Molecular Screening of the Thrombophilic Variants Performed at G-141 Laboratory among Saudi Infertile Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance for the Enrollment of Fertile and Infertile Women
2.2. Anthropometric Measurements of the 200 Participants
2.3. Serum Sample Experiments
2.4. Amplification of the Thrombophilic Variants
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Women
3.2. HWE Analysis of the Thrombophilic Variants
3.3. Genotyping Analysis of the Thrombophilic Variants in the Infertile and Fertile Women
3.4. Allele Frequency Studies in the Cases and Controls of the Thrombophilic Variants
3.5. Logistic Regression and ANOVA Analysis Studied among the Infertile Women
3.6. Combined Genotyping and Allele Frequencies among the Thrombophilic Variants in the Case and Control Women
3.7. Predicted Studies of GMDR Analysis in the Case and Control Women
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Available online: https://www.who.int/health-topics/infertility#tab=tab_1 (accessed on 6 September 2022).
- Zhang, Y.; Zhu, Y.; Sui, M.; Guan, X.; Sun, J. Diagnosing and Treating Infertility via Transvaginal Natural Orifice Transluminal Endoscopic Surgery versus Laparoendoscopic Single-Site Surgery: A Retrospective Study. J. Clin. Med. 2023, 12, 1576. [Google Scholar] [CrossRef] [PubMed]
- Chiware, T.M.; Vermeulen, N.; Blondeel, K.; Farquharson, R.; Kiarie, J.; Lundin, K.; Matsaseng, T.C.; Ombelet, W.; Toskin, I. IVF and other ART in low-and middle-income countries: A systematic landscape analysis. Hum. Reprod. Update 2021, 27, 213–228. [Google Scholar] [CrossRef]
- Bucci, I.; Giuliani, C.; Di Dalmazi, G.; Formoso, G.; Napolitano, G. Thyroid autoimmunity in female infertility and assisted reproductive technology outcome. Front. Endocrinol. 2022, 13, 768363. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef] [PubMed]
- Borumandnia, N.; Majd, H.A.; Khadembashi, N.; Alaii, H. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. Int. J. Reprod. BioMed. 2022, 20, 37. [Google Scholar] [CrossRef]
- Jabeen, F.; Khadija, S.; Daud, S. Prevalence of primary and secondary infertility. Saudi J. Med. 2022, 7, 22–28. [Google Scholar] [CrossRef]
- Hong, X.; Zhao, F.; Wang, W.; Wu, J.; Zhu, X.; Wang, B. Elevated serum uric acid is associated with infertility in women living in America. Sci. Rep. 2023, 13, 7687. [Google Scholar] [CrossRef]
- Al-Mutawa, J. Interaction with angiotensin-converting enzyme-encoding gene in female infertility: Insertion and deletion polymorphism studies. Saudi J. Biol. Sci. 2018, 25, 1617–1621. [Google Scholar] [CrossRef]
- Deepak Kumar, K.; Huntriss, R.; Green, E.; Bora, S.; Pettitt, C. Development of a nutrition screening tool to identify need for dietetic intervention in female infertility. J. Hum. Nutr. Diet. 2023, 36, 154–168. [Google Scholar] [CrossRef]
- Alsulami, S.; Baig, M.; Ahmad, T.; Althagafi, N.; Hazzazi, E.; Alsayed, R.; Alghamdi, M.; Almohammadi, T. Obesity prevalence, physical activity, and dietary practices among adults in Saudi Arabia. Front. Public Health 2023, 11, 1124051. [Google Scholar] [CrossRef]
- Medenica, S.; Spoltore, M.E.; Ormazabal, P.; Marina, L.V.; Sojat, A.S.; Faggiano, A.; Gnessi, L.; Mazzilli, R.; Watanabe, M. Female infertility in the era of obesity: The clash of two pandemics or inevitable consequence? Clin. Endocrinol. 2023, 98, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ennab, F.; Atiomo, W. Obesity and female infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 89, 102336. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Wan, Y.; Lv, Y.; Li, H.; Naushad, W.; Chan, W.Y.; Lu, G.; Chen, Z.J.; Liu, H. Maternal obesity: A potential disruptor of female fertility and current interventions to reduce associated risks. Obes. Rev. 2023, 24, e13603. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Wang, J.; Leng, Y.; Li, L.; Wang, H. Role of obesity in female reproduction. Int. J. Med. Sci. 2023, 20, 366. [Google Scholar] [CrossRef]
- Deshpande, P.S.; Gupta, A.S. Causes and prevalence of factors causing infertility in a public health facility. J. Hum. Reprod. Sci. 2019, 12, 287. [Google Scholar]
- Goodman, C.; Hur, J.; Goodman, C.S.; Jeyendran, R.S.; Coulam, C. Are polymorphisms in the ACE and PAI-1 genes associated with recurrent spontaneous miscarriages? Am. J. Reprod. Immunol. 2009, 62, 365–370. [Google Scholar] [CrossRef]
