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Abstract: TiOx films were prepared by gas impulse magnetron sputtering under oxygen-deficient
(ODC) and oxygen-rich conditions (ORC) and annealing at 100–800 ◦C was used. The O2 content
had an effect on their transparency level (Tλ). The films from the ORC mode had ca. Tλ = 60%,
which decreased slightly in the VIS range after annealing. The film from the ODC mode had
lower transmission (ca. <10%), which increased in the NIR range after annealing by up to ca. 60%.
Differences in optical band gap (Eg

opt) and Urbach energy (Eu) were also observed. The deposition
parameters had an influence on the microstructure of TiOx coatings. The ORC and ODC modes
resulted in columnar and grainy structures, respectively. Directly after deposition, both coatings
were amorphous according to the GIXRD results. In the case of TiOxORC films, this state was
retained even after annealing, while for TiOxODC, the crystalline forms of Ti and TiO2-anatase were
revealed with increasing temperature. Sensor studies have shown that the response to H2 in the
coating deposited under oxygen-rich conditions was characteristic of n-type conductivity, while
oxygen-deficient conditions led to a p-type response. The highest sensor responses were achieved for
TiOxODC annealed at 300 ◦C and 400 ◦C.

Keywords: gas-sensing; n or p type of sensor response; amorphous film; TiOx coating; gas impulse
magnetron sputtering; annealing

1. Introduction

The application of titanium oxide materials is a well-researched subject, especially
the application of titanium dioxide (TiO2). Numerous non-stoichiometric phases can be
formed [1–3], but their potential is still poorly defined. They can be prepared using various
methods [4–9]. One of these methods is magnetron sputtering, which can provide a wide
variation in the amount of oxygen in the plasma, and has a high impact on the properties
of the Ti-based coatings. It is known that an increase in the O2 content results in higher
transmittance (up to 80%) and a “blue shift” of the absorption edge, but decreases the
sputtering rate [10]. What is more interesting is when the O2 content in the plasma is
low. Below 1% O2 content, opaque coatings will be obtained due to the lack of sufficient
titanium oxidation [5]. In some instances, transparent films are obtained at 2% oxygen
content, but this was not enough for significant structural changes [5]. Modification of the
crystal structure will be more observable at a higher oxygen content. For ca. 30% in O2,
we will be able to obtain stoichiometric materials, and any further increase in the amount
of oxygen will result in the formation of more or less stable forms of TiO2, i.e., rutile or
anatase [7].

The analysis of the current state of knowledge does not allow for an unambiguous
indication of the limit of oxygen content in the gas mixture, which would enable the
preparation of non-stoichiometric TiOx films. The reports in the literature point to this
value as being less than around 20%. For example, in the work of Reddy et al. [6], an
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abrupt decrease in the deposition rate was observed at approximately 6.2%. The presence
of this critical point was confirmed by the significant change in resistivity. Moreover, the
presence of metallic titanium was observed for films deposited with less than 5.8% oxygen,
while fully amorphous films were obtained above this content. In the work of Ju et al. [11],
coatings deposited with an O2 content in the range of 5% to 13% were amorphous; however,
the increase in transmittance suggested partial oxidation at lower concentrations. Similar
transitions between the metallic and oxide modes, along with a hysteresis effect, were also
found in the works of Rafieian et al. [8], Henning et al. [1], Mohamed et al. [10], and Dorow-
Gerspach et al. [12]. It should be noted that a transition between the metallic and oxide
modes can also be observed as a change in the supply parameters of the magnetron source,
as shown in the work by Villarroel et al. [13], where the critical oxygen content was around
12%. A similar effect was observed in the work by Chen et al. [14], where the deposition
rate decreased significantly above 15% of O2 and was correlate with an increase in the
resistivity of the films. In the case of non-stoichiometric films, the presence of crystalline
forms of metallic titanium itself is often revealed. More often, metallic Ti is not found in
coatings prepared with O2 concentrations of greater than ca. 20% [14,15]. Less oxygen
will result in the presence of oxidation states such as Ti0, Ti2+, and Ti3+. The relationship
between the number of Ti4+ ions at the expense of fewer Ti0, 2+, 3+ has been highlighted by
Barros et al. [16]. However, for stoichiometric films, only Ti4+ ions are observed.

