Antimicrobial and Antioxidant Properties of Bovine Livers and Hearts Hydrolysates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Meat By-Products Hydrolysates
2.2. Free Amino Acid Composition of Bovine Livers and Hearts Hydrolysates
2.3. (DPPH•) Free Radical Scavenging Assay
2.4. ATBS•+ Radical Cation Scavenging Assay
2.5. The Ferric Reducing-Antioxidant Power (FRAP) Activity
2.6. Determination of Antimicrobial Activity
2.7. Determination of Minimum Inhibitory Concentration (MIC)
2.8. Statistics
3. Results and Discussion
Amino Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peinado, I.; Koutsidis, G.; Ames, J. Production of Seafood Flavour Formulations from Enzymatic Hydrolysates of Fish By-Products. LWT-Food Sci. Technol. 2016, 66, 444–452. [Google Scholar] [CrossRef]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Álvarez, C. Opportunities and Perspectives for Utilisation of Co-Products in the Meat Industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef]
- Toldrá, F.; Mora, L.; Reig, M. New Insights into Meat By-Product Utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef]
- Matak, K.E.; Tahergorabi, R.; Jaczynski, J. A Review: Protein Isolates Recovered by Isoelectric Solubilization/Precipitation Processing from Muscle Food by-Products as a Component of Nutraceutical Foods. Food Res. Int. 2015, 77, 697–703. [Google Scholar] [CrossRef]
- Pateiro, M.; Borrajo, P.; Domínguez, R.; Munekata, P.E.; Lorenzo, J.M.; Campagnol, P.C.B.; Tomasevic, I.; Francisco, J. Extraction of Valuable Compounds from Meat By-Products. In Green Extraction and Valorization of By-Products from Food Processing; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-32500-7. [Google Scholar]
- Li, T.; Shi, C.; Zhou, C.; Sun, X.; Ang, Y.; Dong, X.; Huang, M.; Zhou, G. Purification and Characterization of Novel Antioxidant Peptides from Duck Breast Protein Hydrolysates. LWT 2020, 125, 109215. [Google Scholar] [CrossRef]
- de Queiroz, A.L.M.; Bezerra, T.K.A.; de Freitas Pereira, S.; da Silva, M.E.C.; de Almeida Gadelha, C.A.; Gadelha, T.S.; Pacheco, M.T.B.; Madruga, M.S. Functional Protein Hydrolysate from Goat By-Products: Optimization and Characterization Studies. Food Biosci. 2017, 20, 19–27. [Google Scholar] [CrossRef]
- Zou, Z.; Wei, M.; Fang, J.; Dai, W.; Sun, T.; Liu, Q.; Gong, G.; Liu, Y.; Song, S.; Ma, F.; et al. Preparation of Chondroitin Sulfates with Different Molecular Weights from Bovine Nasal Cartilage and Their Antioxidant Activities. Int. J. Biol. Macromol. 2020, 152, 1047–1055. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive Peptides as Natural Antioxidants in Food Products—A Review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Vijayalakshmi, M.A.; Lemieux, L.; Amiot, J. High Performance Size Exclusion Liquid Chromatography of Small Molecular Weight Peptides from Protein Hydrolysates Using Methanol as a Mobile Phase Additive. J. Liq. Chromatogr. 1986, 9, 3559–3576. [Google Scholar] [CrossRef]