- Buchholz, T.; Lohse, P.; Rogenhofer, N.; Kosian, E.; Pihusch, R.; Thaler, C. Polymorphisms in the ACE and PAI-1 genes are associated with recurrent spontaneous miscarriages. Hum. Reprod. 2003, 18, 2473–2477. [Google Scholar] [CrossRef]
- Kuperman, A.; Di Micco, P.; Brenner, B. Fertility, infertility and thrombophilia. Women’s Health 2011, 7, 545–553. [Google Scholar] [CrossRef]
- Yapijakis, C.; Serefoglou, Z.; Voumvourakis, C. Common gene polymorphisms associated with thrombophilia. In Thrombosis, Atherosclerosis and Atherothrombosis-New Insights and Experimental Protocols; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Sykes, T.; Fegan, C.; Mosquera, D. Thrombophilia, polymorphisms, and vascular disease. Mol. Pathol. 2000, 53, 300. [Google Scholar] [CrossRef]
- Ashorobi, D.; Ameer, M.A.; Fernandez, R. Thrombosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Kamali, M.; Hantoushzadeh, S.; Borna, S.; Neamatzadeh, H.; Mazaheri, M.; Noori-Shadkam, M.; Haghighi, F. Association between thrombophilic genes polymorphisms and recurrent pregnancy loss susceptibility in the Iranian population: A systematic review and meta-analysis. Iran. Biomed. J. 2018, 22, 78. [Google Scholar]
- Kupferminc, M.J.; Eldor, A.; Steinman, N.; Many, A.; Bar-Am, A.; Jaffa, A.; Fait, G.; Lessing, J.B. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N. Engl. J. Med. 1999, 340, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Barut, M.U.; Bozkurt, M.; Kahraman, M.; Yıldırım, E.; Imirzalioğlu, N.; Kubar, A.; Sak, S.; Ağaçayak, E.; Aksu, T.; Çoksüer, H. Thrombophilia and recurrent pregnancy loss: The enigma continues. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 4288. [Google Scholar] [CrossRef] [PubMed]
- Simur, A.; Özdemir, S.; Acar, H.; Çolakoğlu, M.C.; Görkemli, H.; Balcı, O.; Nergis, S. Repeated in vitro fertilization failure and its relation with thrombophilia. Gynecol. Obstet. Investig. 2009, 67, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Bellver, J.; Soares, S.R.; Alvarez, C.; Munoz, E.; Ramírez, A.; Rubio, C.; Serra, V.; Remohí, J.; Pellicer, A. The role of thrombophilia and thyroid autoimmunity in unexplained infertility, implantation failure and recurrent spontaneous abortion. Hum. Reprod. 2008, 23, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Dulitzky, M.; Cohen, S.B.; Inbal, A.; Seidman, D.S.; Soriano, D.; Lidor, A.; Mashiach, S.; Rabinovici, J. Increased prevalence of thrombophilia among women with severe ovarian hyperstimulation syndrome. Fertil. Steril. 2002, 77, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Fabregues, F.; García-Velasco, J.A.; Llácer, J.; Requena, A.; Checa, M.Á.; Bellver, J.; Espinós, J.J. The role of thrombophilias in reproduction: A swot analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 280, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Candeloro, M.; Di Nisio, M.; Ponzano, A.; Tiboni, G.M.; Potere, N.; Tana, M.; Rutjes, A.W.; Porreca, E. Effects of obesity and thrombophilia on the risk of abortion in women undergoing in vitro fertilization. Front. Endocrinol. 2020, 11, 594867. [Google Scholar] [CrossRef]
- Supramaniam, P.R.; Mittal, M.; McVeigh, E.; Lim, L.N. The correlation between raised body mass index and assisted reproductive treatment outcomes: A systematic review and meta-analysis of the evidence. Reprod. Health 2018, 15, 34. [Google Scholar] [CrossRef]
- Almubark, R.A.; Alqahtani, S.; Isnani, A.C.; Alqarni, A.; Shams, M.; Yahia, M.; Alfadda, A.A. Gender differences in the attitudes and management of people with obesity in Saudi Arabia: Data from the ACTION-IO study. Risk Manag. Healthc. Policy 2022, 15, 1179–1188. [Google Scholar] [CrossRef]
- Tauqeer, Z.; Gomez, G.; Stanford, F.C. Obesity in women: Insights for the clinician. J. Women’s Health 2018, 27, 444–457. [Google Scholar] [CrossRef]
- Singla, P.; Bardoloi, A.; Parkash, A.A. Metabolic effects of obesity: A review. World J. Diabetes 2010, 1, 76. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Zain, M.M.; Norman, R.J. Impact of obesity on female fertility and fertility treatment. Women’s Health 2008, 4, 183–194. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Hernández-Escobar, C.; Lara-Torre, E.; Nieblas, B.; Gómez-Carmona, M. Gynecologic and obstetric consequences of obesity in adolescent girls. J. Pediatr. Adolesc. Gynecol. 2017, 30, 156–168. [Google Scholar] [CrossRef]