The degree of oxidation of titanium in thin films also influences changes in their
structure as a result of high-temperature annealing. However, crystalline materials that
do not change their structure further after annealing can be obtained [4,17], in most cases,
annealing above 400 ◦C in an oxygen-containing atmosphere will transform the structure
to a crystalline and stoichiometric (TiO2) form. This can be either complete [18–22] or only
partial recrystallisation (mixed phases) [23,24].

The amount of oxygen used in the process of preparing titanium-based oxide coatings
determines, apart from the type of structure or the presence of given crystalline phases,
parameters such as the level of transparency or resistivity. This opens a number of opportu-
nities for the manufacturing of modern materials for use in sensor technology. Although,
in the case of oxidised coatings, a strong change in the presence of reducing gases should
be expected; in the case of non-stoichiometric films, significant changes in properties in the
presence of oxidising gases can also be expected. For this reason, this paper presents the
results of research on the structural, optical, and sensor properties of coatings prepared by
gas impulse magnetron sputtering under oxygen-rich and oxygen-deficient conditions. In
particular, the application of the GIMS process, in which a portion of gas is injected into the
chamber, is innovative. As a result, it was possible to eliminate the hysteresis effect and
achieve better control over the preparation of non-stoichiometric coatings. Changes in their
properties as a result of annealing at high temperature were also analysed. One of the main
advantages of this work is the fact that it was possible to determine the oxygen content
in the impulse-injected gas mixture, which facilitates the characteristic sensor response
of materials with type n or p electrical conductivity. This provides an opportunity to use
the developed technology for the preparation of modern sensor matrices whose fields will
react to the presence of reducing gases, or to oxidising gases.

2. Materials and Methods

Thin films were prepared by gas impulse magnetron sputtering [25–27]. The metallic
Ti target with a diameter of 30 mm and thickness of 3 mm was sputtered in an Ar:O2 gas
mixture with 20% and 30% oxygen content. The flow rates of the working gases were
equal to 8 sccm and 32 sccm, and 12 sccm and 28 sccm, for O2 and Ar, respectively. The
gas impulses, injected directly into the target, were synchronised with the magnetron
supply unit (MSS2 type, Dora Power System). The locally ignited plasma was obtained
at <6 × 10−3 mbar, with a supply power of 500 W (500 V, 1 A) and 250 W (500 V, 0.5 A).
In both cases, the plasma ignition time was 30 ms and the interval between pulses was
70 ms. The coatings were deposited on substrates of n-type (100) silicon (ITE), fused silica
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(Neyco), and ceramic (BVT Company) substrates mounted on a special holder. The distance
between the substrates and the target was 80 mm. The deposition processes were carried
out under so-called oxygen-deficient (TiOxODC) and oxygen-rich conditions (TiOxORC),
consisting of 20% and 30% O2, respectively. The sputtering time in both processes was
equal to 30 min. The deposition rate was around 6.6 nm/min. and 20 nm/min. for ORC
and ODC, respectively. The coatings were also annealed in an ambient air atmosphere (at
100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C for 2 h) in a tubular furnace equipped
with a quartz tube.

The coatings deposited on silicon were used for the surface and cross-sectional mor-
phology measurements, while the coatings deposited on fused silica were used for the
optical and structural measurements. The gas-sensing measurements were performed
using the coatings deposited on BVT-ceramic substrates with integrated electrodes.

