Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators
Abstract
:1. Introduction
2. Nanomaterials in the Construction Sector
2.1. Overview
2.2. Impact on Human Health and on the Environment
3. Keyword Bibliometric Network: Nanomaterials
4. Critical Discussion of Environmental and Economic Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornyak, G.; Tibbals, H.; Dutta, J.; Moore, J. Introduction to Nanoscience and Nanotechnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-4779-0. [Google Scholar]
- European Chemicals Agency (ECHA). Study of the EU Market for Nanomaterials, Including Substances, Uses, Volumes and Key Operators; European Chemicals Agency (ECHA): Helsinki, Finland, 2022. [Google Scholar]
- Jones, W.; Gibb, A.; Goodier, C.; Bust, P. Managing the Unknown—Addressing the Potential Health Risks of Nanomaterials in the Built Environment. Constr. Manag. Econ. 2017, 35, 122–136. [Google Scholar] [CrossRef]
- Falinski, M.M.; Plata, D.L.; Chopra, S.S.; Theis, T.L.; Gilbertson, L.M.; Zimmerman, J.B. A Framework for Sustainable Nanomaterial Selection and Design Based on Performance, Hazard, and Economic Considerations. Nat. Nanotechnol. 2018, 13, 708–714. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in Silica Aerogel-Containing Materials for Buildings’ Thermal Insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The Effect of Nanomaterials on Properties of Geopolymers Derived from Industrial By-Products: A State-of-the-Art Review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- European Comission. Communication from the Comission to the European Parliament, Second Regulatory Review on Nanomaterials; Council and the European Economic and Social Committee: Brussels, Belgium, 2012. [Google Scholar]
- ISO/TS 80004-1:2010; Nanotechnologies—Vocabulary—Part 1: Core Terms. International Organization for Standardization ISO: Geneva, Switzerland, 2010.
- Oberdörster, G.; Stone, V.; Donaldson, K. Toxicology of Nanoparticles: A Historical Perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Jones, W.; Gibb, A.; Goodier, C.; Bust, P.; Song, M.; Jin, J. Nanomaterials in Construction-What Is Being Used, and Where? Proc. Inst. Civil Eng. Constr. Mater. 2019, 172, 49–62. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J.; Alnuaimi, N.A. Recent Advancements in the Nanomaterial Application in Concrete and Its Ecological Impact. Materials 2021, 14, 6387. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors. In Nanomaterials for Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–74. [Google Scholar]
- Papadaki, D.; Kiriakidis, G.; Tsoutsos, T. Applications of Nanotechnology in Construction Industry. In Fundamentals of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–370. [Google Scholar]
- Hund-Rinke, K.; Nicke, C.; Kühnel, D. Considerations about the Relationship of Nanomaterial’s Physical-Chemical Properties and Aquatic Toxicity for the Purpose of Grouping. TEXTE 102/2017; Umweltbundesamt: Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Saeli, M.; Tobaldi, D.M.; Rozman, N.; Škapin, A.S.; Labrincha, J.A.; Pullar, R.C. Photocatalytic Nano-Composite Architectural Lime Mortar for Degradation of Urban Pollutants under Solar and Visible (Interior) Light. Constr. Build. Mater. 2017, 152, 206–213. [Google Scholar] [CrossRef]
- Hanus, M.J.; Harris, A.T. Nanotechnology Innovations for the Construction Industry. Prog. Mater. Sci. 2013, 58, 1056–1102. [Google Scholar] [CrossRef]
- Borm, P.J.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; et al. The Potential Risks of Nanomaterials: A Review Carried out for ECETOC. Part. Fibre Toxicol. 2006, 3, 11. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Naji, M.; Dithinde, M.; Firoozi, A.A. A Review: Influence of Potential Nanomaterials for Civil Engineering Projects. Iran. J. Sci. Technol. 2021, 45, 2057–2068. [Google Scholar] [CrossRef]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I.; de Fátima Júlio, M.; Pedroso, M. Economic Assessment of the Production of Subcritically Dried Silica-Based Aerogels. J. Non Cryst. Solids 2019, 516, 26–34. [Google Scholar] [CrossRef]
- Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T. Aerogel Commercialization: Technology, Markets and Costs. J. Non Cryst. Solids 1995, 186, 372–379. [Google Scholar] [CrossRef]
- Linhares, T.; Pessoa De Amorim, M.T.; Durães, L. Silica Aerogel Composites with Embedded Fibres: A Review on Their Preparation, Properties and Applications. J. Mater. Chem. A Mater. 2019, 7, 22768–22802. [Google Scholar] [CrossRef]
- Isigonis, P.; Afantitis, A.; Antunes, D.; Bartonova, A.; Beitollahi, A.; Bohmer, N.; Bouman, E.; Chaudhry, Q.; Cimpan, M.R.; Cimpan, E.; et al. Risk Governance of Emerging Technologies Demonstrated in Terms of Its Applicability to Nanomaterials. Small 2020, 16, e2003303. [Google Scholar] [CrossRef]
- Wigger, H.; Kägi, R.; Wiesner, M.; Nowack, B. Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Rev. Geophys. 2020, 58. [Google Scholar] [CrossRef]
- Hansen, S.F.; Hjorth, R.; Skjolding, L.M.; Bowman, D.M.; Maynard, A.; Baun, A. A Critical Analysis of the Environmental Dossiers from the OECD Sponsorship Programme for the Testing of Manufactured Nanomaterials. Environ. Sci. Nano 2017, 4, 282–291. [Google Scholar] [CrossRef]
- OECD. OECD Chemical Studies Show Way Forward for Nanomaterial Safety. Available online: https://www.oecd.org/chemicalsafety/nanosafety/news-nanomaterial-safety.htm (accessed on 1 May 2022).
