Bimetallic Gold–Iron Oxide Nanoparticles as Carriers of Methotrexate: Perspective Tools for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Metal Nanoparticles
2.3. Energy Dispersive X-ray Studies
2.4. Small-Angle X-ray Scattering and X-ray Photoelectron Spectroscopy
2.5. Cell Types and In Vitro Culture Conditions
2.6. Evaluation of Cytotoxicity and Antitumor Activity
2.6.1. MTT and Neutral Red Assays
2.6.2. Experiments with Tumor Spheroids
2.7. Antibacterial Activity Assays
2.7.1. Agar Diffusion Tests
2.7.2. Determination of Minimal Inhibitory and Bactericidal Concentrations
2.7.3. Longitudinal Assessment of Bacterial Viability
2.8. Ex Vivo Culture of Leukocytes and Measurement of Cytokine Production
2.9. Statistics
3. Results
3.1. Antitumor Activity of AuFe-MTX Conjugates
3.2. Antibacterial Activity of BMNP-MTX
3.3. BMNP-MTX Conjugates Affect Cytokine Production by Peripheral Blood Leukocytes
3.4. Physicochemical Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guardia, P.; Nitti, S.; Materia, M.E.; Pugliese, G.; Yaacoub, N.; Greneche, J.M.; Lefevre, C.; Manna, L.; Pellegrino, T. Gold-iron oxide dimers for magnetic hyperthermia: The key role of chloride ions in the synthesis to boost the heating efficiency. J. Mater. Chem. B 2017, 5, 4587–4594. [Google Scholar] [CrossRef] [PubMed]
- Seeburg, D.P.; Liu, D.; Radnik, J.; Atia, H.; Pohl, M.-M.; Schneider, M.; Martin, A.; Wohlrab, S. Structural Changes of Highly Active Pd/MeOx (Me = Fe, Co, Ni) during Catalytic Methane Combustion. Catalysts 2018, 8, 42. [Google Scholar] [CrossRef]
- Scaria, J.; Nidheesh, P.V.; Kumar, M.S. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. J. Environ. Manag. 2020, 259, 110011. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Mandal, T.K.; Baek, K.H. Bimetallic and trimetallic nanoparticles for active food packaging applications: A review. Food Bioprocess Technol. 2020, 13, 30–44. [Google Scholar] [CrossRef]
- Makada, H.; Habib, S.; Singh, M. Bimetallic nanoparticles as suitable nanocarriers in cancer therapy. Sci. Afr. 2023, 20, e01700. [Google Scholar] [CrossRef]
- Xia, C.; Jin, X.; Garalleh, H.A.; Garaleh, M.; Wu, Y.; Hill, J.M.; Pugazhendhi, A. Optimistic and possible contribution of nanomaterial on biomedical applications: A review. Environ. Res. 2023, 218, 114921. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef]
- Park, W.; Heo, Y.J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res. 2018, 22, 24. [Google Scholar] [CrossRef]
- Tomitaka, A.; Ota, S.; Nishimoto, K.; Arami, H.; Takemura, Y.; Nair, M. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles. Nanoscale 2019, 11, 6489–6496. [Google Scholar] [CrossRef]
- Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 2018, 8, 1106. [Google Scholar] [CrossRef]
- Amsarajan, S.; Jagirdar, B. Air-Stable Carbon-Fe Based Magnetic Nanostructures. Eur. J. Inorg. Chem. 2019, 2019, 1374–1383. [Google Scholar] [CrossRef]
- Torresan, V.; Forrer, D.; Guadagnini, A.; Badocco, D.; Pastore, P.; Casarin, M.; Selloni, A.; Coral, D.; Ceolin, M.; Fernandez van Raap, M.B.; et al. 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles. ACS Nano 2020, 14, 12840–12853. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Scaramuzza, S.; Litti, L.; Meneghetti, M.; Zuccolotto, G.; Rosato, A.; Nicolato, E.; Marzola, P.; Fracasso, G.; Anselmi, C.; et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 2014, 10, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Sanad, M.F.; Meneses-Brassea, B.P.; Blazer, D.S.; Pourmiri, S.; Hadjipanayis, G.C.; El-Gendy, A.A. Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia. Appl. Sci. 2021, 11, 6637. [Google Scholar] [CrossRef]
