# Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections

^{*}

## Abstract

**:**

## 1. Introduction

_{0.6}than the screwed connection due to the hole clearance. The bolted connections had an 80% higher shear strength than the screwed connections.

## 2. Materials and Methods

#### 2.1. Aluminium Girders

_{0.2}of this alloy was 140 MPa, the characteristic value of the tensile strength f

_{u}was 170 MPa, and the modulus of elasticity E was 70 GPa. The strength parameters of this alloy were also determined in tensile tests presented in [61] (Table 1).

#### 2.2. Laminated Veneer Lumber Slabs

^{3}, respectively, based on the manufacturer’s declaration [63]. The mechanical parameters of LVL were also determined in tensile, compressive, and bending tests presented in [64] (Table 1).

Parameter | Value |
---|---|

0.2% proof strength of AW-6060 T6 | 186.7 ± 7.05 MPa |

Tensile strength of AW-6060 T6 | 210.2 ± 2.90 MPa |

Tensile strength (parallel to grain) of LVL | 41.9 ± 4.8 MPa |

Compressive strength (parallel to grain) of LVL | 50.3 ± 1.6 MPa |

Bending strength of LVL | 66.1 ± 6.9 MPa |

Tensile strength of the steel used in the screws | 553.9 ± 23.6 MPa |

#### 2.3. Screws

#### 2.4. Shear Connection Tests

_{0.4}and k

_{0.6}were 6.6 ± 4.1 kN/mm and 6.2 ± 3.1 kN/mm, respectively [58].

#### 2.5. The Experimental Programme of the Study

#### 2.6. The Numerical Models

_{u}was calculated from Eurocode 5 [68]:

_{m}is the mean density of LVL; d is the diameter of the screw.

_{0}was assumed to be 30 kN/mm for the slip ranging from 0 to 0.2 mm to take into account the low initial slip values observed in the beams in the laboratory tests.

_{y}= 186.7 MPa, f

_{u}= 210.2 MPa). The steel was modelled as a bi-linear elastic-perfectly plastic material (E = 210 GPa, f

_{y}= 235 MPa). The LVL was treated as an orthotropic material. The Hashin damage model was used to capture the failure of the LVL. The material properties of the LVL adopted in the numerical models are provided in Table 2.

## 3. Results and Discussion

#### 3.1. The Results of the Four-Point Bending Test

#### 3.2. The Theoretical Load-Carrying Capacity of the Aluminium–Timber Composite Beams with Partial Shear Connection

_{pl,η}was calculated based on the method for the steel and concrete composite beams presented in [27]:

_{pl,a}is the plastic resistance to sagging bending of the structural aluminium section alone; M

_{pl}is the plastic resistance to sagging bending of the composite section with full shear connection; η is the degree of the shear connection.

_{pl}was obtained based on the following formula [25]:

_{pl,a}was 21.5 kN·m (W

_{pl}· f

_{0.2}= 114.8 · 18.7 = 21.5 kN·m). The resistance to sagging bending of the aluminium–timber composite beams with partial shear connections from the theoretical analyses differed by 6–16% from the resistance in the laboratory tests (Figure 14).

