Nanogap Plasmon Resonator: An Analytical Model
Abstract
1. Introduction
2. Analytical Model
3. Analytical Model vs. Simulations and Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Vidal, F.J.; Pendry, J.B. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 77, 1163. [Google Scholar] [CrossRef]
- Grésillon, S.; Aigouy, L.; Boccara, A.C.; Rivoal, J.C.; Quelin, X.; Demarest, C.; Gadenne, P.; Shubin, V.A.; Sarychev, A.K.; Shalaev, V.M. Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films. Phys. Rev. Lett. 1999, 82, 4520. [Google Scholar] [CrossRef]
- Ciraci, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernandez-Dominguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef]
- Moreau, A.; Ciraci, C.; Mock, J.J.; Hill, R.T.; Wang, Q.; Wiley, B.J.; Chilkoti, A.; Smith, D.R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature 2012, 492, 86–89. [Google Scholar] [CrossRef]
- Echtermeyer, T.J.; Britnell, L.; Jasnos, P.K.; Lombardo, A.; Gorbachev, R.V.; Grigorenko, A.N.; Geim, A.K.; Ferrari, A.C.; Novoselov, K.S. Strong Plasmonic Enhancement of Photovoltage in Graphene. Nat. Commun. 2011, 2, 458. [Google Scholar] [CrossRef]
- Zhang, Y.; Grady, N.K.; Ayala-Orozco, C.; Halas, N.J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 5519–5523. [Google Scholar] [CrossRef]
- Savage, K.J.; Hawkeye, M.M.; Esteban, R.; Borisov, A.G.; Aizpurua, J.; Baumberg, J.J. Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574–577. [Google Scholar] [CrossRef]
- Mertens, J.; Eiden, A.L.; Sigle, D.O.; Huang, F.; Lombardo, A.; Sun, Z.; Sundaram, R.S.; Colli, A.; Tserkezis, C.; Aizpurua, J.; et al. Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Lett. 2013, 13, 5033–5038. [Google Scholar] [CrossRef]
- Cai, H.; Wu, Y.; Dai, Y.; Pan, N.; Tian, Y.; Luo, Y.; Wang, X. Wafer scale fabrication of highly dense and uniform array of sub-5nm nanogaps for surface enhanced Raman scatting substrates. Opt. Express 2016, 24, 20808–20815. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, S.; Zhang, S.; Kim, N.; Lee, S.; Krämer, S.; Xu, H.; Moskovits, M. Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide. Nano Lett. 2012, 12, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Chikkaraddy, R.; Zheng, X.; Benz, F.; Brooks, L.J.; de Nijs, B.; Carnegie, C.; Kleemann, M.E.; Mertens, J.; Bowman, R.W.; Vandenbosch, G.; et al. How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. ACS Photonics 2017, 4, 469–475. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; Turek, V.A.; Kongsuwan, N.; Benz, F.; Carnegie, C.; van de Goor, T.; de Nijs, B.; Demetriadou, A.; Hess, O.; Keyser, U.F.; et al. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Lett. 2018, 18, 405–411. [Google Scholar] [CrossRef]
- Demetriadou, A.; Hamm, J.M.; Luo, Y.; Pendry, J.B.; Baumberg, J.J.; Hess, O. Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities. ACS Photonics 2017, 4, 2410–2418. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, H.; Badloe, T.; Rho, J. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics 2022, 11, 4123–4133. [Google Scholar] [CrossRef]
- Khorashad, L.K.; Argyropoulos, C. Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers. Nanophotonics 2022, 11, 4037–4052. [Google Scholar] [CrossRef]
- Yezekyan, T.; Zenin, V.A.; Beermann, J.; Bozhevolnyi, S.I. Anapole States in Gap-Surface Plasmon Resonators. Nano Lett. 2022, 22, 6098–6104. [Google Scholar] [CrossRef]
- Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M.; Lei, Y. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, G.; Tian, X.; Tang, S.; Zhou, J.; Feng, Y.; Chen, H. Construction of Long Narrow Gaps in Ag Nanoplates. J. Am. Chem. Soc. 2018, 140, 15560–15563. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, X.; Chen, J.; Fu, G.; Liu, Z. Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities. Sol. Energy Mater. Sol. Cells 2018, 186, 142–148. [Google Scholar] [CrossRef]
- Lu, X.; Huang, Y.; Liu, B.; Zhang, L.; Song, L.; Zhang, J.; Zhang, A.; Chen, T. Light-Controlled Shrinkage of Large-Area Gold Nanoparticle Monolayer Film for Tunable SERS Activity. Chem. Mater. 2018, 30, 1989–1997. [Google Scholar] [CrossRef]
