0.1665 | 0.1665 | 19.6 | 21-1272 | ||
TiO2-anatase | 62.35° | (204) | 0.1488 | 0.1408 | 13.5 | 21-1272 | ||
Ti | 66.13° | (002) | 0.1412 | 0.1409 | 12.3 | 51-0631 | ||
TiO2-anatase | 70.27° | (220) | 0.1338 | 0.1338 | 19.6 | 21-1272 | ||
TiO2-anatase | 75.29° | (215) | 0.1261 | 0.1265 | 13.6 | 21-1272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojcieszak, D.; Kapuścik, P.; Kijaszek, W. Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content. Appl. Sci. 2023, 13, 1724. https://doi.org/10.3390/app13031724
Wojcieszak D, Kapuścik P, Kijaszek W. Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content. Applied Sciences. 2023; 13(3):1724. https://doi.org/10.3390/app13031724
Chicago/Turabian StyleWojcieszak, Damian, Paulina Kapuścik, and Wojciech Kijaszek. 2023. "Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content" Applied Sciences 13, no. 3: 1724. https://doi.org/10.3390/app13031724
APA StyleWojcieszak, D., Kapuścik, P., & Kijaszek, W. (2023). Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content. Applied Sciences, 13(3), 1724. https://doi.org/10.3390/app13031724