- Lake, J.; Power, C.; Cole, T. Women’s reproductive health: The role of body mass index in early and adult life. Int. J. Obes. 1997, 21, 432–438. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Bazzano, L.A.; Pridjian, G.; Harville, E. Childhood adiposity and fertility difficulties: The Bogalusa Heart Study. Pediatr. Obes. 2017, 12, 477–484. [Google Scholar] [CrossRef]
- He, Y.; Tian, J.; Oddy, W.H.; Dwyer, T.; Venn, A.J. Association of childhood obesity with female infertility in adulthood: A 25-year follow-up study. Fertil. Steril. 2018, 110, 596–604.e591. [Google Scholar] [CrossRef] [PubMed]
- Raptopoulou, A.; Michou, V.; Mourtzi, N.; Papageorgiou, E.G.; Voyiatzaki, C.; Tsilivakos, V.; Beloukas, A.; Bei, T.A. Large-scale screening for factor V Leiden (G1691A), prothrombin (G20210A), and MTHFR (C677T) mutations in Greek population. Health Sci. Rep. 2022, 5, e457. [Google Scholar] [CrossRef] [PubMed]
- M’Barek, L.; Sakka, S.; Meghdiche, F.; Turki, D.; Maalla, K.; Dammak, M.; Kallel, C.; Mhiri, C. MTHFR (C677T, A1298C), FV Leiden polymorphisms, and the prothrombin G20210A mutation in arterial ischemic stroke among young tunisian adults. Metab. Brain Dis 2021, 36, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Lippi, G.; Danese, E. An Overview of Thrombophilia and Associated Laboratory Testing. Methods Mol. Biol. 2017, 1646, 113–135. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.M.; Khalili, M.; Soufizomorrod, M.; Abroun, S.; Razi, B. Factor V Leiden 1691G > A mutation and the risk of recurrent pregnancy loss (RPL): Systematic review and meta-analysis. Thromb. J. 2020, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ren, H.; Chen, H.; Song, J.; Li, S.; Lee, C.; Liu, J.; Cui, Y. Prothrombin G20210A (rs1799963) polymorphism increases myocardial infarction risk in an age-related manner: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 13550. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.; Ramroodi, N.; Amiri Fard, H.; Talebian, S.; Haghighi Rohani, M.; Rezaei, M.; Noora, M.; Salimi, S. Common Variations in Prothrombotic Genes and Susceptibility to Ischemic Stroke in Young Patients: A Case-Control Study in Southeast Iran. Medicina 2019, 55, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, R.X.; He, Z.Y.; Liu, X.; Liu, H.N. Association of MTHFR C677T with total homocysteine plasma levels and susceptibility to Parkinson’s disease: A meta-analysis. Neurol. Sci. 2015, 36, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Samfireag, M.; Potre, C.; Potre, O.; Tudor, R.; Hoinoiu, T.; Anghel, A. Approach to Thrombophilia in Pregnancy—A Narrative Review. Medicina 2022, 58, 692. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, S. Inherited thrombophilia: A double-edged sword. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; He, H.; Zhao, K. Thrombophilic gene polymorphisms and recurrent pregnancy loss: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2023, 40, 1533–1558. [Google Scholar] [CrossRef]
- Terzic, M.; Aimagambetova, G. Prothrombotic gene polymorphisms and adverse reproductive outcomes in assisted reproductive technology. In Management of Infertility; Elsevier: Amsterdam, The Netherlands, 2023; pp. 55–63. [Google Scholar]
- Coulam, C.B.; Jeyendran, R. Thrombophilic gene polymorphisms are risk factors for unexplained infertility. Fertil. Steril. 2009, 91, 1516–1517. [Google Scholar] [CrossRef]
- Casadei, L.; Puca, F.; Privitera, L.; Zamaro, V.; Emidi, E. Inherited thrombophilia in infertile women: Implication in unexplained infertility. Fertil. Steril. 2010, 94, 755–757. [Google Scholar] [CrossRef]
- Turki, R.F.; Assidi, M.; Banni, H.A.; Zahed, H.A.; Karim, S.; Schulten, H.-J.; Abu-Elmagd, M.; Rouzi, A.A.; Bajouh, O.; Jamal, H.S. Associations of recurrent miscarriages with chromosomal abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia. BMC Med. Genet. 2016, 17, 15–23. [Google Scholar] [CrossRef]
- Settin, A.A.; Alghasham, A.; Ali, A.; Dowaidar, M.; Ismail, H. Frequency of thrombophilic genetic polymorphisms among Saudi subjects compared with other populations. Hematology 2012, 17, 176–182. [Google Scholar] [CrossRef]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO: Geneva, Switzerland, 2000.
