Combining Human Parsing with Analytical Feature Extraction and Ranking Schemes for High-Generalization Person Reidentification
Abstract
:1. Introduction
2. Methodology
2.1. Overview of the Method
2.2. Image Parsing
2.3. Color Similarity
2.3.1. Choice of Color Space and Histogram Modification
Algorithm 1:L channel histogram modification |
Require:h is a 64 bin L channel histogram |
|
2.3.2. Representative Color Intensities and Histogram Thresholding
2.3.3. Distance in Lab Color Space as Similarity Measure
2.4. Texture Similarity
2.5. Similarity Score Calculation for Similarity Ranking
3. Experiments
3.1. Details of the Datasets
3.2. Market1501 Experiments
Model | Backbone | Human Parsing | Learning Type | Rank-1 | Rank-10 | mAP |
---|---|---|---|---|---|---|
SML [52] ‘19 | ResNet-50 | No | US * | 67.7 | - | 40 |
SIV [53] ‘17 | ResNet-50 | No | S | 79.51 | - | 59.87 |
MSCAN [54] ‘17 | Custom | No | S | 80.31 | - | 57.53 |
CAP [55] ‘21 | ResNet-50 | No | US | 91.4 | 97.7 | 79.2 |
SSP [34] ‘18 | ResNet-50 | Yes | S | 92.5 | - | 80 |
SPReID [25] ‘18 | Inception | Yes | S | 94.63 | 98.4 | 90.96 |
Pyramid [56] ‘19 | ResNet | No | S | 95.7 | 99 | 88.2 |
APNet-C [19] ‘21 | ResNet-50 | No | S | 96.2 | - | 90.5 |
CTL-S [57] ‘21 | ResNet-50 | No | S | 98 | 99.5 | 98.3 |
Ours | ResNet-101 (parser) | Yes | A | 91 | 96 | 25.2 |
Ours (cq) | ResNet-101 (parser) | Yes | A | 93.5 | 98.0 | 25.3 |
3.3. CUHK03 Experiments
Model | Backbone | Human Parsing | Learning Type | Rank-1 (L) | mAP (L) | Rank-10 (D) | mAP (D) |
---|---|---|---|---|---|---|---|
HA-CNN [58] ‘18 | Inception | No | WS * | 44.4 | 41 | 41.7 | 38.6 |
DaRe [59] ‘18 | DenseNet-201 | No | S | 56.4 | 52.2 | 54.3 | 50.1 |
DaRe [59] ‘18 | DenseNet-201 | No | S + RR | 73.8 | 74.7 | 70.6 | 71.6 |
SSP [34] ‘18 | ResNet-50 | Yes | S | 65.6 | 63.1 | 66.8 | 60.5 |
OSNet [60] ‘19 | OSNet | No | S | - | - | 72.3 | 67.8 |
Top-DB-Net [35] ‘20 | ResNet-50 | Yes | S | 79.4 | 75.4 | 77.3 | 73.2 |
Top-DB-Net [35] ‘20 | ResNet-50 | Yes | S + RR | 88.5 | 86.7 | 86.9 | 85.7 |
MPN [61] ‘21 | ResNet-50 | No | S | 85 | 81.1 | 83.4 | 79.1 |
Deep Miner [62] ‘21 | RedNet-50 | No | S | 86.6 | 84.7 | 83.5 | 81.4 |
LightMBN [63] ‘21 | OSNet | No | S | 87.2 | 85.1 | 84.9 | 82.4 |
Ours | Resnet-101 (parser) | Yes | A | 61.1 | 20.9 | 59.7 | 20.2 |
Ours (cq) | Resnet-101 (parser) | Yes | A | 63.9 | 22.1 | 62.2 | 21.4 |
4. Discussions
4.1. Performance and Space Requirements
4.2. Adding New Features
4.3. Human-Readable Vectors and Human-Generated Queries
4.4. Generalization and Potential Application to Open-World Scenarios
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, L.; Yang, Y.; Hauptmann, A.G. Person Re-identification: Past, Present and Future. arXiv 2016. [Google Scholar] [CrossRef]
- Iguernaissi, R.; Merad, D.; Aziz, K.; Drap, P. People Tracking in Multi-Camera Systems: A Review. Multimed. Tools Appl. 2019, 78, 10773–10793. [Google Scholar] [CrossRef]
- Kodirov, E.; Xiang, T.; Fu, Z.; Gong, S. Person Re-Identification by Unsupervised l1 Graph Learning. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 178–195. [Google Scholar]
- Chen, D.; Xu, D.; Li, H.; Sebe, N.; Wang, X. Group Consistent Similarity Learning via Deep CRF for Person Re-identification. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8649–8658. [Google Scholar] [CrossRef]
- Wu, Y.; Bourahla, O.E.F.; Li, X.; Wu, F.; Tian, Q.; Zhou, X. Adaptive Graph Representation Learning for Video Person Re-Identification. IEEE Trans. Image Process. 2020, 29, 8821–8830. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Ma, A.; Zheng, L.; Li, J.; YUEN, P. Dynamic Label Graph Matching for Unsupervised Video Re-identification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017; pp. 5152–5160. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C.H. Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [Google Scholar] [CrossRef] [PubMed]