#### 3.3. The Results of the Numerical Analyses

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Mazzolani, F.M. 3D aluminium structures. Thin-Walled Struct.
**2012**, 61, 258–266. [Google Scholar] [CrossRef] - Siwowski, T. FEM modelling and analysis of a certain aluminium bridge deck panel. Arch. Civ. Eng.
**2009**, 55, 347–365. [Google Scholar] - Dokšanović, T.; Džeba, I.; Markulak, D. Applications of aluminium alloys in civil engineering. Tech. Gaz.
**2017**, 24, 1609–1618. [Google Scholar] [CrossRef] - Rahmatabadi, D.; Tayyebi, M.; Najafizadeh, N.; Hashemi, R.; Rajabi, M. The influence of post-annealing and ultrasonic vibration on the formability of multilayered Al5052/MgAZ31B composite. Mater. Sci. Technol.
**2021**, 37, 78–85. [Google Scholar] [CrossRef] - Rahmatabadi, D.; Ahmadi, M.; Pahlavani, M.; Hashemi, R. DIC-based experimental study of fracture toughness through R-curve tests in a multi-layered Al-Mg (LZ91) composite fabricated by ARB. J. Alloys Compd.
**2021**, 883, 160843. [Google Scholar] [CrossRef] - Harte, A.M. Timber engineering: An introduction. In ICE Manual of Construction Materials: Volume I/II: Fundamentals and Theory; Concrete; Asphalts in Road Construction; Masonry; Forde, M., Ed.; ICE Publishing: London, UK, 2009. [Google Scholar]
- Wang, X.; Zhang, J.; Wu, P.; Li, Y. Experimental investigation on the flexural and shear behaviour of LVL I-beam strengthened with steel channels. Constr. Build. Mater.
**2022**, 341, 127719. [Google Scholar] [CrossRef] - Fonseca, E.M.M.; Leite, P.A.S.; Silva, L.D.S.; Silva, V.S.B.; Lopes, H.M. Parametric Study of Three Types of Timber Connections with Metal Fasteners Using Eurocode 5. Appl. Sci.
**2022**, 12, 1701. [Google Scholar] [CrossRef] - Bao, Y.; Lu, W.; Yue, K.; Zhou, H.; Lu, B.; Chen, Z. Structural performance of cross-laminated timber-concrete composite floors with inclined self-tapping screws bearing unidirectional tension-shear loads. J. Build. Eng.
**2022**, 55, 104653. [Google Scholar] [CrossRef] - Abdoli, F.; Rashidi, M.; Rostampour-Haftkhani, A.; Layeghi, M.; Ebrahimi, G. Withdrawal Performance of Nails and Screws in Cross-Laminated Timber (CLT) Made of Poplar (Populus alba) and Fir (Abies alba). Polymers
**2022**, 14, 3129. [Google Scholar] [CrossRef] - Aspila, A.; Heinisuo, M.; Mela, K.; Malaska, M.; Pajunen, S. Elastic design of steel-timber composite beams. Wood Mater. Sci. Eng.
**2022**, 17, 243–252. [Google Scholar] [CrossRef] - Derkowski, A.; Kuliński, M.; Trociński, A.; Kawalerczyk, J.; Mirski, R. Mechanical Characterization of Glued Laminated Beams Containing Selected Wood Species in the Tension Zone. Materials
**2022**, 15, 6380. [Google Scholar] [CrossRef] [PubMed] - Lokaj, A.; Vavrusova, K. Longitudinal bonded joints of timber beams using plywood and LVL plates. Procedia Struct. Integr.
**2017**, 5, 1363–1369. [Google Scholar] [CrossRef] - Rapp, P. Application of adhesive joints in reinforcement and reconstruction of weakened wooden elements loaded axially. Drewno
**2016**, 59, 59–73. [Google Scholar] [CrossRef] - Lokaj, A.; Klajmonová, K. Round timber joints exposed to static and dynamic loading. Wood Res.
**2014**, 59, 439–448. [Google Scholar] - Kula, K.; Socha, T. Renovation and strengthening of wooden beams with CFRP bands including the rheological effects. Civ. Environ. Eng. Rep.
**2016**, 22, 93–102. [Google Scholar] [CrossRef] [Green Version] - Bakalarz, M.M.; Kossakowski, P.G. Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets. Materials
**2022**, 15, 6526. [Google Scholar] [CrossRef] - Jiao, S.; Gunalan, S.; Gilbert, B.P.; Baleshan, B.; Bailleres, H. Experimental investigation of an innovative composite mullion made of aluminium and timber. J. Build. Eng.
**2021**, 38, 101907. [Google Scholar] [CrossRef] - Saleh, S.M. Behavior of Timber-Aluminum Composite Beams under Static and Impact Loads. Ph.D. Thesis, University of Basrah, Basrah, Iraq, 2014. [Google Scholar]
- Szumigała, M.; Chybiński, M.; Polus, Ł. Preliminary analysis of the aluminium-timber composite beams. Civ. Environ. Eng. Rep.
**2017**, 27, 131–141. [Google Scholar] [CrossRef] [Green Version] - Chybiński, M.; Polus, Ł. Withdrawal strength of hexagon head wood screws in laminated veneer lumber. Eur. J. Wood Prod.
**2022**, 80, 541–553. [Google Scholar] [CrossRef] - Szumigała, M.; Chybiński, M.; Polus, Ł. Composite beams with aluminium girders—A review. In Modern Trends in Research on Steel, Aluminium and Composite Structures, Proceedings of the XIV International Conference on Metal Structures (ICMS2021), Poznan, Poland, 16–18 June 2021; Giżejowski, M.A., Kozłowski, A., Chybiński, M., Rzeszut, K., Studziński, R., Szumigała, M., Eds.; Routledge: Leiden, The Netherlands, 2021; pp. 249–255. [Google Scholar] [CrossRef]
- Kuczma, B. Analiza Statyczno-Wytrzymałościowa Zespolonych Belek Stalowo-Betonowych o Podatnych Łącznikach. Ph.D. Thesis, University of Zielona Góra, Zielona Góra, Poland, 2011. (In Polish). [Google Scholar]