- Khan, S.; Dickerman, J.D. Hereditary thrombophilia. Thromb. J. 2006, 4, 15. [Google Scholar] [CrossRef]
- Gawish, G.; Al-Khamees, O. Molecular characterization of factor V Leiden G1691A and prothrombin G20210A mutations in Saudi females with recurrent pregnancy loss. J. Blood Disord. Transfus. 2013, 4, 165. [Google Scholar]
- Awad, N.S.; Almalki, T.A.; Sabry, A.M.; Mohamed, A.A.; Said, M.M.; El-Tarras, A.E. Screening of factor V G1691A (Leiden) and factor II/prothrombin G20210A polymorphisms among apparently healthy taif-Saudi Arabia population using a reverse hybridization strip assay approach. World J. Med. Sci. 2013, 9, 202–207. [Google Scholar]
- Gawish, G. The Prevalence of inherited thrombophilic polymorphisms in Saudi females with recurrent pregnancy loss confirmed using different screening protocols of PCR. J. Mol. Genet. Med. 2015, 9, 1747. [Google Scholar]
- Alecsandru, D.; Klimczak, A.M.; Velasco, J.A.G.; Pirtea, P.; Franasiak, J.M. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil. Steril. 2021, 115, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Fakeraldeen, A.; Badawy, A.; Fawzy, M. Factor V Leiden G1691A and Prothrombin G20210A mutations are associated with repeated spontaneous miscarriage in Northern area of Saudi Arabia. Genet. Mol. Res. 2017, 16, gmr16039810. [Google Scholar]
- Incebiyik, A.; Hilali, N.G.; Camuzcuoglu, A.; Camuzcuoglu, H.; Akbas, H.; Kilic, A.; Vural, M. Prevalence of thromogenic gene mutations in women with recurrent miscarriage: A retrospective study of 1,507 patients. Obstet. Gynecol. Sci. 2014, 57, 513–517. [Google Scholar] [CrossRef]
- Issa, N.M.; El-Neily, D.A.M.; El Tawab, S.S.; El-Attar, L.M. The prevalence of specific gene polymorphisms related to thrombophilia in Egyptian women with recurrent pregnancy loss. J. Hum. Reprod. Sci. 2021, 14, 73. [Google Scholar]
- Ameen, G.; Irani-Hakime, N.; Fawaz, N.; Mahjoub, T.; Almawi, W.Y. An Arab selective gradient in the distribution of factor V G1691A (Leiden), prothrombin G20210A, and methylenetetrahydrofolate reductase (MTHFR) C677T. J. Thromb. Haemost. 2005, 3, 2126–2127. [Google Scholar] [CrossRef]
- Grbić, E.; Globočnik Petrovič, M.; Cilenšek, I.; Petrovič, D. SLC22A3 rs2048327 Polymorphism Is Associated with Diabetic Retinopathy in Caucasians with Type 2 Diabetes Mellitus. Biomedicines 2023, 11, 2303. [Google Scholar] [CrossRef]
- Zeng, J.; Zeng, Q. Correlations between methylenetetrahydrofolate reductase gene polymorphisms and venous thromboembolism: A meta-analysis of 99 genetic association studies. Eur. J. Prev. Cardiol. 2019, 26, 120–134. [Google Scholar] [CrossRef]
- Sauer, M.V. Reproduction at an advanced maternal age and maternal health. Fertil. Steril. 2015, 103, 1136–1143. [Google Scholar] [CrossRef]
