A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS Solutions †
Abstract
:1. Introduction
2. Background
2.1. Evolution of ADAS Applications
2.2. V2X Evolution of Enhanced Perception for ADAS and Autonomous Driving
3. Related Work
4. ADASApp: An Extension of the Artery Simulator
4.1. ADASApp Components and Operation
4.2. Filter–Effect Concept
4.3. State Handling
4.4. Integration of Collective Perception
4.5. Redundancy Measures
4.6. Comparison with the Artery Storyboard
5. Implemented Example Use Cases and Configuration Details
5.1. Event Awareness
5.2. Platooning
5.3. Collision Avoidance and Redundancy Measurements in Urban Scenario Using Various Sensors
6. Showcase Results
6.1. Parameters
6.2. Applications on a Highway
6.3. Applications in Urban Scenario
6.4. Redundancy in the Grid-Like Urban Scenario
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
ABS | Anti-lock Braking Systems |
AD | Autonomous Driving |
ADAS | Advanced Driver Assistance Systems |
AGLOSA | Automated Green Light Optimized Speed Advisory |
C-ACC | Cooperative Adaptive Cruise Control |
CAM | Cooperative Awareness Message |
CAV | Cooperative Automated Vehicle |
C-ITS | Cooperative Intelligent Transport Systems |
CPM | Collective Perception Message |
DENM | Decentralized Environmental Notification Message |
DSRC | Dedicated Short-Range Communications |
ECU | Electronic Control Unit |
GNSS | Global Navigation Satellite System |
HiL | Hardware-in-the-Loop |
ODD | Operational Design Domain |
RWW | Roadworks Warning |
SUMO | Simulation of Urban MObility |
V2X | Vehicle-to-Everything |
VANET | Vehicular Ad Hoc Network |
XML | eXtensible Markup Language |
Appendix A. Platooning Application Configuration
<?xml version="1.0" encoding="UTF-8"?> |
<adasapps> |
<adasapp> |
<filter type="And"> |
<filter type="SelfSpeed"> |
<minSpeed>7</minSpeed> |
<maxSpeed>80</maxSpeed> |
</filter> |
<filter type="RelativeHeading"> |
<fromAngle>-15</fromAngle> |
<toAngle>15</toAngle> |
</filter> |
<filter type="RWWAheadFilter"> |
<pos><x>-800</x><y>0</y></pos> |
<pos><x>-800</x><y>2400</y></pos> |
<pos><x>800</x><y>2400</y></pos> |
<pos><x>800</x><y>0</y></pos> |
</filter> |
</filter> |
<effect type="LaneChange"/> |
</adasapp> |
</adasapps> |
Appendix B. RWW Application Configuration
<?xml version="1.0" encoding="UTF-8"?> |
<adasapps> |
<adasapp> |
<filter type="And"> |
<filter type="SelfSpeed"> |
<minSpeed>7</minSpeed> |
<maxSpeed>80</maxSpeed> |
</filter> |
<filter type="RelativeHeading"> |
<fromAngle>-15</fromAngle> |
<toAngle>15</toAngle> |
</filter> |
<filter |
type="InRelativeBoundingBox"> |
<pos><x>-2</x><y>0</y></pos> |
<pos><x>-2</x><y>120</y></pos> |
<pos><x>2</x><y>120</y></pos> |
<pos><x>2</x><y>0</y></pos> |
</filter> |
</filter> |
<effect type="Platooning"/> |
</adasapp> |
</adasapps> |
References
- Jumaa, B.A.; Abdulhassan, A.M.; Abdulhassan, A.M. Advanced driver assistance system (ADAS): A review of systems and technologies. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2019, 8, 231–234. [Google Scholar]
- Masini, B.M.; Zanella, A.; Pasolini, G.; Bazzi, A.; Zabini, F.; Andrisano, O.; Mirabella, M.; Toppan, P. Toward the Integration of ADAS Capabilities in V2X Communications for Cooperative Driving. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A Survey of Vehicle to Everything (V2X) Testing. Sensors 2019, 19, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riebl, R.; Obermaier, C.; Günther, H.J. Artery: Large Scale Simulation Environment for ITS Applications. In Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem; Springer International Publishing: Cham, Switzerland, 2019; pp. 365–406. [Google Scholar] [CrossRef]
- Artery. V2X Simulation Framework. Available online: http://artery.v2x-research.eu/ (accessed on 3 November 2022).