- Chybiński, M.; Polus, Ł.; Szumigała, M. Aluminium members in composite structures—A review. Arch. Civ. Eng.
**2022**, 4, 253–274. [Google Scholar] [CrossRef] - Chybiński, M.; Polus, Ł. Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections. Constr. Build. Mater.
**2019**, 226, 317–330. [Google Scholar] [CrossRef] - Chybiński, M.; Polus, Ł. Experimental and numerical investigations of aluminium-timber composite beams with bolted connections. Structures
**2021**, 34, 1942–1960. [Google Scholar] [CrossRef] - EN 1994-1-1; Eurocode 4, Design of Composite Steel and Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Kuczma, M.; Kuczma, B. Steel-concrete composite beams with elasto-plastic connection. In Mathematical Methods in Continuum Mechanics; Wilmański, K., Michalak, B., Jędrysiak, J., Eds.; Technical University of Lodz Press: Lodz, Poland, 2011; pp. 451–464. [Google Scholar]
- Kuczma, M.; Kuczma, B. Partially connected composite beams. Proc. Appl. Math. Mech.
**2006**, 6, 233–234. [Google Scholar] [CrossRef] - Leskelä, M.V. Shear connections in composite flexural members of steel and concrete. In European Convention for Constructional Steelwork; Technical Committee 11, Composite Structures, No 138: Mem Martins, Portugal, 2017. [Google Scholar]
- Marcinowski, J. Naprężenia w warstwowej konstrukcji zespolonej z materiałów o różnej rozszerzalności termicznej. Mater. Bud.
**2018**, 4, 107–109. (In Polish) [Google Scholar] [CrossRef] - Szewczyk, P.; Szumigała, M. Optimal Design of Steel–Concrete Composite Beams Strengthened under Load. Materials
**2021**, 14, 4715. [Google Scholar] [CrossRef] [PubMed] - Polus, Ł. An Analysis of Load Bearing Capacity and Stiffness of Aluminium-Concrete Composite Elements Subjected to Bending. Ph.D. Thesis, Poznan University of Technology, Poznań, Poland, 2021. [Google Scholar]
- Ataei, A.; Chiniforush, A.A.; Bradford, M.; Valipour, H. Cyclic behaviour of bolt and screw shear connectors in steel-timber composite (STC) beams. J. Constr. Steel Res.
**2019**, 161, 328–340. [Google Scholar] [CrossRef] - Lee, S.-S.M.; Bradford, M.A. Sustainable composite beam behaviour with deconstructable bolted shear connectors. In Proceedings of the World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, 8–12 September 2013; pp. 3188–3199. [Google Scholar]
- Lam, D.; Dai, X. Demountable shear connectors for sustainable composite construction. In Proceedings of the World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, 8–12 September 2013; pp. 93–100. [Google Scholar]
- Dai, X.H.; Lam, D.; Saveri, E. Effect of concrete strength and stud collar size to shear capacity of demountable shear connectors. J. Struct. Eng.
**2015**, 141, 04015025. [Google Scholar] [CrossRef] - Lam, D.; Dai, X.; Ashour, A.; Rehman, N. Recent research on composite beams with demountable shear connectors. Steel Constr.
**2017**, 10, 125–134. [Google Scholar] [CrossRef] - Rehman, N.; Lam, D.; Dai, X.; Ashour, A.F. Experimental study on demountable shear connectors in composite slabs with profiled decking. J. Constr. Steel Res.
**2016**, 122, 178–189. [Google Scholar] [CrossRef] [Green Version] - Rehman, N.; Lam, D.; Dai, X.; Ashour, A.F. Testing of composite beam with demountable shear connectors. Proc. Inst. Civ. Eng. Struct. Build.
**2018**, 171, 3–16. [Google Scholar] [CrossRef] [Green Version] - Polus, Ł.; Szumigała, M. An experimental and numerical study of aluminium-concrete joints and composite beams. Arch. Civ. Mech. Eng.
**2019**, 19, 375–390. [Google Scholar] [CrossRef] - EN 1993-1-8; Eurocode 3, Design of Steel Structures—Part 1-8: Design of Joints. European Committee for Standardization: Brussels, Belgium, 2005.
- Liu, X.; Bradford, M.; Chen, Q.-J.; Ban, H. Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors. Finite Elem. Anal. Des.
**2016**, 108, 54–65. [Google Scholar] [CrossRef] - Liu, X.; Bradford, M.; Ataei, A. Flexural performance of innovative sustainable composite steel-concrete beams. Eng. Struct.
**2017**, 130, 282–296. [Google Scholar] [CrossRef] - Pavlović, M.; Marković, Z.; Veljković, M.; Budevac, D. Bolted shear connectors vs. headed studs behaviour in push-out tests. J. Constr. Steel Res.
**2013**, 88, 134–149. [Google Scholar] [CrossRef] - Pavlović, M.; Spremić, M.; Marković, Z.; Buđevac, D.; Veljković, M. Bolted shear connectors vs. headed studs behaviour in push-out tests. J. Appl. Eng. Sci.
**2014**, 12, 75–80. [Google Scholar] [CrossRef] - Siekierski, W. Nośność niestandardowych łączników sworzniowych w świetle kryteriów PN-EN 1994. In Projektowanie Mostów Zgodnie Z Systemem Norm PN-EN. Wybrane Zagadnienia; Jankowiak, I., Madaj, A., Eds.; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 2015; pp. 353–364. [Google Scholar]
- Suwaed, A.S.H. Development of Novel Demountable Shear Connectors for Precast Steel-Concrete Composite Bridges. Ph.D. Thesis, University of Warwick, Warwick, UK, 2017. [Google Scholar]