- Ubaldi, F.M.; Cimadomo, D.; Vaiarelli, A.; Fabozzi, G.; Venturella, R.; Maggiulli, R.; Mazzilli, R.; Ferrero, S.; Palagiano, A.; Rienzi, L. Advanced maternal age in IVF: Still a challenge? The present and the future of its treatment. Front. Endocrinol. 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.; Bahnsawy, N.; Afefy, N.; Gouda, A.D.K. Assessment of Prevalence and Risk Factors of Infertility among Saudi Women: A Cross Sectional Study. Indones. J. Glob. Health Res. 2023, 5, 77–94. [Google Scholar] [CrossRef]
- Khan, F.H.; Alkwai, H.M.; Alshammari, R.F.; Alenazi, F.; Alshammari, K.F.; Sogeir, E.K.A.; Batool, A.; Khalid, A.A. Comparison of Fetomaternal Complications in Women of High Parity with Women of Low Parity among Saudi Women. Healthcare 2022, 10, 2198. [Google Scholar] [CrossRef] [PubMed]
- Salma, U.; Alanazi, M.F.; Alshaikh, A.B.A.; Alruwail, W.M.A.; Alzamil, T.H.Z.; Alruwaili, S.S.B.; Alshalan, R.Z.; Rewaily, B.H.; Rashwan, E.K. Risk Factors of Infertility in a Woman: A Case-Control Study. Malays. J. Public Health Med. 2022, 22, 103–109. [Google Scholar]
- Rykova, E.; Ershov, N.; Damarov, I.; Merkulova, T. SNPs in 3′ UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int. J. Mol. Sci. 2022, 23, 13725. [Google Scholar] [CrossRef]
- Shulman, E.D.; Elkon, R. Systematic identification of functional SNPs interrupting 3′UTR polyadenylation signals. PLoS Genet. 2020, 16, e1008977. [Google Scholar] [CrossRef]
- Knox, B.; Wang, Y.; Rogers, L.J.; Xuan, J.; Yu, D.; Guan, H.; Chen, J.; Shi, T.; Ning, B.; Kadlubar, S.A. A Functional SNP in the 3′-UTR of TAP2 Gene Interacts with microRNA hsa-miR-1270 to Suppress the Gene Expression. Environ. Mol. Mutagen. 2018, 59, 134–143. [Google Scholar] [CrossRef]
- Wei, R.; Yang, F.; Urban, T.J.; Li, L.; Chalasani, N.; Flockhart, D.A.; Liu, W. Impact of the interaction between 3′-UTR SNPs and microRNA on the expression of human xenobiotic metabolism enzyme and transporter genes. Front. Genet. 2012, 3, 248. [Google Scholar] [CrossRef]
- Al-Mutawa, J. Role of C677T polymorphism in the MTHFR gene in Saudi females affected with infertility. Int. J. Adv. Appl. Sci. 2019, 6, 98–102. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, Y.; Liu, G.; Wang, X.; Liu, Z.; Chen, B.; Hui, R. Factor V gene G1691A mutation, prothrombin gene G20210A mutation, and MTHFR gene C677T mutation are not risk factors for pulmonary thromboembolism in Chinese population. Thromb. Res. 2002, 106, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, Z.; Nomani, H.; Mozafari, H.; Vaisi-Raygani, A.; Madani, H.; Malek-Khosravi, S.; Parsian, A. Factor V G1691A, prothrombin G20210A and methylenetetrahydrofolate reductase polymorphism C677T are not associated with coronary artery disease and type 2 diabetes mellitus in western Iran. Blood Coagul. Fibrinolysis 2009, 20, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Marschon, R.; Dieplinger, B.; Haidinger, D.; Gegenhuber, A.; Poelz, W.; Webersinke, G.; Haltmayer, M. Factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations are not associated with chronic limb ischemia: The Linz Peripheral Arterial Disease (LIPAD) study. J. Vasc. Surg. 2005, 41, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar Ahmed, A.; Risha, A.I.; El-Taher, A.K.; Abdelhy, R.M.; M AbdElmonem, D. Impact of Factor V Leiden G1691A, MTHFR C677T, and Prothrombin G20210 A mutations on the development of neonatal thrombosis. Zagazig Univ. Med. J. 2022, 28, 1156–1163. [Google Scholar] [CrossRef]