The thickness was determined using a Talysurf CCI optical profiler (Taylor Hobson).
The thicknesses of the coatings deposited under oxygen-rich (ORC) and oxygen-deficient
(ORD) conditions were equal to 200 and 600 nm, respectively. There was no significant
change in thickness after additional annealing. The optical properties of the coatings were
analysed based on transmittance (Tλ) and reflectance (Rλ) measurements in the range of
250 nm to 2250 nm. Measurements were obtained using UV–Vis and NIR spectropho-
tometers (NIR 256 and QE 65000, Ocean Optics), and a coupled deuterium-halogen light
source (DH-BAL 2000, Micropac). The optical band gap energy (Eg

opt) for the permitted
indirect transitions was determined on the basis of Tauc plots. The Hitachi SU6600 scan-
ning electron microscope (SEM) was used for surface and cross-sectional observations.
The Empyrean PIXel3D (Panalytical) diffractometer was used for structural studies. XRD
patterns were recorded in the grazing incidence mode (GIXRD) at a 3◦ angle with Cu Kα

radiation (0.15406 nm). Patterns were analysed using MDI JADE 5.0 software. Gas-sensing
properties were measured using 3.5% of H2 in Ar. The gas response was determined at
200 ◦C based on resistance changes and measured with a Keithley 4200-SCS Semiconductor
Characterisation System, which was used as an ohmmeter. Before the introduction of a gas,
the samples were stabilised in an air environment for 1 h. The continuous flow of air and
hydrogen gas was equal to 500 cm3/min.

3. Results and Discussion
3.1. Optical Properties

The film deposited under oxygen-rich conditions (TiOxORC) was characterised by high
transparency in the visible and near-infrared wavelength range (Figure 1). The transparency
levels at λ = 550 nm and λ = 1550 nm were equal to 68% and 72%, respectively. Transmittance
was found to decrease after annealing above 600 ◦C, mainly in the visible range. The
reflectance of the sample did not change significantly after annealing. The absorption edge
(λcut-off) of the TiOxORC films increased with increasing annealing temperature (Figure 2).
The optical band gap value was in the range of 2.0 to 2.1 eV and did not change significantly
after annealing at temperatures up to 600 ◦C, while it decreased by 0.3 eV after annealing
at 800 ◦C. These results are lower compared to those of stoichiometric TiO2 (e.g., [5]), but
are in agreement with parameters of insufficiently oxidised layers as shown by Hassanien
et al. [9]. The Urbach energy value (the width of the band tail) was equal to approximately
0.6 eV and did not change after annealing. The values of the mentioned parameters are
listed in Table 1. Such changes in optical parameters are characteristic of oxide materials
based on Ti. Similar conclusions can also be found in other works, e.g., by Khan et al. [28],
Hou et al. [29], and Karunagaran et al. [18].
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Figure 1. Influence of additional annealing on optical properties of TiOx thin films as deposited
under oxygen-rich conditions (ORC): (a) transmittance in the VIS region, (b) transmittance in the NIR
region, (c) reflectance in the VIS region, (d) transmittance and reflectance values at λ = 550 nm and
λ = 1550 nm as a function of the annealing temperature.
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In turn, the film deposited under oxygen-deficient conditions (TiOxODC) was char-
acterised by a dark blue colour and very low transmittance directly after deposition, as
well as after annealing at 100 ◦C in both the VIS and NIR regions (Figure 3). Furthermore,
the transmission level at λ = 550 nm increased only to approximately 10% after annealing
at a higher temperature. In the NIR range, after annealing at 200 ◦C, the transmittance at



Appl. Sci. 2023, 13, 1724 5 of 13

λ = 1550 nm increased to approximately 60% and did not change further with increasing
temperature. The reflectance increased slightly after annealing at 200 ◦C and 300 ◦C and
decreased again after annealing at a higher temperature. The change in absorption edge
(λcut-off) also increased after annealing at 300 ◦C and did not change with further increases
in the annealing temperature (Figure 4). The optical band gap value was equal to 0.7 eV for
the sample annealed at 200 ◦C, and decreased with an increasing annealing temperature to
a value of 0.3 eV. It should be admitted that such low values result from low transparency
and correspond to the metallic characteristic of these films. In our opinion, they should only
be considered indicative. The width of the band tail also decreased after annealing at 300 ◦C.
The values of the parameters mentioned above are collected in Table 2. Summarising these
results, it can be stated that the described changes indicate a low amount of oxygen in
those films and their semi-metallic character. Even additional annealing at 800 ◦C did not
result in higher oxidation, which would lead to much higher transparency. We suggest that
because of the application of the GIMS process, the microstructure of coatings prepared
under oxygen deficiency was dense and hindered the migration of oxygen ions to the depth
of the layer, which occurs during annealing in ambient air. Our conclusions are consistent
with the results described in the works of, e.g., Yildirim et al. [30] and Yao et al. [24].