- Tsai, M.T.; Sun, Y.S.; Keerthi, M.; Panda, A.K.; Dhawan, U.; Chang, Y.H.; Lai, C.F.; Hsiao, M.; Wang, H.Y.; Chung, R.J. Oral Cancer Theranostic Application of FeAu Bimetallic Nanoparticles Conjugated with MMP-1 Antibody. Nanomaterials 2021, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Shah, A.A.; Rahman, H.; Bilal, M.; Rajoka, M.S.R.; Khan, A.A.; Khurshid, M. Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol. Lett. 2020, 42, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Wang, Y.; Qin, Y.X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1337–1347. [Google Scholar] [CrossRef]
- Lau, E.; Ahlen, M.; Cheung, O.; Ganin, A.Y.; Smith, D.G.E.; Yiu, H.H.P. Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly. Front. Mol. Biosci. 2023, 10, 1143190. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.; He, J.; Cai, W. Nanomaterials via laser ablation/irradiation in liq-uid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353. [Google Scholar] [CrossRef]
- Lyon, J.L.; Fleming, D.A.; Stone, M.B.; Schiffer, P.; Williams, M.E. Synthesis of Fe oxide core/Au shell nanoparticles by itera-tive hydroxylamine seeding. Nano Lett. 2004, 4, 719–723. [Google Scholar] [CrossRef]
- Pitzalis, E.; Psaro, R.; Evangelisti, C. From metal vapor to supported single atoms, clusters and nanoparticles: Recent advances to heterogeneous catalysts. Inorg. Chim. Acta 2022, 533, 120782. [Google Scholar] [CrossRef]
- Seideman, P.; Beck, O.; Eksborg, S.; Wennberg, M. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br. J. Clin. Pharmacol. 1993, 35, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Xu, M.; Dhawan, U.; Liu, W.C.; Wu, K.T.; Liu, X.R.; Lin, C.; Zhao, G.; Wu, Y.C.; Chung, R.J. Iron-gold alloy nanoparticles serve as a cornerstone in hyperthermia-mediated controlled drug release for cancer therapy. Int. J. Nanomed. 2018, 13, 5499–5509. [Google Scholar] [CrossRef]
- Desai, M.; Paiva-Santos, A.; Nimbalkar, M.; Sonawane, K.; Patil, P.; Pawar, K. Iron tolerant Bacillus badius mediated bimetallic magnetic iron oxide and gold nanoparticles as Doxorubicin carrier and for hyperthermia treatment. J. Drug Deliv. Sci. Technol. 2023, 81, 104214. [Google Scholar] [CrossRef]
- Olenin, A.; Leenson, I.; Lisichkin, G. Cryochemical Co-condensation of Metal Vapors and Organic Compounds. In Direct Synthesis of Metal Complexes; Kharisov, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 143–179. [Google Scholar] [CrossRef]
- Vasil’kov, A.; Rubina, M.; Naumkin, A.; Buzin, M.; Dorovatovskii, P.; Peters, G.; Zubavichus, Y. Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization. Gels 2021, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- Vasil’kov, A.; Batsalova, T.; Dzhambazov, B.; Naumkin, A. XPS study of silver and copper nanoparticles demonstrated selective anticancer, proapoptotic, and antibacterial properties. Surf. Interface Anal. 2022, 54, 189–202. [Google Scholar] [CrossRef]
- Barbaro, D.; Di Bari, L.; Gandin, V.; Marzano, C.; Ciaramella, A.; Malventi, M.; Evangelisti, C. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment. PLoS ONE 2022, 17, e0269603. [Google Scholar] [CrossRef]