- Lipsitch, M.; Tchetgen, E.T.; Cohen, T. Negative controls: A tool for detecting confounding and bias in observational studies. Epidemiology 2010, 21, 383. [Google Scholar] [CrossRef] [PubMed]
- Lewallen, S.; Courtright, P. Epidemiology in practice: Case-control studies. Community Eye Health 1998, 11, 57. [Google Scholar] [PubMed]
- Cushman, M. Epidemiology and risk factors for venous thrombosis. Semin. Hematol. 2007, 44, 62–69. [Google Scholar] [CrossRef]
- Al Sultan, O.A.; Al Ibrahim, E.A. Three-factorial genetic thrombophilia with recurrent thrombotic events in a Saudi patient: A case report. Saudi J. Med. Med. Sci. 2020, 8, 217. [Google Scholar] [CrossRef] [PubMed]
Gene | rsnumber | Region | Location | Forward Primer | Reverse Primer | PCR Size | Tm | Enzyme | RFLP Analysis |
---|---|---|---|---|---|---|---|---|---|
FVL | rs6020 | G1691A | Exon 10 | TCAGGCAGGAACAACACCAT | GGTTACTTCAAGGACAAAATACCT | 241 bp | 58 °C | HindIII | G-241bp; A-209/32 bp |
PT/FII | rs1799963 | G20210A | 3′UTR | TCTAGAAACAGTTGCCTGGC | ATAGCACTGGGAGCATGAAGCAAG | 2345 bp | 60 °C | HindIII | G-345bp; A-322/23 bp |
MTHFR | rs1801133 | C677T | Exon 4 | TGAAGGAGAAGGTGTGCTGA | AGGACGGTGCGGTGAGAGTG | 198 bp | 68 °C | HinfI | C-198bp: T-175/23 bp |
Women’s Data | Infertile Cases (n = 100) | Fertile Controls (n = 100) | p-Value |
---|---|---|---|
Age (years) | 30.79 ± 5.36 | 31.39 ± 6.70 | 0.485 |
Height (cm) | 157.61 ± 5.04 | 159.02 ± 6.88 | 0.099 |
Weight (kg) | 73.88 ± 11.27 | 77.56 ± 11.86 | 0.02 |
BMI (kg/m2) | 29.41 ± 4.43 | 30.68 ± 4.53 | 0.04 |
FSH (IU/mL) | 7.33 ± 0.77 | 6.08 ± 2.43 | 0.001 |
LH (IU/mL) | 5.57 ± 0.46 | 6.95 ± 2.36 | <0.0001 |
LH/FSH ratio | 0.77 ± 0.10 | 1.37 ± 0.86 | <0.0001 |
TSH (IU/mL) | 2.50 ± 0.31 | 2.16 ± 0.31 | 0.01 |
Infertility | 100 (100%) | 00 (00%) | <0.0001 |
Family history of FI | 53 (53%) | 00 (00%) | <0.0001 |
Fertile Women (n = 100) | Infertile Women (n = 100) | |||||
---|---|---|---|---|---|---|
G1691A | G20210A | C677T | G1691A | G20210A | C677T | |
HWE analysis | 0.01 | 0.01 | 0.15 | 0.03 | 0.04 | 0.16 |
ꭓ2 | 0.002 | 0.01 | 0.03 | 9.77 | 4.78 | 3.93 |
p-Value | 0.95 | 0.91 | 0.84 | 0.001 | 0.02 | 0.04 |
Gene (rsnumber) | Genotypes | Infertile (n = 100) | Fertile (n = 100) | OR (95%CI) | p-Value |
---|---|---|---|---|---|
FVL (rs6020) | GG | 95 (95%) | 99 (99%) | 1Reference | 1Reference |
GA | 04 (04%) | 01 (01%) | 4.168 (0.45–37.97) | 0.171 | |
AA | 01 (01%) | 00 (00) | 2.084 (0.06–62.84) | 0.665 * | |
GA + AA vs. GG | 05 (05%) | 01 (01%) | 5.211 (0.59–45.42) | 0.097 | |
AA + GG vs. GA | 96 (96%) | 99 (99%) | 0.242 (0.02–2.21) | 0.174 | |
GG + GA vs. AA | 99 (99%) | 100 (100%) | 0.495 (0.016–14.92) | 0.679 * | |