- Varga, A. OMNeT++. In Modeling and Tools for Network Simulation; Wehrle, K., Güneş, M., Gross, J., Eds.; Springer: Berlin/Heidelberg, 2010; pp. 35–59. [Google Scholar] [CrossRef]
- INET. An Open-Source OMNeT++ Model Suite. Available online: https://inet.omnetpp.org/ (accessed on 3 November 2022).
- Riebl, R.; Obermaier, C.; Neumeier, S.; Facchi, C. Vanetza: Boosting research on inter-vehicle communication. In Proceedings of the 5th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC 2017), Erlangen, Germany, 6–7 April 2017; pp. 37–40. [Google Scholar]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner, E. Microscopic Traffic Simulation using SUMO. In Proceedings of the the 21st IEEE International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018. [Google Scholar]
- OpenStreetMap. The project that creates and distributes free geographic data for the world. Available online: https://www.openstreetmap.org (accessed on 3 November 2022).
- Herbert, M.; Váradi, A.; Bokor, L. Modelling and Examination of Collective Perception Service for V2X Supported Autonomous Driving. Proceedings of 11th International Conference on Applied Informatics (ICAI 2020), Eger, Hungary, 29–31 January 2020; pp. 138–149. [Google Scholar]
- Pathrose, P. ADAS and Automated Driving: A Practical Approach to Verification and Validation; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- C2C-CC. Guidance for Day 2 and Beyond Roadmap, V1.2; CAR 2 CAR Communication Consortium: Braunschweig, Germany, 2021. [Google Scholar]
- ETSI EN 302 665 V1.1.1 (2010-09); Intelligent Transport Systems (ITS); Communications Architecture. ETSI: Sophia Antipolis, France, 2010.
- ETSI EN 302 637-2 V1.4.1, (2019-04); European Standard, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. ETSI: Sophia Antipolis, France, 2019.
- ETSI EN 302 637-3 V1.3.1 (2019-04); Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service. ETSI: Sophia Antipolis, France, 2019.
- ETSI TR 103 562 V2.1.1 (2019-12); Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2. ETSI: Sophia Antipolis, France, 2019.
- Martinez, F.J.; Toh, C.K.; Cano, J.C.; Calafate, C.T.; Manzoni, P. A survey and comparative study of simulators for vehicular ad hoc networks (VANETs). Wirel. Commun. Mob. Comput. 2011, 11, 813–828. [Google Scholar] [CrossRef]
- Sommer, C.; Härri, J.; Hrizi, F.; Schünemann, B.; Dressler, F. Simulation Tools and Techniques for Vehicular Communications and Applications. In Vehicular Ad Hoc Networks: Standards, Solutions, and Research; Campolo, C., Molinaro, A., Scopigno, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 365–392. [Google Scholar] [CrossRef]
- Hejazi, H.; Bokor, L. A Survey on Simulation Efforts of 4G/LTE-based Cellular and Hybrid V2X Communications. In Proceedings of the 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 26–28 July 2021; pp. 333–339. [Google Scholar] [CrossRef]
- Vernaza, A.; Ledezma, A.; Sanchis, A. Simul-A2: Agent-based simulator for evaluate ADA systems. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Bücs, R.L.; Heistermann, M.; Leupers, R.; Ascheid, G. Multi-Scale Code Generation for Simulation-Driven Rapid ADAS Prototyping: The SMELT Approach. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Živkovic, U.; Đekić, O.; Lukač, Ž.; Milošević, M. HIL Based Solution for ADAS Software Development and Verification. In Proceedings of the IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 396–399. [Google Scholar] [CrossRef]
- Stević, S.; Krunić, M.; Dragojević, M.; Kaprocki, N. Development and Validation of ADAS Perception Application in ROS Environment Integrated with CARLA Simulator. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), 2019, Belgrade, Serbia, 6–27 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Vector. CANoe.Car2x: Simulation, Development and Test of V2X-based Communication Applications. Available online: https://www.vector.com/int/en/products/products-a-z/software/canoe/option-car2x/ (accessed on 3 November 2022).