- Vasil’kov, A.; Voronova, A.; Batsalova, T.; Moten, D.; Naumkin, A.; Shtykova, E.; Volkov, V.; Teneva, I.; Dzhambazov, B. Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects. Materials 2023, 16, 3238. [Google Scholar] [CrossRef]
- Mladenova, T.; Batsalova, T.; Dzhambazov, B.; Mladenov, R.; Teneva, I.; Stoyanov, P.; Bivolarska, A. Antitumor and Immunomodulatory Properties of the Bulgarian Endemic Plant Betonica bulgarica Degen et Neic. (Lamiaceae). Plants 2022, 11, 1689. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Moyo, B.; Mukanganyama, S. Antibacterial Effects of Cissus welwitschii and Triumfetta welwitschii Extracts against Escherichia coli and Bacillus cereus. Int. J. Bacteriol. 2015, 2015, 162028. [Google Scholar] [CrossRef] [PubMed]
- Batsalova, T.; Moten, D.; Butenko, I.; Dzhambazov, B.; Vasil’kov, A. Biological and physicochemical properties of gold and iron nanoparticles produced by green synthesis method. In Proceedings of the 22nd SGEM International Multidisciplinary Scientific GeoConference 2022, Albena, Bulgaria, 4–10 July 2022; pp. 11–22. [Google Scholar]
- Rodrigues da Cunha, M.J.; Souza Freitas, B.L.; Nasser Fava, N.M.; Sabogal-Paz, L.P. CFDA-AM staining to assess the metabolic activity of Giardia duodenalis cysts inactivated by chlorine, boiling and ultraviolet irradiation. J. Water Health 2022, 20, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Fujimori, Y.; Ringleb, F.; Shao, X.; Stavale, F.; Nilius, N.; Sterrer, M.; Freund, H.J. Oxidation of Au by surface OH: Nucleation and electronic structure of gold on hydroxylated MgO(001). J. Am. Chem. Soc. 2011, 133, 10668–10676. [Google Scholar] [CrossRef] [PubMed]
- Klabunde, K.; Davis, S.; Hattori, H.; Tanaka, Y. Clustering of metal atoms in organic media: V. Production of tailored selectivity in nickel catalysts: Comparisons with Raney nickel. J. Catal. 1978, 54, 254–268. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992, 25, 495–503. [Google Scholar] [CrossRef]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef]
- Álvarez-González, B.; Rozalen, M.; Fernández-Perales, M.; Álvarez, M.A.; Sánchez-Polo, M. Methotrexate gold nanocarriers: Loading and release study: Its activity in colon and lung cancer cells. Molecules 2020, 25, 6049. [Google Scholar] [CrossRef]
- Kim, J.H.; Umemura, M.; Eguchi, H.; Ishikawa, Y. Methotrexate-Transferrin-Functionalized Fe(Salen)-Polypyrrole Nano-composites for Targeted Photo-/Magneto-Thermal Cancer treatments. J. Compos. Sci. 2022, 6, 136. [Google Scholar] [CrossRef]
- Batsalova, T.; Moten, D.; Voronova, A.; Dzhambazov, B.; Vasil’kov, A. Anticancer and antibacterial potential of methotrexate loaded iron nanoparticles produced by green synthesis method. In Proceedings of the 23rd International Multidisciplinary Scientific Geoconference—SGEM23, Albena, Bulgaria, 1–10 July 2023; pp. 3–16. [Google Scholar]
- Nosrati, H.; Baghdadchi, Y.; Abbasi, R.; Barsbay, M.; Ghaffarlou, M.; Abhari, F.; Mohammadi, A.; Kavetskyy, T.; Bochani, S.; Rezaeejam, H.; et al. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J. Mater. Chem. B 2021, 9, 4510–4522. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.P.; Lin, Z.; Wei, G.; Wen, X.; Li, S.; Yang, X.; Zhang, Q.; Jing, C.; Dai, Y.; et al. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore-Methotrexate Conjugates as Antibiotics. Angew. Chem. 2022, 61, e202204139. [Google Scholar] [CrossRef]