- Lavi, B.; Serj, M.F.; Ullah, I. Survey on Deep Learning Techniques for Person Re-Identification Task. arXiv 2018. [Google Scholar] [CrossRef]
- Chicco, D. Siamese Neural Networks: An Overview. In Artificial Neural Networks; Springer: New York, NY, USA, 2021; pp. 73–94. [Google Scholar] [CrossRef]
- Wu, L.; Shen, C.; Hengel, A.v.d. PersonNet: Person Re-identification with Deep Convolutional Neural Networks. arXiv 2016. [Google Scholar] [CrossRef]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of Tricks and a Strong Baseline for Deep Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 1487–1495. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, X.; Zheng, F.; Guo, X.; Huang, F.; Sun, X.; Zheng, W. Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification. Proc. AAAI Conf. Artif. Intell. 2020, 34, 13114–13121. [Google Scholar] [CrossRef]
- Schumann, A.; Stiefelhagen, R. Person Re-identification by Deep Learning Attribute-Complementary Information. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1435–1443. [Google Scholar] [CrossRef]
- Shen, Y.; Li, H.; Yi, S.; Chen, D.; Wang, X. Person Re-identification with Deep Similarity-Guided Graph Neural Network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Lan, X.; Zhu, X.; Gong, S. Universal Person Re-Identification. arXiv 2019. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.Y.; Satoh, S. Illumination-Adaptive Person Re-Identification. IEEE Trans. Multimed. 2020, 22, 3064–3074. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Gou, M.; Camps, O.; Sznaier, M. Person Re-Identification Using Kernel-Based Metric Learning Methods. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.S.; Gong, S.; Xiang, T. Towards Open-World Person Re-Identification by One-Shot Group-Based Verification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 591–606. [Google Scholar] [CrossRef]
- Chen, G.; Gu, T.; Lu, J.; Bao, J.A.; Zhou, J. Person Re-Identification via Attention Pyramid. IEEE Trans. Image Process. 2021, 30, 7663–7676. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.M.; Bremond, F. Person Re-identification for Real-world Surveillance Systems. arXiv 2016. [Google Scholar] [CrossRef]
- Gray, D.; Tao, H. Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In Proceedings of the Computer Vision—ECCV, Marseille, France, 12–18 October 2008; pp. 262–275. [Google Scholar]
- Gheissari, N.; Sebastian, T.; Hartley, R. Person Reidentification Using Spatiotemporal Appearance. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1528–1535. [Google Scholar] [CrossRef]
- Nanni, L.; Munaro, M.; Ghidoni, S.; Menegatti, E.; Brahnam, S. Ensemble of different approaches for a reliable person re-identification system. Appl. Comput. Inform. 2016, 12, 142–153. [Google Scholar] [CrossRef]
- Zheng, W.S.; Gong, S.; Xiang, T. Person Re-Identification by Probabilistic Relative Distance Comparison. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 20–25 June 2011; pp. 649–656. [Google Scholar] [CrossRef] [Green Version]
- Kalayeh, M.M.; Basaran, E.; Gokmen, M.; Kamasak, M.E.; Shah, M. Human Semantic Parsing for Person Re-identification. arXiv 2018. [Google Scholar] [CrossRef]
- Park, H.; Ham, B. Relation Network for Person Re-identification. arXiv 2019. [Google Scholar] [CrossRef]
- Quan, R.; Dong, X.; Wu, Y.; Zhu, L.; Yang, Y. Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable Person Re-Identification: A Benchmark. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Fu, Y.; Wei, Y.; Zhou, Y.; Shi, H.; Huang, G.; Wang, X.; Yao, Z.; Huang, T. Horizontal Pyramid Matching for Person Re-Identification. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Liang, X.; Zhang, D.; Shen, X.; Lin, L. Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhao, J.; Li, J.; Cheng, Y.; Sim, T.; Yan, S.; Feng, J. Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October2018; pp. 792–800. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Li, J.; Zhang, S.; Xing, J.; Gao, W.; Tian, Q. Pose-Driven Deep Convolutional Model for Person Re-identification. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3980–3989. [Google Scholar] [CrossRef] [Green Version]