- Stoycheva, S.; Zabeo, A.; Pizzol, L.; Hristozov, D. Socio-Economic Life Cycle-Based Framework for Safe and Sustainable Design of Engineered Nanomaterials and Nano-Enabled Products. Sustainability 2022, 14, 5734. [Google Scholar] [CrossRef]
- Menegaldo, M.; Livieri, A.; Isigonis, P.; Pizzol, L.; Tyrolt, A.; Zabeo, A.; Semenzin, E.; Marcomini, A. Environmental and Economic Sustainability in Cultural Heritage Preventive Conservation: LCA and LCC of Innovative Nanotechnology-Based Products. Clean. Environ. Syst. 2023, 9, 100124. [Google Scholar] [CrossRef]
- Shakrani, S.A.; Ayob, A.; Rahim, M.A.A. A Review of Nanoclay Applications in the Pervious Concrete Pavement. AIP Conf. Proc. 2017, 1885, 020049. [Google Scholar]
- Borsoi, G. Nanostructured Lime-Based Materials for the Conservation of Calcareous Substrates. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Utsev, T.; Tiza, T.M.; Mogbo, O.; Kumar Singh, S.; Chakravarti, A.; Shaik, N.; Pal Singh, S. Application of Nanomaterials in Civil Engineering. Mater. Today Proc. 2022, 62, 5140–5146. [Google Scholar] [CrossRef]
- Hou, P.-X.; Liu, C.; Cheng, H.-M. Field Emission from Carbon Nanotubes. In Nanomaterials Handbook, 2nd ed.; Gogotsi, Y., Ed.; Series: Advanced Materials and Technologies Series; CRC Press: Boca Raton, FL, USA; Taylor & Francis: New York, NY, USA, 2017; ISBN 9781315371795. [Google Scholar]
- Giovannelli, A.; Di Maio, D.; Scarpa, F. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties. Materials 2017, 10, 1222. [Google Scholar] [CrossRef] [PubMed]
- Ismael, R.; Silva, J.V.; Carmo, R.N.F.; Soldado, E.; Lourenço, C.; Costa, H.; Júlio, E. Influence of Nano-SiO2 and Nano-Al2O3 Additions on Steel-to-Concrete Bonding. Constr. Build. Mater. 2016, 125, 1080–1092. [Google Scholar] [CrossRef]
- Palla, R.; Karade, S.R.; Mishra, G.; Sharma, U.; Singh, L.P. High Strength Sustainable Concrete Using Silica Nanoparticles. Constr. Build. Mater. 2017, 138, 285–295. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Li, D.; Li, G. Effect of Nano-SiO2/PVA Fiber on Sulfate Resistance of Cement Mortar Containing High-Volume Fly Ash. Nanomaterials 2022, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [Google Scholar] [CrossRef]
- Saleh, H.M.; El-Saied, F.A.; Salaheldin, T.A.; Hezo, A.A. Macro- and Nanomaterials for Improvement of Mechanical and Physical Properties of Cement Kiln Dust-Based Composite Materials. J. Clean. Prod. 2018, 204, 532–541. [Google Scholar] [CrossRef]
- Varisha; Zaheer, M.M.; Hasan, S.D. Mechanical and Durability Performance of Carbon Nanotubes (CNTs) and Nanosilica (NS) Admixed Cement Mortar. Mater. Today Proc. 2021, 42, 1422–1431. [Google Scholar] [CrossRef]
- Gonzalez, M.; Tighe, S.L.; Hui, K.; Rahman, S.; de Oliveira Lima, A. Evaluation of Freeze/Thaw and Scaling Response of Nanoconcrete for Portland Cement Concrete (PCC) Pavements. Constr. Build. Mater. 2016, 120, 465–472. [Google Scholar] [CrossRef]
- Narasimman, K.; Jassam, T.M.; Velayutham, T.S.; Yaseer, M.M.M.; Ruzaimah, R. The Synergic Influence of Carbon Nanotube and Nanosilica on the Compressive Strength of Lightweight Concrete. J. Build. Eng. 2020, 32, 101719. [Google Scholar] [CrossRef]
- Atmaca, N.; Abbas, M.L.; Atmaca, A. Effects of Nano-Silica on the Gas Permeability, Durability and Mechanical Properties of High-Strength Lightweight Concrete. Constr. Build. Mater. 2017, 147, 17–26. [Google Scholar] [CrossRef]
- Silva, J.V.; Ismael, R.; Carmo, R.N.F.; Lourenço, C.; Soldado, E.; Costa, H.; Júlio, E. Influence of Nano-SiO2 and Nano-Al2O3 Additions on the Shear Strength and the Bending Moment Capacity of RC Beams. Constr. Build. Mater. 2016, 123, 35–46. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, D.; Dong, Q.; Li, M.; Liu, A.; Wang, X.; Wang, S.; Liu, Q. Anticorrosive Behavior of Epoxy Coating Modified with Hydrophobic Nano-Silica on Phosphatized Carbon Steel. Prog. Org. Coat. 2021, 151, 106051. [Google Scholar] [CrossRef]
- Ghasemi, M.; Morteza Marandi, S.; Tahmooresi, M.; Jalalkamali, R.; Author, C.; Kamali, R.J.; Taherzade, R. Modification of Stone Matrix Asphalt with Nano-SiO2. J. Basic Appl. Sci. Res. 2012, 2, 1338–1344. [Google Scholar]