- O’Sullivan, S.M.; Lafarga, T.; Hayes, M.; O’Brien, N.M. Bioactivity of Bovine Lung Hydrolysates Prepared Using Papain, Pepsin, and Alcalase. J. Food Biochem. 2017, 41, e12406. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, K.S.; Choi, S.Y.; Kwon, H.Y.; Won, M.H.; Kang, T.-C. Carnosine and Related Dipeptides Protect Human Ceruloplasmin against Peroxyl Radical-Mediated Modification. Mol. Cells 2002, 13, 498–502. [Google Scholar] [PubMed]
- López-Pedrouso, M.; Borrajo, P.; Amarowicz, R.; Lorenzo, J.M.; Franco, D. Peptidomic Analysis of Antioxidant Peptides from Porcine Liver Hydrolysates Using SWATH-MS. J. Proteom. 2021, 232, 104037. [Google Scholar] [CrossRef] [PubMed]
- Kotenkova, E.; Chernukha, I. Influence of Technological Processing on Lipid-Lowering Activity of Substances Containing in Porcine Hearts and Aortas. Potravinárstvo/Slovak J. Food Sci. 2019, 13, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Howard, A. Meat Proteome as Source of Functional Biopeptides. Food Res. Int. 2013, 54, 1021–1032. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liang, J.-H. Effect of Antioxidants on the Oxidative Stability of Chicken Breast Meat in a Dispersion System. J. Food Sci. 2002, 67, 530–533. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Prasad, B.; Rai, A.K.; Velappan, S.P.; Subbanna, M.N.; Narayan, B. In Vitro Antioxidant and Antibacterial Properties of Hydrolysed Proteins of Delimed Tannery Fleshings: Comparison of Acid Hydrolysis and Fermentation Methods. Biodegradation 2011, 22, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardini, R.; Harnedy, P.; Bolton, D.; Kerry, J.; O’Neill, E.; Mullen, A.M.; Hayes, M. Antioxidant and Antimicrobial Peptidic Hydrolysates from Muscle Protein Sources and By-Products. Food Chem. 2011, 124, 1296–1307. [Google Scholar] [CrossRef]
- Daoud, R.; Dubois, V.; Bors-Dodita, L.; Nedjar-Arroume, N.; Krier, F.; Chihib, N.-E.; Mary, P.; Kouach, M.; Briand, G.; Guillochon, D. New Antibacterial Peptide Derived from Bovine Hemoglobin. Peptides 2005, 26, 713–719. [Google Scholar] [CrossRef]
- Jang, A.; Jo, C.; Kang, K.-S.; Lee, M. Antimicrobial and Human Cancer Cell Cytotoxic Effect of Synthetic Angiotensin- Converting Enzyme (ACE) Inhibitory Peptides. Food Chem. 2008, 107, 327–336. [Google Scholar] [CrossRef]
- Commission, E. Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed. Off. J. Eur. Union 2009, 54, 2–54. [Google Scholar]
- Waters AccQ. Waters AccQ Tag Chemistry Package Instruction Manual; Millipore Corporation: Milford, MA, USA, 1993. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Karaś, M.; Baraniak, B.; Rybczyńska, K.; Gmiński, J.; Gaweł-Bęben, K.; Jakubczyk, A. The Influence of Heat Treatment of Chickpea Seeds on Antioxidant and Fibroblast Growth-Stimulating Activity of Peptide Fractions Obtained from Proteins Digested under Simulated Gastrointestinal Conditions. Int. J. Food Sci. Technol. 2015, 50, 2097–2103. [Google Scholar] [CrossRef]
- Zhang, X. Antioxidant Activities of Tilapia Muscle Protein Hydrolysates and Their Glycated Products after Simulated In Vitro Gastrointestinal Digestion. Ph.D. Thesis, School of Food Technology Institute of Agricultural Technology Suranaree, Nakhon Ratchasima, Thailand, 2019. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol. 1999, 299, 15–27. [Google Scholar]