- Kozma, A.; Odenbreit, C.; Braun, M.V.; Veljkovic, M.; Nijgh, M.P. Push-out tests on demountable shear connectors of steel-concrete composite structures. Structures
**2019**, 21, 45–54. [Google Scholar] [CrossRef] [Green Version] - Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and analytical behaviour of steel-timber composite connections. Constr. Build. Mater.
**2016**, 118, 63–75. [Google Scholar] [CrossRef] - Kyvelou, P.; Gardner, L.; Nethercot, D.A. Design of composite cold-formed steel flooring systems. Structures
**2017**, 12, 242–252. [Google Scholar] [CrossRef] - Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and numerical study of steel-timber composite (STC) beams. J. Constr. Steel Res.
**2016**, 122, 367–378. [Google Scholar] [CrossRef] - Wang, X.; Su, P.; Liu, J.; Chen, Z.; Khan, K. Seismic performance of light steel-natural timber composite beam-column joint in low-rise buildings. Eng. Struct.
**2022**, 256, 113969. [Google Scholar] [CrossRef] - Ataei, A.; Chiniforush, A.A.; Bradford, M.A.; Valipour, H.R.; Ngo, T.D. Behaviour of embedded bolted shear connectors in steel-timber composite beams subjected to cyclic loading. J. Build. Eng.
**2022**, 54, 104581. [Google Scholar] [CrossRef] - Zhou, Y.; Zhao, Y.; Wang, C.-L.; Zhou, Y.; Zheng, J. Experimental study of the shear performance of H-shaped aluminum-timber composite connections. Constr. Build. Mater.
**2022**, 334, 127421. [Google Scholar] [CrossRef] - Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under static loads. Int. J. Eng. Res. Technol.
**2014**, 3, 1166–1173. [Google Scholar] - Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under impact loads. Int. J. Sci. Eng. Res.
**2014**, 5, 865–873. [Google Scholar] - Chybiński, M.; Polus, Ł. Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates. Materials
**2022**, 15, 68. [Google Scholar] [CrossRef] [PubMed] - Chybiński, M.; Polus, Ł. Experimental Study of Aluminium-Timber Composite Bolted Connections Strengthened with Toothed Plates. Materials
**2022**, 15, 5271. [Google Scholar] [CrossRef] [PubMed] - EN 1999-1-1; Eurocode 9, Design of Aluminium Structures—Part 1-1: General Structural Rules. European Committee for Standardization: Brussels, Belgium, 2009.
- Chybiński, M.; Polus, Ł.; Ratajczak, M.; Sielicki, P.W. The Evaluation of the Fracture Surface in the AW-6060 T6 Aluminium Alloy Under a Wide Range of Loads. Metals
**2019**, 9, 324. [Google Scholar] [CrossRef] [Green Version] - Porteous, J.; Kermani, A. Structural Timber Design to Eurocode 5, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Komorowski, M. Podręcznik Projektowania i Budowania w Systemie STEICO. Podstawy. Fizyka Budowli. Zalecenia Wykonawcze; Forestor Communication: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Chybiński, M.; Polus, Ł. Experimental and numerical investigations of laminated veneer lumber panels. Arch. Civ. Eng.
**2021**, 67, 351–372. [Google Scholar] [CrossRef] - Aliawdin, P.; Urbańska, K. Limit analysis of steel-concrete composite structures with slip. Civ. Environ. Eng. Rep.
**2011**, 7, 19–34. [Google Scholar] - Wróblewski, T.; Pełka-Sawenko, A.; Abramowicz, M.; Berczyński, S. Parameter identification of steel-concrete composite beams by finite element method. Diagnostyka
**2013**, 14, 43–46. [Google Scholar] - Romero, A.; Yang, J.; Hanus, F.; Odenbreit, C. Numerical Investigation of Steel-LVL Timber Composite Beams. ce/papers
**2022**, 5, 21–30. [Google Scholar] [CrossRef] - EN 1995-1-1; Eurocode 5, Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Dorn, M.; Habrová, K.; Koubek, R.; Serrano, E. Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads. Friction
**2020**, 9, 367–379. [Google Scholar] [CrossRef] - Sebastian, W.M. Ductility requirements in connections of composite flexural structures. Int. J. Mech. Sci.
**2003**, 45, 235–251. [Google Scholar] [CrossRef] - Madsen, B. Length effects in 38 mm spruce-pine-fir dimension lumber. Canad. J. Civ. Eng.
**1990**, 17, 226–237. [Google Scholar] [CrossRef] - Walley, S.M.; Rogers, S.J. Is Wood a Material? Taking the Size Effect Seriously. Materials
**2022**, 15, 5403. [Google Scholar] [CrossRef] [PubMed] - Rozylo, P. Failure analysis of thin-walled composite structures using independent advanced damage models. Compos. Struct.
**2021**, 262, 113598. [Google Scholar] [CrossRef]