Table 1. Optical properties of the TiOx coating deposited under oxygen-rich conditions (ORC).

TiOxORC Coating Tλ = 550 nm Rλ = 550 nm λcut-off Eg
opt Eu

as deposited 67.3 34.5 325.5 2.01 0.61

annealed at:

100 ◦C 67.5 34.1 318.7 2.06 0.59
200 ◦C 66.2 35.5 321.4 2.03 0.64
300 ◦C 63.9 36.5 317.9 2.05 0.66
400 ◦C 63.8 30.9 329.4 2.10 0.62
600 ◦C 57.2 34.5 335.9 2.08 0.51
800 ◦C 35.5 30.7 337.8 1.75 0.66

Designations: Tλ—transparency level, Rλ—reflection level, λcut-off—absorption edge, Eg
opt—optical band gap,

Eu—Urbach energy.
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λ = 1550 nm as a function of the annealing temperature.
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Table 2. Optical properties of the TiOx coating deposited under ODC.

TiOxODC Coating Tλ = 550 nm Rλ = 550 nm λcut-off Eg
opt Eu

as deposited 0.0 14.3 – – –

annealed at:

100 ◦C 0.0 16.2 – – –
200 ◦C 13.4 20.5 449.5 0.70 0.77
300 ◦C 7.0 28.1 544.0 0.50 0.37
400 ◦C 6.3 21.6 537.0 0.49 0.43
600 ◦C 5.3 20.3 547.7 0.44 0.40
800 ◦C 4.2 19.6 549.7 0.30 0.47

Designations: Tλ—transparency level, Rλ—reflection level, λcut-off—absorption edge, Eg
opt—optical band gap,

Eu—Urbach energy.

3.2. Structural and Surface Properties

The difference in nucleation and growth of both coatings prepared by GIMS was also
identified on the basis of SEM images of the surface and cross-section. For the measure-
ments, samples as deposited and annealed at 200 ◦C, 400 ◦C, and 600 ◦C were selected as
they demonstrated the most significant changes in optical parameters. SEM studies have
revealed that, in both cases, all films were homogeneous and densely packed. In the case of
TiOx films deposited under oxygen-rich conditions (ORC), the columnar microstructure can
be distinguished (Figure 5). As can be seen, annealing did not cause strong microstructural
changes until a temperature of 600 ◦C was reached (Figure 5d). It should be noted that the
film after deposition and those annealed at a lower temperature were made of finer columns
(Figure 5a–c). This can be seen based on the analysis of their surface shape. A significant
change occurred after annealing at 600 ◦C, which resulted in a strong increase in the size of
the columns; however, this did not cause other defects in the microstructure, such as cracks
and voids between adjacent columns. The columnar character of Ti-based oxide films, as
well as its growth with increasing annealing temperature, can be considered as quite typical
and expected, as demonstrated in earlier studies [19,31]. However, it must be noted that
such a densely packed microstructure is characteristic of TiOx coatings obtained from GIMS
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processes [25,32]. A completely different nature of the microstructure was obtained in the
case of the sputtering process carried out under the condition of oxygen deficiency. The
more metallic character of the layer, due to a low amount of oxygen, resulted in a densely
packed and grainy morphology of TiOxODC (Figure 6). Additional annealing resulted in
an increase in grain sizes from ca. 20 to 50 nm. However, there is no structural order that
extends beyond individual grains even after annealing at 600 ◦C. Furthermore, it is not
easy to distinguish individual grains and their limits, especially for films other than the
one annealed at 600 ◦C, which indicates their amorphous form [32].
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The influence of additional annealing on the structure of coatings prepared by GIMS
processes was also determined on the basis of GIXRD studies. The patterns collected for the
TiOxORC and TiOxODC thin films are shown in Figure 7. Both films as deposited were found
to be amorphous. For the TiOx films under oxygen-rich conditions, the annealing procedure
did not lead to crystal formation even after annealing at 600 ◦C (Figure 7a). The GIMS
process often obtained amorphous layers for various oxide materials, for example, WOx [33]
and VOx [27]. The possibility of obtaining amorphous layers should be considered as an
undoubted advantage of the process, especially when this effect persists after annealing, as
was shown in this work.