- Amin, G.M.; Esmail, A. Application of Nano Silica to Improve Self-Healing of Asphalt Mixes. J. Cent. South Univ. 2017, 24, 1019–1026. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.; Nazari, A.; Khalaj, G. Effects of Fe2O3 Nanoparticles on Water Permeability and Strength Assessments of High Strength Self-Compacting Concrete. J. Mater. Sci. Technol. 2012, 28, 73–82. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S.; Riahi, S.; Fatemeh Shamekhi, S.; Khademno, A. Benefits of Fe2O3 Nanoparticles in Concrete Mixing Matrix. J. Am. Sci. 2010, 6, 102–106. [Google Scholar]
- Joshaghani, A.; Balapour, M.; Mashhadian, M.; Ozbakkaloglu, T. Effects of Nano-TiO2, Nano-Al2O3, and Nano-Fe2O3 on Rheology, Mechanical and Durability Properties of Self-Consolidating Concrete (SCC): An Experimental Study. Constr. Build. Mater. 2020, 245, 118444. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Smart Cement Modified with Iron Oxide Nanoparticles to Enhance the Piezoresistive Behavior and Compressive Strength for Oil Well Applications. Smart Mater. Struct. 2015, 24, 125020. [Google Scholar] [CrossRef]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Guo, L.; Yuan, W.; Lu, Z.; Li, C.M. Polymer/Nanosilver Composite Coatings for Antibacterial Applications. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 69–83. [Google Scholar] [CrossRef]
- Cui, J.; Shao, Y.; Zhang, H.; Zhang, H.; Zhu, J. Development of a Novel Silver Ions-Nanosilver Complementary Composite as Antimicrobial Additive for Powder Coating. Chem. Eng. J. 2021, 420, 127633. [Google Scholar] [CrossRef]
- Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil. Nat. Mater. 2008, 7, 236–241. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Ou, J. Abrasion Resistance of Concrete Containing Nano-Particles for Pavement. Wear 2006, 260, 1262–1266. [Google Scholar] [CrossRef]
- Yu, X.; Kang, S.; Long, X. Compressive Strength of Concrete Reinforced by TiO2 Nanoparticles. AIP Conf. Proc. 2018, 2036, 030006. [Google Scholar]
- Paz, Y.; Luo, Z.; Rabenberg, L.; Heller, A. Photooxidative Self-Cleaning Transparent Titanium Dioxide Films on Glass. J. Mater. Res. 1995, 10, 2842–2848. [Google Scholar] [CrossRef]
- Allen, N.S.; McIntyre, R.; Kerrod, J.M.; Hill, C.; Edge, M. Photo-Stabilisation and UV Blocking Efficacy of Coated Macro and Nano-Rutile Titanium Dioxide Particles in Paints and Coatings. J. Polym. Environ. 2018, 26, 4243–4257. [Google Scholar] [CrossRef]
- van Broekhuizen, P.; van Broekhuizen, F.; Cornelissen, R.; Reijnders, L. Use of Nanomaterials in the European Construction Industry and Some Occupational Health Aspects Thereof. J. Nanoparticle Res. 2011, 13, 447–462. [Google Scholar] [CrossRef]
- Otero, J.; Starinieri, V.; Charola, A.E. Nanolime for the Consolidation of Lime Mortars: A Comparison of Three Available Products. Constr. Build. Mater. 2018, 181, 394–407. [Google Scholar] [CrossRef]
- Masi, G.; Sassoni, E. Air Lime Mortar Consolidation by Nanolimes and Ammonium Phosphate: Compatibility, Effectiveness and Durability. Constr. Build. Mater. 2021, 299, 123999. [Google Scholar] [CrossRef]
- Normand, L.; Duchêne, S.; Vergès-Belmin, V.; Dandrel, C.; Giovannacci, D.; Nowik, W. Comparative in Situ Study of Nanolime, Ethyl Silicate and Acrylic Resin for Consolidation of Wall Paintings with High Water and Salt Contents at the Chapter Hall of Chartres Cathedral. Int. J. Archit. Herit. 2020, 14, 1120–1133. [Google Scholar] [CrossRef]
- Odgers, D. Nanolime: A Practical Guide to Its Use for Consolidating Weathered Limestone. Historic England Guidance; Liverpool University Press: Liverpool, UK, 2017. [Google Scholar]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Nanotechnologies in the Conservation of Cultural Heritage. A Compendium of Materials and Techniques, 1st ed.; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9303-2. [Google Scholar]
- Borsoi, G.; Santos Silva, A.; Menezes, P.; Candeias, A.; Mirão, J. Analytical Characterization of Ancient Mortars from the Archaeological Roman Site of Pisões (Beja, Portugal). Constr. Build. Mater. 2019, 204, 597–608. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Evaluation of the Effectiveness and Compatibility of Nanolime Consolidants with Improved Properties. Constr. Build. Mater. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- García-Vera, V.E.; Tenza-Abril, A.J.; Solak, A.M.; Lanzón, M. Calcium Hydroxide Nanoparticles Coatings Applied on Cultural Heritage Materials: Their Influence on Physical Characteristics of Earthen Plasters. Appl. Surf. Sci. 2020, 504, 144195. [Google Scholar] [CrossRef]