PT/FII (rs20210) | GG | 93 (93%) | 98 (98%) | 1Reference | 1Reference |
GA | 06 (06%) | 02 (02%) | 3.161 (0.62–16.06) | 0.144 | |
AA | 01 (01%) | 00 (00) | 2.108 (0.06–63.55) | 0.661 * | |
GA + AA vs. GG | 07 (07%) | 02 (02%) | 3.688 (0.74–18.21) | 0.088 | |
AA + GG vs. GA | 94 (94%) | 98 (98%) | 0.319 (0.06–1.62) | 0.149 | |
GG + GA vs. AA | 99 (99%) | 100 (100%) | 0.495 (0.01–14.92) | 0.679 * | |
MTHFR (rs1801133) | CC | 74 (74%) | 72 (72%) | 1Reference | 1Reference |
CT | 21 (21%) | 26 (26%) | 0.785 (0.40–1.52) | 0.473 | |
TT | 05 (05%) | 02 (02%) | 2.432 (0.45–12.94) | 0.284 | |
CT + TT vs. CC | 26 (26%) | 28 (28%) | 0.903 (0.48–1.68) | 0.751 | |
TT + CC vs. CT | 79 (79%) | 74 (74%) | 1.322 (0.68–2.54) | 0.404 | |
CC+ CT vs. TT | 95 (95%) | 98 (98%) | 0.387 (0.07–2.04) | 0.249 |
Gene(s) (rsnumber) | Alleles | Infertile (n = 100) | Fertile (n = 100) | OR (95%CI) | p-Value |
---|---|---|---|---|---|
FVL (rs6020) | G | 194 (97%) | 199 (99.5%) | 1Reference | 1Reference |
A | 06 (03%) | 01 (0.5%) | 6.155 (0.73–51.59) | 0.056 | |
PT/FII (rs20210) | G | 192 (96%) | 198 (99%) | 1Reference | 1Reference |
A | 08 (04%) | 02 (01%) | 4.125 (0.86–19.67) | 0.054 | |
MTHFR (rs1801133) | C | 169 (84.5%) | 170 (85%) | 1Reference | 1Reference |
T | 31 (15.5%) | 30 (15%) | 1.039 (0.60–1.79) | 0.889 |
Covariates | R-Value | Adjusted R-Square Value | Standardized β-Coefficient for rs6020 | Standardized β-Coefficient for rs20210 | Standardized β-Coefficient for rs1801133 | F | p-Value |
---|---|---|---|---|---|---|---|
Age (years) | 0.211 | 0.015 | −0.177 | −0.052 | −0.109 | 1.495 | 0.221 |
Weight (kg) | 0.153 | −0.007 | −0.130 | 0.014 | −0.077 | 0.765 | 0.516 |
BMI (kg/m2) | 0.089 | −0.023 | −0.012 | −0.001 | −0.088 | 0.254 | 0.858 |
FSH (IU/mL) | 0.135 | −0.013 | 0.065 | −0.048 | −0.108 | 0.593 | 0.621 |
LH (IU/mL) | 0.165 | −0.003 | −0.033 | −0.076 | 0.142 | 0.897 | 0.446 |
LH/FSH ratio | 0.199 | 0.010 | −0.077 | −0.022 | 0.183 | 1.324 | 0.271 |
TSH (IU/mL) | 0.137 | −0.012 | 0.010 | 0.028 | 0.134 | 0.611 | 0.610 |
Covariates | rs6020 | rs20210 | rs1801133 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GG = 95 | GA = 04 | AA = 01 | p-Value | GG = 93 | GA = 06 | AA = 01 | p-Value | CC = 74 | CT = 21 | TT = 05 | p-Value | |
Age (years) | 31.00 ± 5.40 | 27.25 ± 2.06 | 25.00 ± 0.00 | 0.218 | 30.85 ± 5.37 | 30.00 ± 6.03 | 30.00 ± 0.0 | 0.922 | 31.09 ± 5.27 | 30.19 ± 5.56 | 28.80 ± 6.42 | 0.557 |
Weight (kg) | 74.32 ± 10.87 | 63.15 ± 18.22 | 75.00 ± 0.00 | 0.151 | 73.87 ± 11.18 | 72.85 ± 14.37 | 81.00 ± 0.00 | 0.802 | 74.69 ± 10.90 | 70.52 ± 12.68 | 76.04 ± 9.88 | 0.299 |
BMI (kg/m2) | 29.47 ± 4.23 | 26.63 ± 8.27 | 34.20 ± 0.00 | 0.253 | 29.42 ± 4.44 | 28.95 ± 4.98 | 30.90 ± 0.00 | 0.916 | 29.73 ± 4.26 | 28.15 ± 4.99 | 29.88 ± 4.44 | 0.346 |
FSH (IU/mL) | 7.32 ± 0.78 | 7.65 ± 0.51 | 7.40 ± 0.00 | 0.703 | 7.34 ± 0.79 | 7.32 ± 0.43 | 6.80 ± 0.00 | 0.240 | 7.39 ± 0.78 | 7.17 ± 0.75 | 7.22 ± 0.74 | 0.488 |