Different structural properties were obtained for TiOx coatings prepared in the oxygen-
deficient process, which, as noted, were more susceptible to recrystallisation at higher
temperatures. This effect is not obvious and can be considered as quite surprising. As
can be seen, annealing at 200 ◦C resulted in the appearance of peaks in the XRD pattern
corresponding to metallic Ti. Annealing at 400 ◦C was also sufficient to form a TiO2-anatase
phase, as evidenced from the peak at ca. 25.2◦ which corresponds to the (101) plane.
Additional annealing at 600 ◦C resulted in the emergence of peaks from other anatase
planes. In addition, with an increase in the annealing temperature, an increase in the
crystallite sizes could also be observed. For example, in the case of the TiO2-anatase (101)
crystal plane, the average crystallite sizes after annealing at 400 ◦C and 600 ◦C were equal to
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10.8 nm and 21.1 nm, respectively. The results of the XRD measurements of both TiOxORC

and TiOxODC thin films are summarised in Table 3.
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Table 3. Results of GIXRD measurements for TiOx thin films deposited under oxygen-rich (ORC)
and oxygen-deficient (ODC) conditions, and additionally annealed at 200 ◦C, 400 ◦C, and 600 ◦C.

Thin Film Annealing
Temperature Phase 2θ (hkl) d

(nm)
dPDF
(nm) D (nm) PDF

TiOxORC

as deposited amorphous - - - - - -

200 ◦C amorphous - - - - - -

400 ◦C amorphous - - - - - -

600 ◦C amorphous - - - - - -

TiOxODC

as deposited amorphous - - - - - -

200 ◦C Ti 35.53◦ (100) 0.2524 0.2555 11.4 65-3362
Ti 38.67◦ (002) 0.2327 0.2342 10.1 65-3362

400 ◦C TiO2-anatase 25.16◦ (101) 0.3536 0.3520 10.8 21-1272
Ti 35.44◦ (100) 0.2531 0.2555 13.5 65-3362
Ti 38.56◦ (002) 0.2333 0.2342 11.2 65-3362

600 ◦C TiO2-anatase 25.23◦ (101) 0.3526 0.3520 21.1 21-1272
TiO2-anatase 32.48◦ (020) 0.2755 0.2749 20.0 21-1236

Ti 35.50◦ (100) 0.2527 0.2555 19.7 65-3362
Ti 38.68◦ (002) 0.2326 0.2342 14.5 65-3362

TiO2-anatase 48.41◦ (200) 0.1879 0.1892 12.8 21-1272
TiO2-anatase 48.91◦ (312) 0.1861 0.1852 15.8 65-2448
TiO2-anatase 53.82◦ (105) 0.1702 0.1700 16.1 21-1272
TiO2-anatase 55.12◦ (211) 0.1665 0.1665 19.6 21-1272
TiO2-anatase 62.35◦ (204) 0.1488 0.1408 13.5 21-1272

Ti 66.13◦ (002) 0.1412 0.1409 12.3 51-0631
TiO2-anatase 70.27◦ (220) 0.1338 0.1338 19.6 21-1272
TiO2-anatase 75.29◦ (215) 0.1261 0.1265 13.6 21-1272

Designations: d—interplanar distance, dPDF—standard interplanar distance, D—average crystallites size,
PDF—powder diffraction files (card).