- Tau, G.; Rothman, P. Biologic functions of the IFN-gamma receptors. Allergy 1999, 54, 1233–1251. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Oxenius, A. Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO Rep. 2007, 8, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Chernyshov, A.; Veligzhanin, A.; Zubavichus, Y. Structural Materials Science End-Station at the Kurchatov Synchrotron Radiation Source: Recent Instrumentation Upgrades and Experimental Results. Nucl. Instrum. Methods Phys. Res. A. 2009, 603, 95–98. [Google Scholar] [CrossRef]
- Newville, M. EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 2001, 8, 96–100. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
Sample | A549 | HeLa | HT-29 | HFFC |
---|---|---|---|---|
AuFe | n.d. | n.d. | n.d. | n.d. |
AuFe(Ac)-MTX | 159.25 (±2.07) | 183.69 (±1.93) | n.d. | n.d. |
AuFe(Tol)-MTX | 173.79 (±23.21) | 198.91 (±0.29) | n.d. | n.d. |
MTX | 47.63 (±2.15) | 86.82 (±13.18) | n.d. | n.d. |
Sample | E. coli | B. cereus | ||||
---|---|---|---|---|---|---|
MIC | MBC | IZ | MIC | MBC | IZ | |
AuFe | >5 | >5 | 6.67 (±0.17) | >5 | >5 | 7.5 (±0.29) |
AuFe(Ac)-MTX | 2.5 | 5 | 7.7 (±0.17) | 2.5 | 5 | 8.25 (±0.14) |
AuFe(Tol)-MTX | 5 | >5 | 7.2 (±0.15) | 5 | >5 | 7 (±0.29) |
Sample | Au | Fe | O | C | N |
---|---|---|---|---|---|
MTX | - | - | 13.3 | 69.3 | 17.4 |
AuFe | 12.0 | 14.5 | 25.8 | 47.8 | - |
AuFe-MTX | 25.9 | 8.1 | 21.7 | 65.4 | 3.7 |
Sample | State | Au0 | Au+ | Au3+ | |||
---|---|---|---|---|---|---|---|
Shell | 4f7/2, eV | 4f5/2, eV | 4f7/2, eV | 4f5/2, eV | 4f7/2, eV | 4f5/2, eV | |
AuFe | Eb, eV | 84.1 | 87.8 | 84.8 | 88.5 | 86.2 | 89.8 |
W, eV | 0.81 | 0.81 | 0.99 | 0.96 | 1.6 | 1.7 | |
Irel | 0.94 | 0.725 | 0.2 | 0.15 | 0.145 | 0.11 | |
AuFe-MTX | Eb, eV | 84.2 | 87.9 | 84.7 | 88.4 | 86.7 | 89.3 |
W, eV | 0.8 | 0.77 | 0.92 | 0.9 | 1.55 | 1.48 | |
Irel | 0.58 | 0.435 | 0.64 | 0.495 | 0.29 | 0.218 |
Sample | Group | C(O)-N-C(O), NH3+ | N (MTX), NR3 | N–E |
---|---|---|---|---|
MTX | Eb, eV | 401.0 | 399.9 | 398.8 |
W, eV | 1.15 | 1.15 | 1.15 | |
Irel | 0.08 | 0.86 | 0.05 | |
AuFe-MTX | Eb, eV | 400.9 | 399.9 | 398.7 |
W, eV | 1.15 | 1.15 | 1.15 | |
Irel | 0.06 | 0.77 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsalova, T.; Vasil’kov, A.; Moten, D.; Voronova, A.; Teneva, I.; Naumkin, A.; Dzhambazov, B. Bimetallic Gold–Iron Oxide Nanoparticles as Carriers of Methotrexate: Perspective Tools for Biomedical Applications. Appl. Sci. 2023, 13, 12894. https://doi.org/10.3390/app132312894
Batsalova T, Vasil’kov A, Moten D, Voronova A, Teneva I, Naumkin A, Dzhambazov B. Bimetallic Gold–Iron Oxide Nanoparticles as Carriers of Methotrexate: Perspective Tools for Biomedical Applications. Applied Sciences. 2023; 13(23):12894. https://doi.org/10.3390/app132312894
Chicago/Turabian StyleBatsalova, Tsvetelina, Alexander Vasil’kov, Dzhemal Moten, Anastasiia Voronova, Ivanka Teneva, Alexander Naumkin, and Balik Dzhambazov. 2023. "Bimetallic Gold–Iron Oxide Nanoparticles as Carriers of Methotrexate: Perspective Tools for Biomedical Applications" Applied Sciences 13, no. 23: 12894. https://doi.org/10.3390/app132312894
APA StyleBatsalova, T., Vasil’kov, A., Moten, D., Voronova, A., Teneva, I., Naumkin, A., & Dzhambazov, B. (2023). Bimetallic Gold–Iron Oxide Nanoparticles as Carriers of Methotrexate: Perspective Tools for Biomedical Applications. Applied Sciences, 13(23), 12894. https://doi.org/10.3390/app132312894