- Chalamaiah, M.; Kumar, B.D.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef] [PubMed]
- Anzani, C.; Prandi, B.; Tedeschi, T.; Baldinelli, C.; Sorlini, G.; Wierenga, P.A.; Dossena, A.; Sforza, S. Degradation of Collagen Increases Nitrogen Solubilisation during Enzymatic Hydrolysis of Fleshing Meat. Waste Biomass Valor. 2018, 9, 1113–1119. [Google Scholar] [CrossRef]
- Nakchum, L.; Kim, S.M. Preparation of Squid Skin Collagen Hydrolysate as an Antihyaluronidase, Antityrosinase, and Antioxidant Agent. Prep. Biochem. Biotechnol. 2016, 46, 123–130. [Google Scholar] [CrossRef]
- Nuñez, S.M.; Cárdenas, C.; Valencia, P.; Pinto, M.; Silva, J.; Pino-Cortés, E.; Almonacid, S. Effect of Adding Bovine Skin Gelatin Hydrolysates on Antioxidant Properties, Texture, and Color in Chicken Meat Processing. Foods 2023, 12, 1496. [Google Scholar] [CrossRef]
- Damgaard, T.D.; Otte, J.A.H.; Meinert, L.; Jensen, K.; Lametsch, R. Antioxidant Capacity of Hydrolyzed Porcine Tissues. Food Sci. Nutr. 2014, 2, 282–288. [Google Scholar] [CrossRef]
- Sun, C.; Shan, Y.; Tang, X.; Han, D.; Wu, X.; Wu, H.; Hosseininezhad, M. Effects of Enzymatic Hydrolysis on Physicochemical Property and Antioxidant Activity of Mulberry (Morus Atropurpurea Roxb). Leaf Protein. Food Sci. Nutr. 2021, 9, 5379–5390. [Google Scholar] [CrossRef]
- Onuh, J.O.; Girgih, A.T.; Aluko, R.E.; Aliani, M. In Vitro Antioxidant Properties of Chicken Skin Enzymatic Protein hydrolysates and Membrane Fractions. Food Chem. 2014, 150, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kong, B.; Xiong, Y.L.; Xia, X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 2010, 118, 403–410. [Google Scholar] [CrossRef]
- Gómez, L.J.; Figueroa, O.A.; Zapata, J.E. Actividad Antioxidante de Hidrolizados Enzimáticos de Plasma Bovino Obtenidos Por Efecto de Alcalasa® 2.4 L. Inf. Tecnológica 2013, 24, 33–42. [Google Scholar] [CrossRef]
- Vidal, A.R.; Cansian, R.L.; Mello, R.d.O.; Demiate, I.M.; Kempka, A.P.; Dornelles, R.C.P.; Rodriguez, J.M.L.; Campagnol, P.C.B. Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants 2022, 11, 1173. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sci. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian J. Anim. Sci. 2017, 87, 711–717. [Google Scholar] [CrossRef]
Bovine Liver | Bovine Heart | ||||
---|---|---|---|---|---|
Amino Acids | Time (h) | Pepsin | Papain | Pepsin | Papain |
3 | 0.31 ± 0.10 | 0.26 ± 0.30 | 0.34 ± 0.02 | 0.28 ± 0.02 | |
6 | 0.27 ± 0.02 | 0.22 ± 0.03 | 0.28 ± 0.10 | 0.24 ± 0.03 | |
Ala | 24 | 0.25 ± 0.10 | 0.18 ± 0.09 | 0.24 ± 0.12 | 0.16 ± 0.02 |
p-value (Time) | * | * | * | * | |
3 | 0.12 ± 0.03 | 0.11 ± 0.03 | 0.18 ± 0.08 | 0.16 ± 0.03 | |
6 | 0.09 ± 0.03 | 0.07 ± 0.08 | 0.14 ± 0.03 | 0.15 ± 0.05 | |
Thr | 24 | 0.05 ± 0.01 | 0.04 ± 0.13 | 0.06 ± 0.01 | 0.12 ± 0.06 |
p-value (Time) | * | * | * | * | |
3 | 0.15 ± 0.08 | 0.12 ± 0.09 | 0.17 ± 0.01 | 0.15 ± 0.02 | |