LH (IU/mL) | 5.58 ± 0.46 | 5.33 ± 0.49 | 5.90 ± 0.00 | 0.444 | 5.59 ± 0.47 | 5.35 ± 0.24 | 5.70 ± 0.00 | 0.800 | 5.56 ± 0.46 | 5.53 ± 0.28 | 6.04 ± 0.81 | 0.064 |
LH/FSH ratio | 0.77 ± 0.10 | 0.70 ± 0.10 | 0.80 ± 0.00 | 0.373 | 0.77 ± 0.10 | 0.73 ± 0.06 | 0.84 ± 0.00 | 0.482 | 0.76 ± 0.10 | 0.78 ± 0.09 | 0.84 ± 0.15 | 0.194 |
TSH (IU/mL) | 2.50 ± 0.31 | 2.45 ± 0.34 | 2.63 ± 0.00 | 0.870 | 2.50 ± 0.31 | 2.39 ± 0.22 | 2.94 ± 0.00 | 0.246 | 2.47 ± 0.30 | 2.55 ± 0.35 | 2.61 ± 0.31 | 0.407 |
Genotypes | Infertile (n = 100) | Fertile (n = 100) | OR (95%CI) | p-Value |
---|---|---|---|---|
GG/GG/CC genotypes | 262 (87.33%) | 269 (89.67%) | 1Reference | 1Reference |
GA/GA/CT genotypes | 31 (10.33%) | 29 (9.67%) | OR-1.098 (95%CI: 0.64–1.87) | 0.732 |
AA/AA/TT genotypes | 07 (2.33%) | 02 (0.67%) | OR-3.594 (95%CI: 0.73–17.46) | 0.090 |
GA/GA/CT + AA/AA/TT vs. GG/GG/CC | 38 (12.67%) | 31 (10.33%) | OR-1.259 (95%CI: 0.76–2.08) | 0.374 |
AA/AA/TT + GG/GG/CC vs. GA/GA/CT | 269 (89.67%) | 225 (75%) | OR-1.077 (95%CI: 0.63–1.83) | 0.785 |
GG/GG/CC + GA/GA/CT vs. AA/AA/TT | 293 (97.67%) | 274 (91.33%) | OR-3.972 (95%CI: 1.69–9.29) | 0.0006 * |
G/G/C alleles | 555 (92.5%) | 567 (94.5%) | 1Reference | 1Reference |
A/A/T alleles | 45 (7.5%) | 33 (5.5%) | OR-1.393 (95%CI: 0.87–2.21) | 0.160 |
Model No. | Best Combinations | Training Accuracy | Testing Accuracy | CVC | Training Sensitivity | Training Specificity | ꭓ2 | OR (95%CI) | p-Value | F-Measure | Kappa |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | G20210A | 0.5278 | 0.495 | 6/10 | 0.8 | 0.2668 | 1.118 | 1.454 (95%CI: 0.72–2.91) | 0.2903 | 0.6316 | 0.0667 |
2 | G20210A + C677T | 0.5511 | 0.515 | 7/10 | 0.1222 | 0.9778 | 6.715 | 6.126 (95%CI: 1.31–28.49) | 0.0096 | 0.2136 | 0.1 |
3 | G20210A + G1691A + C677T | 0.5700 | 0.565 | 10/10 | 0.1778 | 0.9667 | 9.944 | 6.270 (95%CI: 1.75–22.36) | 0.0016 | 0.2936 | 0.1444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alageel, A.A.; Alhaizan, M.A.; Neyazi, S.M.; Al-Hakeem, M.M.; Ali Khan, I. Molecular Screening of the Thrombophilic Variants Performed at G-141 Laboratory among Saudi Infertile Women. Appl. Sci. 2023, 13, 13028. https://doi.org/10.3390/app132413028
Alageel AA, Alhaizan MA, Neyazi SM, Al-Hakeem MM, Ali Khan I. Molecular Screening of the Thrombophilic Variants Performed at G-141 Laboratory among Saudi Infertile Women. Applied Sciences. 2023; 13(24):13028. https://doi.org/10.3390/app132413028
Chicago/Turabian StyleAlageel, Arwa A., Maysoon Abdulhadi Alhaizan, Salwa Mohamed Neyazi, Malak Mohammed Al-Hakeem, and Imran Ali Khan. 2023. "Molecular Screening of the Thrombophilic Variants Performed at G-141 Laboratory among Saudi Infertile Women" Applied Sciences 13, no. 24: 13028. https://doi.org/10.3390/app132413028
APA StyleAlageel, A. A., Alhaizan, M. A., Neyazi, S. M., Al-Hakeem, M. M., & Ali Khan, I. (2023). Molecular Screening of the Thrombophilic Variants Performed at G-141 Laboratory among Saudi Infertile Women. Applied Sciences, 13(24), 13028. https://doi.org/10.3390/app132413028