- Jang, J.; Matero, F.G. Performance Evaluation of Commercial Nanolime as a Consolidant for Friable Lime-Based Plaster. J. Am. Inst. Conserv. 2018, 57, 95–111. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Deacidification of Paper, Canvas and Wood. In Nanotechnologies in the Conservation of Cultural Heritage; Springer Netherlands: Dordrecht, The Netherlands, 2015; pp. 117–144. [Google Scholar]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid. Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef]
- Girginova, P.I.; Galacho, C.; Veiga, R.; Santos Silva, A.; Candeias, A. Study of Mechanical Properties of Alkaline Earth Hydroxide Nanoconsolidants for Lime Mortars. Constr. Build. Mater. 2020, 236, 117520. [Google Scholar] [CrossRef]
- Karozou, A.; Pavlidou, E.; Stefanidou, M. Enhancing Properties of Clay Mortars Using Nano-Additives. Solid State Phenom. 2019, 286, 145–155. [Google Scholar] [CrossRef]
- Hassan, A.; Elkady, H.; Shaaban, I.G. Effect of Adding Carbon Nanotubes on Corrosion Rates and Steel-Concrete Bond. Sci. Rep. 2019, 9, 6285. [Google Scholar] [CrossRef]
- Sharma, S.K.; Ali, K. (Eds.) Solar Cells, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-36353-6. [Google Scholar]
- Chiranjiakumari Devi, S.; Ahmad Khan, R. Influence of Graphene Oxide on Sulfate Attack and Carbonation of Concrete Containing Recycled Concrete Aggregate. Constr. Build. Mater. 2020, 250, 118883. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z. The Effect of Graphene Oxide on the Mechanical Properties, Impermeability and Corrosion Resistance of Cement Mortar Containing Mineral Admixtures. Constr. Build. Mater. 2021, 288, 123059. [Google Scholar] [CrossRef]
- Yu, L.; Wu, R. Using Graphene Oxide to Improve the Properties of Ultra-High-Performance Concrete with Fine Recycled Aggregate. Constr. Build. Mater. 2020, 259, 120657. [Google Scholar] [CrossRef]
- Liu, C.; Hunag, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z.; Yang, B. Studies on Mechanical Properties and Durability of Steel Fiber Reinforced Concrete Incorporating Graphene Oxide. Cem. Concr. Compos. 2022, 130, 104508. [Google Scholar] [CrossRef]
- Jena, G.; Anandkumar, B.; Vanithakumari, S.C.; George, R.P.; Philip, J.; Amarendra, G. Graphene Oxide-Chitosan-Silver Composite Coating on Cu-Ni Alloy with Enhanced Anticorrosive and Antibacterial Properties Suitable for Marine Applications. Prog. Org. Coat. 2020, 139, 105444. [Google Scholar] [CrossRef]
- Arun, T.; Verma, S.K.; Panda, P.K.; Joseyphus, R.J.; Jha, E.; Akbari-Fakhrabadi, A.; Sengupta, P.; Ray, D.K.; Benitha, V.S.; Jeyasubramanyan, K.; et al. Facile Synthesized Novel Hybrid Graphene Oxide/Cobalt Ferrite Magnetic Nanoparticles Based Surface Coating Material Inhibit Bacterial Secretion Pathway for Antibacterial Effect. Mater. Sci. Eng. C 2019, 104, 109932. [Google Scholar] [CrossRef]
- Al-Jethelah, M.; Tasnim, S.H.; Mahmud, S.; Dutta, A. Nano-PCM Filled Energy Storage System for Solar-Thermal Applications. Renew. Energy 2018, 126, 137–155. [Google Scholar] [CrossRef]
- Biswas, K.; Lu, J.; Soroushian, P.; Shrestha, S. Combined Experimental and Numerical Evaluation of a Prototype Nano-PCM Enhanced Wallboard. Appl. Energy 2014, 131, 517–529. [Google Scholar] [CrossRef]
- Li, D.; Ma, Y.; Zhang, S.; Yang, R.; Zhang, C.; Liu, C. Photothermal and Energy Performance of an Innovative Roof Based on Silica Aerogel-PCM Glazing Systems. Energy Convers. Manag. 2022, 262, 115567. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Ilharco, L. Physical, Mechanical, and Microstructural Characterisation of an Innovative Thermal Insulating Render Incorporating Silica Aerogel. Energy Build. 2020, 211, 109793. [Google Scholar] [CrossRef]
- Soares, A.; de Fátima Júlio, M.; Flores-Colen, I.; Ilharco, L.M.; de Brito, J. EN 998-1 Performance Requirements for Thermal Aerogel-Based Renders. Constr. Build. Mater. 2018, 179, 453–460. [Google Scholar] [CrossRef]
- Gomes, M.G.; Flores-Colen, I.; da Silva, F.; Pedroso, M. Thermal Conductivity Measurement of Thermal Insulating Mortars with EPS and Silica Aerogel by Steady-State and Transient Methods. Constr. Build. Mater. 2018, 172, 696–705. [Google Scholar] [CrossRef]