**Figure 2.**The analysed beams subjected to four-point bending (1–9—linear variable differential transformers).

**Figure 3.**The numerical models: The composite beam with full shear connection (

**a**), the B120 beam (

**b**), the B160 beam (

**c**), the B200 beam (

**d**).

**Figure 13.**The model used to calculate the plastic resistance of the aluminium–timber composite beam.

**Figure 15.**The load versus deflection responses from the test and the numerical analyses: All curves (

**a**), B120 (

**b**), B160 (

**c**), B200 (

**d**).

**Figure 16.**The load versus slip responses from the test and numerical analyses: All curves (

**a**), B120 (

**b**), B160 (

**c**), B200 (

**d**).

**Figure 17.**The areas of damage initiation. Due to the compression of the fibres and due to the tension of the fibres for the ultimate load (M

_{pl}= 68.7 kN·m) and the composite beam with full shear connection (

**a**), for the ultimate load (M

_{pl}= 64.4 kN·m) and the B120 beam (

**b**), for the ultimate load (M

_{pl}= 63.3 kN·m) and the B160 beam (

**c**), for the ultimate load (M

_{pl}= 63.9 kN·m) and the B200 beam (

**d**).

**Table 2.**The properties of the LVL adopted in the numerical models (direction 1 is parallel to the LVL grain).

Properties of an Elastic Orthotropic Material (Type: Lamina) | |||||
---|---|---|---|---|---|