- Buttgereit, J.; Loffler, T. Vector Informatik GmbH Whitepaper: Testing V2X-Based Driver Assistance Systems. 2018. Available online: https://cdn.vector.com/cms/content/know-how/_technical-articles/Car2x_Testing_HanserAutomotive_201811_PressArticle_EN.pdf (accessed on 3 November 2022).
- ADAS iiT. Innovation in Test. Available online: https://www.sea-gmbh.com/en/v2x-solutions/v2x0/ (accessed on 3 November 2022).
- S.E.A. Datentechnik. V2X Test Systems. Available online: https://www.sea-gmbh.com/en/v2x-solutions/v2x100/ (accessed on 3 November 2022).
- dSPACE. V2X Interface for waveBEE. Available online: https://www.dspace.com/en/inc/home/products/sw/impsw/dspacev2xinterfacefor-waveb.cfm (accessed on 3 November 2022).
- Nordsys. The waveBEE V2X Product Family. Available online: https://www.keysight.com/us/en/products/wireless-network-emulators/wavebee-v2x-test-and-emulation.html (accessed on 3 November 2022).
- Hussein, A.; Díaz-Álvarez, A.; Armingol, J.M.; Olaverri-Monreal, C. 3DCoAutoSim: Simulator for Cooperative ADAS and Automated Vehicles. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3014–3019. [Google Scholar] [CrossRef]
- Michaeler, F.; Olaverri-Monreal, C. 3D driving simulator with VANET capabilities to assess cooperative systems: 3DSimVanet. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 999–1004. [Google Scholar] [CrossRef]
- Buse, D.S.; Sommer, C.; Dressler, F. Demo abstract: Integrating a driving simulator with city-scale VANET simulation for the development of next generation ADAS systems. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Trans. Mob. Comput. (TMC) 2011, 10, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Wippelhauser, A.; Bokor, L. A Declarative Rapid Prototyping ADAS Application Framework Based on the Artery Simulator. In Proceedings of the 45th International Conference on Telecommunications and Signal Processing (TSP), Virtual Conference, 13–15 July 2022; pp. 333–337. [Google Scholar] [CrossRef]
- Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Analysis of message generation rules for collective perception in connected and automated driving. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 134–139. [Google Scholar]
- Obermaier, C.; Riebl, R.; Facchi, C. Dynamic scenario control for VANET simulations. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 681–686. [Google Scholar] [CrossRef]
- Bergenhem, C.; Shladover, S.; Coelingh, E.; Englund, C.; Tsugawa, S. Overview of platooning systems. In Proceedings of the 19th ITS World Congress, Vienna, Austria, 22–26 October 2012. [Google Scholar]
- Wippelhauser, A.; Bokor, L. Extensions and Usage of Veins/Plexe to Evaluate QoS Requirements of Cooperative Platooning. In Proceedings of the ICAI, Eger, Hungary, 29–31 January 2020; pp. 429–441. [Google Scholar]
Artery’s Storyboard | Proposed Framework | |
---|---|---|
Data source | All SUMO entities | Based on the local environment model |
Sensor model | All vehicles in the simulation are visible | Based on V2X communication (CAM, DENM and CPM) and 2D sensor models |
Configuration interface | Python-based | XML-based |
Main concept | Filter-Effect concept | Filter-Effect concept |
Effect prioritization | Based on effect stack | All effects are applied sequentially |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wippelhauser, A.; Edelmayer, A.; Bokor, L. A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS Solutions. Appl. Sci. 2023, 13, 1392. https://doi.org/10.3390/app13031392
Wippelhauser A, Edelmayer A, Bokor L. A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS Solutions. Applied Sciences. 2023; 13(3):1392. https://doi.org/10.3390/app13031392
Chicago/Turabian StyleWippelhauser, András, András Edelmayer, and László Bokor. 2023. "A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS Solutions" Applied Sciences 13, no. 3: 1392. https://doi.org/10.3390/app13031392
APA StyleWippelhauser, A., Edelmayer, A., & Bokor, L. (2023). A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS Solutions. Applied Sciences, 13(3), 1392. https://doi.org/10.3390/app13031392