- Talebi, Z.; Soltani, P.; Habibi, N.; Latifi, F. Silica Aerogel/Polyester Blankets for Efficient Sound Absorption in Buildings. Constr. Build. Mater. 2019, 220, 76–89. [Google Scholar] [CrossRef]
- Nocentini, K.; Achard, P.; Biwole, P.; Stipetic, M. Hygro-Thermal Properties of Silica Aerogel Blankets Dried Using Microwave Heating for Building Thermal Insulation. Energy Build. 2018, 158, 14–22. [Google Scholar] [CrossRef]
- Lee, K.-J.; Choe, Y.-J.; Kim, Y.H.; Lee, J.K.; Hwang, H.-J. Fabrication of Silica Aerogel Composite Blankets from an Aqueous Silica Aerogel Slurry. Ceram. Int. 2018, 44, 2204–2208. [Google Scholar] [CrossRef]
- Berardi, U. Development of Glazing Systems with Silica Aerogel. Energy Procedia 2015, 78, 394–399. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E. Glazing Systems with Silica Aerogel for Energy Savings in Buildings. Appl. Energy 2012, 98, 396–403. [Google Scholar] [CrossRef]
- Zinzi, M.; Rossi, G.; Anderson, A.M.; Carroll, M.K.; Moretti, E.; Buratti, C. Optical and Visual Experimental Characterization of a Glazing System with Monolithic Silica Aerogel. Solar Energy 2019, 183, 30–39. [Google Scholar] [CrossRef]
- Wang, J.; Zou, Z.; Geng, G. Construction of Superhydrophobic Copper Film on Stainless Steel Mesh by a Simple Liquid Phase Chemical Reduction for Efficient Oil/Water Separation. Appl. Surf. Sci. 2019, 486, 394–404. [Google Scholar] [CrossRef]
- Ali, S.I.A.; Ismail, A.; Karim, M.R.; Yusoff, N.I.; Al-Mansob, R.A.; Aburkaba, E. Performance Evaluation of Al2O3 Nanoparticle-Modified Asphalt Binder. Road Mater. Pavement Des. 2017, 18, 1251–1268. [Google Scholar] [CrossRef]
- Chanda, S.; Bajwa, D.S. A Review of Current Physical Techniques for Dispersion of Cellulose Nanomaterials in Polymer Matrices. Rev. Adv. Mater. Sci. 2021, 60, 325–341. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Ribeiro de Souza, L.; Litina, C.; Al-Tabbaa, A. Investigation of the Dispersion of Multi-Layer Graphene Nanoplatelets in Cement Composites Using Different Superplasticiser Treatments. Constr. Build. Mater. 2021, 293, 123543. [Google Scholar] [CrossRef]
- Ali, R.A.; Kharofa, O.H. The Impact of Nanomaterials on Sustainable Architectural Applications Smart Concrete as a Model. Mater. Today Proc. 2021, 42, 3010–3017. [Google Scholar] [CrossRef]
- Gamal, H.A.; El-Feky, M.S.; Alharbi, Y.R.; Abadel, A.A.; Kohail, M. Enhancement of the Concrete Durability with Hybrid Nano Materials. Sustainability 2021, 13, 1373. [Google Scholar] [CrossRef]
- Kant, R.; Sundriyal, P. Carbon-Based Nanomaterials for Perovskite Solar Cells: A Review. In Carbon Nanostructures; AIP Publishing: Melville, NY, USA, 2021; pp. 1–32. [Google Scholar]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef]
- Ajith, S.; Arumugaprabu, V. Environmental and Occupational Health Hazards of Nanomaterials in Construction Sites. In Handbook of Consumer Nanoproducts; Springer: Singapore, 2021; pp. 1–12. [Google Scholar]
- Singh, D.; Marrocco, A.; Wohlleben, W.; Park, H.-R.; Diwadkar, A.R.; Himes, B.E.; Lu, Q.; Christiani, D.C.; Demokritou, P. Release of Particulate Matter from Nano-Enabled Building Materials (NEBMs) across Their Lifecycle: Potential Occupational Health and Safety Implications. J. Hazard. Mater. 2022, 422, 126771. [Google Scholar] [CrossRef]
- Santhosh, G.; Nayaka, G.P. Nanoparticles in Construction Industry and Their Toxicity. In Ecological and Health Effects of Building Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 133–146. [Google Scholar]
- Gkika, D.A.; Vordos, N.; Nolan, J.W.; Mitropoulos, A.C.; Vansant, E.F.; Cool, P.; Braet, J. Price Tag in Nanomaterials? J. Nanoparticle Res. 2017, 19, 177. [Google Scholar] [CrossRef]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; de Brito, J.; Kurad, R.; Demertzi, M. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. Materials 2017, 10, 649. [Google Scholar] [CrossRef]
- López-Alonso, M.; Díaz-Soler, B.; Martínez-Rojas, M.; Fito-López, C.; Martínez-Aires, M.D. Management of Occupational Risk Prevention of Nanomaterials Manufactured in Construction Sites in the EU. Int. J. Environ. Res. Public Health 2020, 17, 9211. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Pugh, K.; Gupta, A.; Ingole, S. Nanoparticles in the Environment: Occurrence, Distribution, and Risks. J. Hazard. Toxic Radioact. Waste 2015, 19, 04014039. [Google Scholar] [CrossRef]
- Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of Nanomaterials in the Environment. Environ. Sci. Technol. 2012, 46, 6893–6899. [Google Scholar] [CrossRef]
- Arsenov, D.; Beljin, J.; Jović, D.; Maletić, S.; Borišev, M.; Borišev, I. Nanomaterials as Endorsed Environmental Remediation Tools for the next Generation: Eco-Safety and Sustainability. J. Geochem. Explor. 2023, 253, 107283. [Google Scholar] [CrossRef]
- Corsi, I.; Venditti, I.; Trotta, F.; Punta, C. Environmental Safety of Nanotechnologies: The Eco-Design of Manufactured Nanomaterials for Environmental Remediation. Sci. Total Environ. 2023, 864, 161181. [Google Scholar] [CrossRef]
- Handy, R.D.; Shaw, B.J. Toxic Effects of Nanoparticles and Nanomaterials: Implications for Public Health, Risk Assessment and the Public Perception of Nanotechnology. Health Risk Soc. 2007, 9, 125–144. [Google Scholar] [CrossRef]
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano 2010, 4, 3580–3590. [Google Scholar] [CrossRef]
- Hallock, M.F.; Greenley, P.; DiBerardinis, L.; Kallin, D. Potential Risks of Nanomaterials and How to Safely Handle Materials of Uncertain Toxicity. J. Chem. Health Saf. 2009, 16, 16–23. [Google Scholar] [CrossRef]
- Lynch, I.; Weiss, C.; Valsami-Jones, E. A Strategy for Grouping of Nanomaterials Based on Key Physico-Chemical Descriptors as a Basis for Safer-by-Design NMs. Nano Today 2014, 9, 266–270. [Google Scholar] [CrossRef]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Keller, A.A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environ. Sci. Technol. Lett. 2014, 1, 65–70. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sun, T.; Nowack, B. Environmental Concentrations of Engineered Nanomaterials: Review of Modeling and Analytical Studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef]
- Hincapié, I.; Caballero-Guzman, A.; Hiltbrunner, D.; Nowack, B. Use of Engineered Nanomaterials in the Construction Industry with Specific Emphasis on Paints and Their Flows in Construction and Demolition Waste in Switzerland. Waste Manag. 2015, 43, 398–406. [Google Scholar] [CrossRef]
- OECD. Nanomaterials in Waste Streams: Current Knowledge on Risks and Impacts; OECD Publishing: Paris, France, 2016; ISBN 9789264240612. [Google Scholar]
- EUON (European Union Observatory for Nanomaterials). How Nanomaterials Change in the Environment. Available online: https://euon.echa.europa.eu/how-nanomaterials-change-in-the-environment (accessed on 2 January 2023).
- Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health Part C 2009, 27, 1–35. [Google Scholar] [CrossRef]
- Vareda, J.P.; García-González, C.A.; Valente, A.J.M.; Simón-Vázquez, R.; Stipetic, M.; Durães, L. Insights on Toxicity, Safe Handling and Disposal of Silica Aerogels and Amorphous Nanoparticles. Environ. Sci. Nano 2021, 8, 1177–1195. [Google Scholar] [CrossRef]
- Rücker, C.; Kümmerer, K. Environmental Chemistry of Organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef]
- Karatum, O.; Bhuiya, M.M.H.; Carroll, M.K.; Anderson, A.M.; Plata, D.L. Life Cycle Assessment of Aerogel Manufacture on Small and Large Scales: Weighing the Use of Advanced Materials in Oil Spill Remediation. J. Ind. Ecol. 2018, 22, 1365–1377. [Google Scholar] [CrossRef]
- Arvidsson, R.; Molander, S.; Sandén, B.A. Particle Flow Analysis. J. Ind. Ecol. 2012, 16, 343–351. [Google Scholar] [CrossRef]
- Buchman, J.T.; Hudson-Smith, N.V.; Landy, K.M.; Haynes, C.L. Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. Acc. Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef]
- Gupta, D.; Boora, A.; Thakur, A.; Gupta, T.K. Green and Sustainable Synthesis of Nanomaterials: Recent Advancements and Limitations. Environ. Res. 2023, 231, 116316. [Google Scholar] [CrossRef]
- Miernicki, M.; Hofmann, T.; Eisenberger, I.; von der Kammer, F.; Praetorius, A. Legal and Practical Challenges in Classifying Nanomaterials according to Regulatory Definitions. Nat. Nanotechnol. 2019, 14, 208–216. [Google Scholar] [CrossRef]
- EN 15804:2012+A2:2020; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. European Committee for Standardization (CEN): Brussels, Belgium, 2020.
- EN 15643:2021; Sustainability of Construction Works—Framework for Assessment of Buildings and Civil Engineering Works. European Committee for Standardization (CEN): Brussels, Belgium, 2021.
- McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver Nanoparticles in the Environment: Sources, Detection and Ecotoxicology. Sci. Total Environ. 2017, 575, 231–246. [Google Scholar] [CrossRef]
- Walters, C.R.; Pool, E.J.; Somerset, V.S. Ecotoxicity of Silver Nanomaterials in the Aquatic Environment: A Review of Literature and Gaps in Nano-Toxicological Research. J. Environ. Sci. Health Part A 2014, 49, 1588–1601. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A. Toxicity of Nanoparticles of CuO, ZnO and TiO2 to Microalgae Pseudokirchneriella Subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef]
- Joonas, E.; Aruoja, V.; Olli, K.; Kahru, A. Environmental Safety Data on CuO and TiO2 Nanoparticles for Multiple Algal Species in Natural Water: Filling the Data Gaps for Risk Assessment. Sci. Total Environ. 2019, 647, 973–980. [Google Scholar] [CrossRef]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.-C.; Barber, D.S. Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms. Environ. Toxicol. Chem. 2008, 27, 1972. [Google Scholar] [CrossRef]
- Jackson, P.; Jacobsen, N.R.; Baun, A.; Birkedal, R.; Kühnel, D.; Jensen, K.A.; Vogel, U.; Wallin, H. Bioaccumulation and Ecotoxicity of Carbon Nanotubes. Chem. Cent. J. 2013, 7, 154. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and Mechanisms of Action of Titanium Dioxide Nanoparticles in Living Organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef]
- Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon Nanotubes: Evaluation of Toxicity at Biointerfaces. J. Pharm. Anal. 2019, 9, 293–300. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Hosseini Fouladi, M.; Yong, P.V.C.; Chinna, K.; Palanisamy, N.K.; Wong, E.H. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem. Res. Toxicol. 2021, 34, 24–46. [Google Scholar] [CrossRef]
- Chou, C.-C.; Hsiao, H.-Y.; Hong, Q.-S.; Chen, C.-H.; Peng, Y.-W.; Chen, H.-W.; Yang, P.-C. Single-Walled Carbon Nanotubes Can Induce Pulmonary Injury in Mouse Model. Nano Lett. 2008, 8, 437–445. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Assadian, E.; Zarei, M.H.; Gilani, A.G.; Farshin, M.; Degampanah, H.; Pourahmad, J. Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biol. Trace Elem. Res. 2018, 184, 350–357. [Google Scholar] [CrossRef]
- Shah, S.N.; Mo, K.H.; Yap, S.P.; Radwan, M.K.H. Towards an Energy Efficient Cement Composite Incorporating Silica Aerogel: A State of the Art Review. J. Build. Eng. 2021, 44, 103227. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, R.; Wang, T.; An, L.; Ren, S.; Zhou, C. Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel. J. Manuf. Sci. Eng. 2021, 143. [Google Scholar] [CrossRef]
- Inshakova, E.; Inshakova, A.; Goncharov, A. Engineered Nanomaterials for Energy Sector: Market Trends, Modern Applications and Future Prospects. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 032031. [Google Scholar] [CrossRef]
- Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative Toxicity of 24 Manufactured Nanoparticles in Human Alveolar Epithelial and Macrophage Cell Lines. Part. Fibre Toxicol. 2009, 6, 14. [Google Scholar] [CrossRef]
- ÖKOBAUDAT. Sustainable Construction Information Portal. Federal Ministry for Housing Urban Development and Building. Available online: https://www.oekobaudat.de/no_cache/en/database/search/daten/db2.html#bereich2 (accessed on 21 June 2022).
- Abdalla, J.A.; Hawileh, R.A.; Bahurudeen, A.; Jittin; Syed Ahmed Kabeer, K.I.; Thomas, B.S. Influence of Synthesized Nanomaterials in the Strength and Durability of Cementitious Composites. Case Stud. Constr. Mater. 2023, 18, e02197. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef]
- Wernery, J.; Mancebo, F.; Malfait, W.J.; O’Connor, M.; Jelle, B.P. The Economics of Thermal Superinsulation in Buildings. Energy Build. 2021, 253, 111506. [Google Scholar] [CrossRef]
- Pinto, I.; Silvestre, J.D.; de Brito, J.; Júlio, M.F. Environmental Impact of the Subcritical Production of Silica Aerogels. J. Clean. Prod. 2020, 252, 119696. [Google Scholar] [CrossRef]
- Dodd, N.; Donatello, S. Level(s) Indicator 1.2: Life Cycle Global Warming Potential (GWP) User Manual: Overview, Instructions and Guidance (Publication Version 1.0); European Commission: Seville, Spain, 2020. [Google Scholar]
Nanomaterial | Synthesis or Production Method | Applications | Functionality/Improvement | References |
---|---|---|---|---|
Nanosilica | Sol-gel | Mortars, concrete | Abrasion resistance; Acceleration on cement hydration; Concrete-to-steel bonding; Improved freeze–thaw resistance; Mechanical improvement; Pozzolanic activity; Paste–aggregate bonding; Permeability reduction | [33,34,35,36,37,38,39,40,41,42] |
Coatings | Corrosion inhibition efficiency | [43] | ||
Roads, footpaths | Mechanical improvement | [44,45] | ||
Iron oxide | Mechanical milling; electro explosion; laser ablation; sol-gel; atomic condensation; template-assisted | Mortars, concrete | Electrical conductivity; Enhanced ductility; Mechanical improvement; Piezoresistive property; Permeability reduction; Self-sensing | [46,47,48,49] |
Nanosilver | Electro-explosion | Paints, coatings | Biocidal activity | [50,51,52,53] |