6 | 0.11 ± 0.05 | 0.09 ± 0.01 | 0.13 ± 0.02 | 0.16 ± 0.01 | |
Ser | 24 | 0.08 ± 0.3 | 0.05 ± 0.13 | 0.03 ± 0.01 | 0.15 ± 0.02 |
p-value (Time) | * | * | * | ||
3 | 0.62 ± 0.11 | 0.58 ± 0.18 | 0.58 ± 0.4 | 0.45 ± 0.13 | |
Glu | 6 | 0.58 ± 0.13 | 0.56 ± 0.12 | 0.54 ± 0.3 | 0.38 ± 0.12 |
24 | 0.48 ± 0.11 | 0.43 ± 0.13 | 0.44 ± 0.12 | 0.28 ± 0.11 | |
p-value (Time) | * | * | * | * | |
3 | 0.19 ± 0.04 | 0.17 ± 0.02 | 0.21 ± 0.03 | 0.14 ± 0.03 | |
Pro | 6 | 0.17 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.9 ± 0.01 |
24 | 0.12 ± 0.04 | 0.11 ± 0.06 | 0.10 ± 0.01 | 0.3 ± 0.01 | |
p-value (Time) | * | * | * | * | |
3 | 0.22 ± 0.01 | 0.24 ± 0.02 | 0.25 ± 0.02 | 0.21 ± 0.12 | |
Gli | 6 | 0.14 ± 0.02 | 0.11 ± 0.01 | 0.18 ± 0.02 | 0.18 ± 0.02 |
24 | 0.11 ± 0.06 | 0.08 ± 0.01 | 0.08 ± 0.02 | 0.14 ± 0.04 | |
p-value (Time) | * | * | * | * | |
3 | 0.27 ± 0.01 | 0.29 ± 0.02 | 0.32 ± 0.08 | 0.27 ± 0.10 | |
Ala | 6 | 0.22 ± 0.02 | 0.27 ± 0.01 | 0.25 ± 0.01 | 0.25 ± 0.02 |
24 | 0.19 ± 0.01 | 0.09 ± 0.01 | 0.18 ± 0.03 | 0.22 ± 0.01 | |
p-value (Time) | * | * | * | * | |
Val | 3 | 0.19 ± 0.02 | 0.10 ± 0.01 | 0.21 ± 0.03 | 0.27 ± 0.01 |
6 | 0.17 ± 0.04 | 0.12 ± 0.02 | 0.22 ± 0.02 | 0.25 ± 0.02 | |
24 | 0.13 ± 0.03 | 0.09 ± 0.02 | 0.15 ± 0.01 | 0.22 ± 0.01 | |
p-value (Time) | * | * | * | * | |
3 | 0.13 ± 0.06 | 0.10 ± 0.02 | 0.11 ± 0.01 | 0.15 ± 0.05 | |
Met | 6 | 0.14 ± 0.07 | 0.12 ± 0.04 | 0.08 ± 0.01 | 0.13 ± 0.04 |
24 | 0.10 ± 0.01 | 0.08 ± 0.02 | 0.04 ± 0.01 | 0.8 ± 0.01 | |
p-value (Time) | * | * | * | * | |
3 | 0.15 ± 0.01 | 0.17 ± 0.02 | 0.12 ± 0.02 | 0.21 ± 0.03 | |
Ile | 6 | 0.17 ± 0.02 | 0.11 ± 0.01 | 0.15 ± 0.01 | 0.18 ± 0.01 |
24 | 0.11 ± 0.02 | 0.09 ± 0.02 | 0.05 ± 0.01 | 0.12 ± 0.01 | |
p-value (Time) | * | * | * | ||
3 | 0.29 ± 0.02 | 0.22 ± 0.1 | 0.24 ± 0.4 | 0.25 ± 0.05 | |
Leu | 6 | 0.31 ± 0.02 | 0.18 ± 0.2 | 0.25 ± 0.02 | 0.22 ± 0.03 |
24 | 0.23 ± 0.03 | 0.17 ± 0.02 | 0.19 ± 0.02 | 0.18 ± 0.02 | |
p-value (Time) | |||||
3 | 0.09 ± 0.04 | 0.03 ± 0.01 | 0.08 ± 0.03 | 0.05 ± 0.01 | |
Tyr | 6 | 0.04 ± 0.03 | 0.02 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.01 |
24 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.03 | 0.02 ± 0.01 | |
p-value (Time) | * | * | |||
3 | 0.13 ± 0.02 | 0.11 ± 0.01 | 0.12 ± 0.03 | 0.15 ± 0.04 | |
Phe | 6 | 0.11 ± 0.04 | 0.10 ± 0.09 | 0.08 ± 0.01 | 0.13 ± 0.03 |
24 | 0.09 ± 0.04 | 0.02 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.01 | |
p-value (Time) | * | * | * | ||
3 | 0.14 ± 0.02 | 0.11 ± 0.03 | 0.11 ± 0.02 | 0.17 ± 0.03 | |
His | 6 | 0.11 ± 0.01 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.16 ± 0.02 |
24 | 0.07 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.05 ± 0.01 | |
p-value (Time) | * | * | * | * | |
3 | 0.32 ± 0.14 | 0.34 ± 0.13 | 0.38 ± 0.06 | 0.42 ± 0.15 | |
Lys | 6 | 0.22 ± 0.13 | 0.27 ± 0.04 | 0.33 ± 0.08 | 0.38 ± 0.11 |
24 | 0.19 ± 0.05 | 0.15 ± 0.04 | 0.18 ± 0.02 | 0.27 ± 0.02 | |
p-value (Time) | * | * | * | * | |
3 | 0.28 ± 0.02 | 0.25 ± 0.04 | 0.31 ± 0.05 | 0.31 ± 0.02 | |
Arg | 6 | 0.22 ± 0.01 | 0.20 ± 0.05 | 0.25 ± 0.08 | 0.28 ± 0.05 |