- Quispe, R.; Pedrini, H. Improved person re-identification based on saliency and semantic parsing with deep neural network models. Image Vis. Comput. 2019, 92, 103809. [Google Scholar] [CrossRef] [Green Version]
- Quispe, R.; Pedrini, H. Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2980–2987. [Google Scholar] [CrossRef]
- Li, P.; Xu, Y.; Wei, Y.; Yang, Y. Self-Correction for Human Parsing. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3260–3271. [Google Scholar] [CrossRef]
- Li, P.; Xu, Y.; Wei, Y.; Yang, Y. Self Correction for Human Parsing. Available online: https://github.com/GoGoDuck912/Self-Correction-Human-Parsing (accessed on 11 January 2023).
- Park, U.; Jain, A.; Kitahara, I.; Kogure, K.; Hagita, N. ViSE: Visual Search Engine Using Multiple Networked Cameras. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 1204–1207. [Google Scholar] [CrossRef]
- Günther Wyszecki, W.S.S. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 2000, 40, 1–20. [Google Scholar] [CrossRef]
- Chavdarova, T.; Baqué, P.; Bouquet, S.; Maksai, A.; Jose, C.; Bagautdinov, T.; Lettry, L.; Fua, P.; Van Gool, L.; Fleuret, F. WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5030–5039. [Google Scholar] [CrossRef]
- Cha, S.H.; Srihari, S.N. On measuring the distance between histograms. Pattern Recognit. 2002, 35, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Fatih Demirci, M.; Shokoufandeh, A.; Dickinson, S.J. Skeletal Shape Abstraction from Examples. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Vizilter, Y.; Pyt’ev, Y.; Chulichkov, A.; Mestetskiy, L.M. Morphological Image Analysis for Computer Vision Applications. In Computer Vision in Control Systems-1: Mathematical Theory; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–58. [Google Scholar] [CrossRef]
- Shu, X.; Wu, X.J. A novel contour descriptor for 2D shape matching and its application to image retrieval. Image Vis. Comput. 2011, 29, 286–294. [Google Scholar] [CrossRef]
- Thewsuwan, S.; Horio, K. Texture-Based Features for Clothing Classification via Graph-Based Representation. J. Signal Process. 2018, 22, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Barkan, O.; Weill, J.; Wolf, L.; Aronowitz, H. Fast High Dimensional Vector Multiplication Face Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1960–1967. [Google Scholar] [CrossRef]
- Shekar, B.; Pilar, B. Shape Representation and Classification through Pattern Spectrum and Local Binary Pattern—A Decision Level Fusion Approach. In Proceedings of the Fifth International Conference on Signal and Image Processing, Bangalore, India, 8–10 January 2014; pp. 218–224. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhao, R.; Xiao, T.; Wang, X. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 152–159. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, L.; Cao, D.; Li, S. Re-ranking Person Re-identification with k-Reciprocal Encoding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3652–3661. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.X.; Zheng, W.S.; Wu, A.; Guo, X.; Gong, S.; Lai, J.H. Unsupervised Person Re-Identification by Soft Multilabel Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zheng, L.; Yang, Y. A Discriminatively Learned CNN Embedding for Person Reidentification. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, X.; Zhang, Z.; Huang, K. Learning Deep Context-Aware Features over Body and Latent Parts for Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7398–7407. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Lai, B.; Huang, J.; Gong, X.; Hua, X.S. Camera-aware Proxies for Unsupervised Person Re-Identification. arXiv 2020. [Google Scholar] [CrossRef]