3.3. Gas-Sensing Properties

The gas detection performance of TiOxORC is shown in Figure 8. In ambient air, the
resistance of the coating was above the measurement range of the used ohmmeter, which
was related to the known high resistivity of titanium-based oxides. After the injection of the
reducing gas, the resistance of the sample decreased. This nature of the sensor shows that
the coating prepared in the ORC mode was characterised by n-type conductivity, which is
characteristic of TiO2-based films [2,34]. Additional annealing at 200 ◦C and 400 ◦C led to
an increased sensor response to H2. The best effect was found after annealing at 400 ◦C.
The use of a higher annealing temperature (600 ◦C) most probably resulted in an oxidation
of the film that was too strong; additionally, as a result of the significant increase in its
resistance (above the level of measurability in the used measurement system), changes due
to the presence of hydrogen were no longer observed.

An opposite effect was obtained for the second series of coatings prepared in the ODC
mode of the GIMS process (Figure 9). The resistance of the TiOxODC film to exposure to
ambient air was in the range of 0.01 to 0.15 MΩ. After the introduction of H2, its resistance
increased. Thus, we have demonstrated the p-type conductivity of the TiOxODC film, which
was challenging. The p-type conductivity of Ti-based oxide coatings is usually achieved by
doping (e.g., with Cr [34]). In the case of undoped TiOx films, similar results were observed
by Liu et al. [35] and Hazra et al. [36], but they were achieved for nanoparticles (synthesised
by the hydrothermal method) or films based on nanoparticles (prepared by the sol-gel
technique), respectively. To characterise the properties of the TiOxODC coating, the sensor
response, the response time, and the recovery time were calculated. For TiOxORC, these
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parameters were not determined because of the mentioned overflow. The sensor response
of the coating was defined using the following equation:

SR =
Rg

Ra
·100% (1)

where SR is the sensor response, Rg is the maximum resistance of the coating upon exposure
to hydrogen, and Ra is the resistance of the coating upon exposure to air.
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The response time was defined as the time in which the resistivity increased to 90% of
the difference between the base resistance and the maximal value after the introduction
of the reducing gas. The recovery time was defined as the time in which the resistivity of
the coating decreased to 90%. The sensor response of the TiOxODC coating was found to
be the highest for those annealed at 300 ◦C and 400 ◦C. It is worth noting that the change
in resistance was as much as eight times greater. The response time was in the range of
40 min to 56 min. Recovery time increased with increasing annealing temperature, from a
value of 1.5 to 24 min. After annealing at 800 ◦C, the resistance of the coating was outside
the measurement range.

4. Conclusions

The O2 content in the GIMS process had an effect on the transparency level of the films.
In the case of films from ORC, the transparency level was ca. 60%, which slightly decreased
in the VIS range after additional annealing. The film from the ODC mode had a lower
transmission (approx. <10%), which increased after annealing to even up to approx. 60%;
however, it remained in the NIR range. Analysis of the optical band gap (Eg

opt) and Urbach
energy (Eu) also indicated the relationship between the amount of oxygen in the deposition
process and the properties of the coatings. The deposition parameters also had an influence
on the microstructure of the TiOx coatings. Under the ORC mode, a columnar character
was obtained, while application of the ODC mode resulted in a grainy structure. However,
directly after deposition, both coatings were amorphous according to the GIXRD results. In
the case of TiOxORC films, this state was retained even after annealing, while for TiOxODC

with increasing temperature, increasing crystalline forms of Ti and TiO2-anatase (built
from crystallites with a size of approximately 20 nm) were observed. The most interesting
differences were revealed by the results of the sensor studies (response to 3.5% of H2).
It was found that the sensing response of the coating as deposited under oxygen-rich
conditions was characteristic of the conductivity of n-type responses, while that of the
coating as deposited under oxygen-deficient conditions exhibited a p-type response. The
highest sensor responses were achieved for TiOxODC annealed at 300 ◦C and 400 ◦C.
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