Titanium dioxide | Sol-gel; chemical vapor deposition; template-assisted | Mortars, concrete | Abrasion resistance; Acceleration on cement hydration; Increased durability; Mechanical improvement; Self-cleaning | [48,54,55] |
Glass | Anti-fogging; Fouling resistance; Self-cleaning | [56] | ||
Paints, coatings | Antimicrobial; Anti-pollution; Air-purifying surfaces; Coolant; Hydrophobic; UV resistance | [57,58] | ||
Calcium hydroxide and alkoxides | Colloidal; microemulsion; micelle-assisted; solvothermal reaction; sol-gel | Wall paintings | Biocidal activity; De-acidification; Protection of cultural heritage | [59,60,61,62,63,64,65] |
Limestone | ||||
Lime-based mortars | ||||
Renders and plaster | [66,67] | |||
Cellulose-based materials (canvas/wood) | [68] | |||
Magnesium or barium hydroxides | Colloidal; sol solutions | Wall paintings, Lime-based mortars | Biocidal activity; Protection of cultural heritage | [69,70] |
Nanoclay | Mechanical milling | Mortars, concrete | Mechanical improvement | [71] |
Carbon nanotubes | Mechanical milling; laser ablation; chemical vapor deposition; template-assisted | Mortars, concrete | Crack prevention; Concrete-to-steel bonding; Decreased porosity; Mechanical improvement; Self-sensing | [38,40,72] |
Sensors | Health monitoring in construction | [16] | ||
Solar cells | Electrical conductivity | [73] | ||
Graphene oxide | Mechanical milling; chemical vapor deposition | Mortars, concrete | Mechanical improvement | [74,75,76,77] |
Paints, coatings | Biocidal activity; Corrosion inhibition efficiency | [78,79] | ||
Phase change materials | Sol-gel | Building components, thermal insulation materials, wallboards | Thermal resistance | [80,81,82] |
Silica aerogel | Sol-gel | Mortars, concrete, renders | Decreased thermal conductivity | [83,84,85] |
Blanket | Acoustic insulation; Thermal resistance | [86,87,88] | ||
Glazing, window | Dispersion of the incident light | [82,89,90,91] | ||
Nano copper | Colloidal methods | Steel mesh | Corrosion inhibition efficiency; Formability; Weldability | [92] |
Aluminum oxide | Sol-gel | Asphalt concrete | Increased serviceability | [93] |
Concrete | Acceleration on cement hydration; Mechanical improvement | [33,42,48] |
Impact Category | Indicator Name | Indicators Acronym | Functional Unit | Referenced * NM | Refs. | |
---|---|---|---|---|---|---|
Environmental and human health indicators | Depletion of abiotic resources, minerals, and metals | Abiotic depletion potential for non-fossil resources | ADP-minerals and metals | kg Sb eq. | AqNPs CuO TiO2 CNTs | [130,131,132,133,134,135,136,137,138,139,140,141] |
Depletion of abiotic resources, fossil fuels | Abiotic depletion for fossil resources potential | ADP-fossil | MJ | |||
Acidification | Acidification potential, accumulated exceedance | AP | mol H+ eq. | |||
Ozone depletion | Depletion potential of the stratospheric ozone layer | ODP | kg CFC-11 eq. | |||
Photochemical ozone formation | Formation potential of tropospheric ozone | POCP | kg NMVOC eq. | |||
Water use | Water (user) deprivation potential, deprivation weighted water consumption | WDP | m3 world eq. deprived | |||
Climate change, total | Global warming potential, total | GWP-total | kg CO2 eq. | |||
Climate change, fossil | Global warming potential, fossil | GWP-fossil | kg CO2 eq. | |||
Particulate matter emissions | Potential incidence of disease due to PM emissions | PM | Disease incidence | |||
Ecotoxicity (freshwater) | Potential comparative toxic unit for ecosystems | ETP-fw | CTUe | |||
Human toxicity, cancer effects | Potential comparative toxic unit for humans | HTP-c | CTUh | |||
Human toxicity, non-cancer effects | Potential comparative toxic unit for humans | HTP-nc | CTUh | |||
Land-use-related impacts/Soil quality | Potential soil quality index | SQP | (dimensionless) | |||
Economic indicators | Cost | Initial costs | IC | EUR/m2 or EUR/unit | TiO2 CuO Silica aerogel CNTs Fe2O3 GO | [103,142,143,144] |
Operation and maintenance | OM | |||||
Repair | RE | |||||
Replacement | REP | |||||
Deconstruction | DE | |||||
Transport | T | EUR/m2 | ||||
End of life | EoL | EUR/m2 | ||||
Waste processing for re-use, recovery, and/or recycling | W | EUR/m2 | ||||
Recycling | REC | EUR/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.T.; Soldado, E.; Borsoi, G.; Mendes, M.P.; Flores-Colen, I. Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators. Appl. Sci. 2023, 13, 12896. https://doi.org/10.3390/app132312896
Ferreira MT, Soldado E, Borsoi G, Mendes MP, Flores-Colen I. Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators. Applied Sciences. 2023; 13(23):12896. https://doi.org/10.3390/app132312896
Chicago/Turabian StyleFerreira, Maria Teresa, Eliana Soldado, Giovanni Borsoi, Maria Paula Mendes, and Inês Flores-Colen. 2023. "Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators" Applied Sciences 13, no. 23: 12896. https://doi.org/10.3390/app132312896
APA StyleFerreira, M. T., Soldado, E., Borsoi, G., Mendes, M. P., & Flores-Colen, I. (2023). Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators. Applied Sciences, 13(23), 12896. https://doi.org/10.3390/app132312896