- Zheng, F.; Deng, C.; Sun, X.; Jiang, X.; Guo, X.; Yu, Z.; Huang, F.; Ji, R. Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8506–8514. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, M.; Rychalska, B.; Dabrowski, J. On the Unreasonable Effectiveness of Centroids in Image Retrieval. arXiv 2021. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Gong, S. Harmonious Attention Network for Person Re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2285–2294. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; You, Y.; Zou, X.; Chen, V.; Li, S.; Huang, G.; Hariharan, B.; Weinberger, K.Q. Resource Aware Person Re-identification across Multiple Resolutions. arXiv 2018. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-Scale Feature Learning for Person Re-Identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3701–3711. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Wang, K.; Wang, P.; Tao, D. Multi-Task Learning with Coarse Priors for Robust Part-Aware Person Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1474–1488. [Google Scholar] [CrossRef]
- Benzine, A.; Seddik, M.E.A.; Desmarais, J. Deep Miner: A Deep and Multi-branch Network which Mines Rich and Diverse Features for Person Re-identification. arXiv 2021. [Google Scholar] [CrossRef]
- Herzog, F.; Ji, X.; Teepe, T.; Hörmann, S.; Gilg, J.; Rigoll, G. Lightweight Multi-Branch Network For Person Re-Identification. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 1129–1133. [Google Scholar] [CrossRef]
- Gabdullin, N.; Raskovalov, A. Google Coral-based edge computing person reidentification using human parsing combined with analytical method. arXiv 2022. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, S.; Qju, H.; Wu, W.; Loy, C.C.; Liu, Z. Text2Human: Text-Driven Controllable Human Image Generation. ACM Trans. Graph. 2022, 41, 1–11. [Google Scholar] [CrossRef]
- Xie, H.; Luo, H.; Gu, J.; Jiang, W. Unsupervised Domain Adaptive Person Re-Identification via Intermediate Domains. Appl. Sci. 2022, 12, 6990. [Google Scholar] [CrossRef]
- Zheng, K.; Lan, C.; Zeng, W.; Zhang, Z.; Zha, Z.J. Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification. arXiv 2020. [Google Scholar] [CrossRef]
Feature | L | a | b | d | tin | tco |
---|---|---|---|---|---|---|
Weight | 0.13 | 0.13 | 0.13 | 0.31 | 0.15 | 0.15 |
Parsing Class | Hair, Socks, Face, Legs, Arms | Hat, Gloves, Sunglasses, Shoes | Scarf | Pants | Upper Clothes |
---|---|---|---|---|---|
Weight | 1 | 2 | 3 | 6 | 8 |
Dataset | Identities | Images | Test | Queries | Clear Queries | Cameras |
---|---|---|---|---|---|---|
Market1501 | 1501 | 32,668 | 19,732 | 3368 | 3062 | 6 |
CUHK03 (L) | 1360 | 13,164 | 5328 | 1400 | 1310 | 2 |
CUHK03 (D) | 1360 | 12,697 | 5332 | 1400 | 1294 | 2 |
Dataset Metric | Market | DukeMTMC | CUHK | Market→X | X→Market | |||||
---|---|---|---|---|---|---|---|---|---|---|
R1 | mAP | R1 | mAP | R1 | mAP | R1 | mAP | R1 | mAP | |
APNet-C [19] | 96.2 | 90.5 | 90.4 | 81.5 | 87.4 | 85.3 | 37.7 | 22.8 | 50.9 | 23.7 |
Ours (cq) | 93.5 | 25.3 | - | - | 63.9 | 22.1 | 63.9 | 22.1 | 93.5 | 25.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabdullin, N. Combining Human Parsing with Analytical Feature Extraction and Ranking Schemes for High-Generalization Person Reidentification. Appl. Sci. 2023, 13, 1289. https://doi.org/10.3390/app13031289
Gabdullin N. Combining Human Parsing with Analytical Feature Extraction and Ranking Schemes for High-Generalization Person Reidentification. Applied Sciences. 2023; 13(3):1289. https://doi.org/10.3390/app13031289
Chicago/Turabian StyleGabdullin, Nikita. 2023. "Combining Human Parsing with Analytical Feature Extraction and Ranking Schemes for High-Generalization Person Reidentification" Applied Sciences 13, no. 3: 1289. https://doi.org/10.3390/app13031289
APA StyleGabdullin, N. (2023). Combining Human Parsing with Analytical Feature Extraction and Ranking Schemes for High-Generalization Person Reidentification. Applied Sciences, 13(3), 1289. https://doi.org/10.3390/app13031289