E_{1}[MPa] | E_{2}[MPa] | ν_{12}[–] | G_{12}[MPa] | G_{13}[MPa] | G_{23}[MPa] |

24 000 | 430 | 0.48 | 650 | 650 | 96 |

Hashin damage parameters | |||||

σ_{t}_{1}[MPa] | σ_{c}_{1}[MPa] | σ_{t}_{2}[MPa] | σ_{c}_{2}[MPa] | σ_{v}_{12}[MPa] | σ_{v}_{23}[MPa] |

73 | 73 | 10 | 15 | 10 | 5 |

Longitudinal tensile fracture energy [kJ/m ^{2}] | Longitudinal compressive fracture energy [kJ/m ^{2}] | Transverse tensile fracture energy [kJ/m ^{2}] | Transverse compressive fracture energy [kJ/m ^{2}] | Viscosity coefficient | |

45 | 45 | 0.1 | 0.1 | 1.0 × 10^{−6} |

**Table 3.**The ultimate load (F

_{ult}), the ultimate load-carrying capacity (M

_{ult}), the deflection corresponding to the ultimate load (ν

_{ult}), and the slip corresponding to the ultimate load (u

_{ult}) from the bending tests.

Parameter | B120 | B160 | B200 |
---|---|---|---|

F_{ult} [kN] | 151.9 | 148.7 | 145.9 |

M_{ult} [kN·m] | 68.4 | 66.9 | 65.7 |

ν_{ult} [mm] | 83.2 | 80.7 | 87.9 |

u_{ult} [mm] | 3.5 | 4.0 | 5.6 |

**Table 4.**The calculations of the plastic resistance of the aluminium–timber composite beam with full shear connection.

Parameter | Value |
---|---|

Aluminium I-section area A_{a} [cm^{2}] | 18.8 |

Aluminium alloy yield strength of f_{0.2} [kN/cm^{2}] | 18.7 |

LVL bending strength f_{m} [kN/cm^{2}] | 7.3 |

LVL slab effective width b_{eff} [cm] | 37.0 |

LVL slab height h_{ts} [cm] | 7.5 |

Aluminium I-section height h [cm] | 16.0 |

Position of the plastic axis x_{pl} [cm] | 4.4 |

Plastic resistance M_{pl} [kN·m] | 78.2 |

**Table 5.**The plastic resistance to sagging bending of the aluminium–timber composite beams with partial shear connections.

Beam | η [–] | M_{pl,η} fromEquation (2) [kN·m] | M_{pl,η,test} fromthe Tests [kN·m] | M_{pl,η}/M_{pl,η,test} |
---|---|---|---|---|

B120 | 0.90 | 72.5 | 68.4 | 1.06 |

B160 | 0.70 | 61.2 | 66.9 | 0.91 |

B200 | 0.60 | 55.5 | 65.7 | 0.84 |

Analysis | η [–] | M_{pl},_{simulation} [kN·m] | M_{pl},_{theory} [kN·m] | M_{pl}_{,test}[kN·m] | M_{pl,simulation}/M_{pl,test} |
---|---|---|---|---|---|

1 | 1.00 | 68.7 | 78.2 | – | – |

2 (B120) | 0.90 | 64.4 | 72.5 | 68.4 | 0.94 |

3 (B160) | 0.70 | 63.3 | 61.2 | 66.9 | 0.95 |

4 (B200) | 0.60 | 63.9 | 55.5 | 65.7 | 0.97 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chybiński, M.; Polus, Ł.
Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections. *Appl. Sci.* **2023**, *13*, 1603.
https://doi.org/10.3390/app13031603

**AMA Style**

Chybiński M, Polus Ł.
Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections. *Applied Sciences*. 2023; 13(3):1603.
https://doi.org/10.3390/app13031603

**Chicago/Turabian Style**

Chybiński, Marcin, and Łukasz Polus.
2023. "Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections" *Applied Sciences* 13, no. 3: 1603.
https://doi.org/10.3390/app13031603