24 | 0.21 ± 0.06 | 0.19 ± 0.03 | 0.19 ± 0.03 | 0.23 ± 0.03 | |
p-value (Time) | * | * |
Material | Enzymes | Time (h) | ATBS•+ Scavenging Activity | DPPH• Scavenging Activity | FRAP (mM Equivalent to FeSO4·7H2O) |
---|---|---|---|---|---|
24 | 68.22 ± 1.67 a | 46.62 ± 1.48 a | 16.45 ± 0.65 a | ||
Pepsin | 6 | 67.22 ± 1.87 a | 45.23 ± 1.23 a | 13.23 ± 1.11 b | |
Bovine hearts | 3 | 64.61 ± 1.74 a | 10.02 ± 1.56 b | 9.22 ± 0.78 c | |
24 | 76.34 ± 0.98 b | 78.25 ± 1.13 a | 18.47 ± 1.22 a | ||
Papain | 6 | 68.82 ± 1.56 a | 44.17 ± 1.88 b | 14.56 ± 0.95 b | |
3 | 65.35 ± 1.11 a | 21.24 ± 1.46 c | 9.23 ± 1.28 c | ||
24 | 84.81 ± 1.11 c | 96.12 ± 1.11 a | 16.98 ± 0.49 a | ||
Pepsin | 6 | 65.30 ± 1.85 a | 38.82 ± 1.66 b | 13.11 ± 0.52 b | |
Bovine livers | 3 | 64.92 ± 1.89 a | 13.06 ± 1.67 c | 9.22 ± 0.78 c | |
24 | 98.10 ± 0.30 c | 92.56 ± 0.56 a | 17.88 ± 0.98 a | ||
Papain | 6 | 73.03 ± 0.91 b | 43.36 ± 0.67 b | 15.38 ± 0.68 b | |
3 | 72.20 ± 0.88 b | 21.01 ± 0.72 c | 11.34 ± 0.87 c |
Zone of Inhibition Diameter, mm | |||||||
---|---|---|---|---|---|---|---|
Material | Enzyme | Time (h) | E. coli ATCC 25922 | S. aureus subsp. aureus ATCC 25923 | L. monocytogenes ATCC 13932 | S. enterica subsp. enterica Serovar Typhimurium ATCC 14028 | B. cereus ATCC 11778 |
24 | N.D. | bacteriostatic effect | N.D. | N.D. | 0 ± 0 | ||
Bovine heart | Pepsin | 6 | N.D. | 0 ± 0 | N.D. | N.D. | 0 ± 0 |
3 | N.D. | 0 ± 0 | N.D. | 0 ± 0 | 0 ± 0 | ||
24 | N.D. | bacteriostatic effect | N.D. | 0 ± 0 | 0 ± 0 | ||
Bovine liver | Pepsin | 6 | N.D. | 0 ± 0 | N.D. | 0 ± 0 | 0 ± 0 |
3 | N.D. | 0 ± 0 | N.D. | 0 ± 0 | 0 ± 0 | ||
24 | 10.0 ± 0.1 | bacteriostatic effect | 20.0 ± 0.2 | 10.0 ± 0.1 | 0 ± 0 | ||
Bovine heart | Papain | 6 | N.D. | bacteriostatic effect | 12.5 ± 0.1 | 0 ± 0 | 0 ± 0 |
3 | N.D. | bacteriostatic effect | 10.2 ± 0.1 | 0 ± 0 | 0 ± 0 | ||
24 | N.D. | bacteriostatic effect | 17.5 ± 0.2 | 10.0 ± 0.1 | 0 ± 0 | ||
Bovine liver | Papain | 6 | N.D. | bacteriostatic effect | 11.7 ± 0.2 | 10.0 ± 0.1 | 0 ± 0 |
3 | N.D. | bacteriostatic effect | 9.8 ± 0,1 | 10.0 ± 0.1 | 0 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juknienė, I.; Zaborskienė, G.; Jankauskienė, A.; Mačionienė, I. Antimicrobial and Antioxidant Properties of Bovine Livers and Hearts Hydrolysates. Appl. Sci. 2023, 13, 13142. https://doi.org/10.3390/app132413142
Juknienė I, Zaborskienė G, Jankauskienė A, Mačionienė I. Antimicrobial and Antioxidant Properties of Bovine Livers and Hearts Hydrolysates. Applied Sciences. 2023; 13(24):13142. https://doi.org/10.3390/app132413142
Chicago/Turabian StyleJuknienė, Ignė, Gintarė Zaborskienė, Agnė Jankauskienė, and Irena Mačionienė. 2023. "Antimicrobial and Antioxidant Properties of Bovine Livers and Hearts Hydrolysates" Applied Sciences 13, no. 24: 13142. https://doi.org/10.3390/app132413142
APA StyleJuknienė, I., Zaborskienė, G., Jankauskienė, A., & Mačionienė, I. (2023). Antimicrobial and Antioxidant Properties of Bovine Livers and Hearts Hydrolysates. Applied Sciences, 13(24), 13142. https://doi.org/10.3390/app132413142