- Ma, C.; Gao, Q.; Hong, W.; Fan, J.; Fang, J. Real-time probing nanopore-in-nanogap plasmonic coupling effect on silver supercrystals with surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2016, 27, 1–8. [Google Scholar] [CrossRef]
- Nam, J.M.; Oh, J.W.; Lee, H.; Suh, Y.D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. [Google Scholar] [CrossRef]
- Pan, R.; Yang, Y.; Wang, Y.; Li, S.; Liu, Z.; Su, Y.; Quan, B.; Li, Y.; Gu, C.; Li, J. Nanocracking and mettalization doubly-defined large-scale 3D plasmonic sub-10nm-gap arrays as extremely sensitive SERS substrate. Nanoscale 2018, 10, 3171–3180. [Google Scholar] [CrossRef]
- Shin, Y.; Song, J.; Kim, D.; Kang, T. Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control. Adv. Mater. 2015, 27, 4344–4350. [Google Scholar] [CrossRef]
- Sigle, D.O.; Mertens, J.; Herrmann, L.O.; Bowman, R.W.; Ithurria, S.; Dubertret, B.; Shi, Y.; Yang, H.; Tserkezis, C.; Aizpurua, J.; et al. Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano 2015, 9, 825–830. [Google Scholar] [CrossRef]
- Yoo, D.; Mohr, D.A.; Vidal-Codina, F.; John-Herpin, A.; Jo, M.; Kim, S.; Matson, J.; Caldwell, J.D.; Jeon, H.; Nguyen, N.-C.; et al. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. Nano Lett. 2018, 18, 1930–1936. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Q.; Ma, J.; Ren, J.; Messersmith, P.B.; Chen, P.; Duan, H. A Polydopamine-Enabled Approach Toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano 2016, 10, 11066–11075. [Google Scholar] [CrossRef]
- Bedingfield, K.; Elliott, E.; Gisdakis, A.; Kongsuwan, N.; Baumberg, J.J.; Demetriadou, A. Multi-faceted plasmonic nanocavities. Nanophotonics 2023, 12, 3931–3944. [Google Scholar] [CrossRef]
- Gu, P.; Zheng, T.; Zhang, W.; Ai, B.; Zhao, Z.; Zhang, G. Sub-10 nm Au–Ag Heterogeneous Plasmonic Nanogaps. Adv. Mater. Interfaces 2020, 7, 1902021. [Google Scholar] [CrossRef]
- Xomalis, A.; Zheng, X.; Demetriadou, A.; Martínez, A.; Chikkaraddy, R.; Baumberg, J.J. Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Lett. 2021, 21, 2512–2518. [Google Scholar] [CrossRef]
- Li, Y.; Tang, S.; Xu, S.; Duan, Z.; Wang, Z.; Zhang, Y. Ag Nanoframes Deposited on Au Films Generate Optical Cavities for Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2020, 3, 5116–5122. [Google Scholar] [CrossRef]
- Jagathpriya, L.; Pillanagrovi, J.; Dutta-Gupta, S. Tailoring cavity coupled plasmonic substrates for SERS applications. Nanotechnology 2023, 34, 335501. [Google Scholar]
- Zhang, W.; Zheng, T.; Ai, B.; Gu, P.; Guan, Y.; Wang, Y.; Zhao, Z.; Zhang, G. Multiple plasmonic hot spots platform: Nanogap coupled gold nanoparticles. Appl. Surf. Sci. 2022, 593, 153388. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Sukhanova, A.; Ivanov, A.V.; Bykov, I.V.; Bakholdin, N.V.; Vasina, D.V.; Gushchin, V.A.; Tkachuk, A.P.; Nifontova, G.; Samokhvalov, P.S.; et al. Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy. Biosensors 2022, 12, 300. [Google Scholar] [CrossRef]
- Ivanov, A.; Shalygin, A.; Lebedev, V.; Vorobev, V.; Vergiles, S.; Sarychev, A.K. Plasmonic extraordinary transmittance in array of metal nanorods. Appl. Phys. A 2012, 107, 17–21. [Google Scholar] [CrossRef]
- Frumin, L.L.; Nemykin, A.V.; Perminov, S.V.; Shapiro, D.A. Plasmons excited by an evanescent wave in a periodic array of nanowires. J. Opt. 2013, 15, 085002. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.Q.; Liu, G.Q.; Liu, X.S.; Huang, K.; Chen, Y.H.; Hu, Y.; Fu, G.L. Tunable plasmon-induced transparency of double continuous metal films sandwiched with a plasmonic array. Plasmonics 2013, 8, 1285–1292. [Google Scholar] [CrossRef]
- Liu, G.Q.; Hu, Y.; Liu, Z.Q.; Chen, Y.H.; Cai, Z.J.; Zhang, X.N.; Huang, K. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys. Chem. Chem. Phys. 2014, 16, 4320–4328. [Google Scholar] [CrossRef]
- Liu, G.Q.; Hu, Y.; Liu, Z.Q.; Cai, Z.J.; Zhang, X.N.; Chen, Y.H.; Huang, K. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array. Opt. Commun. 2014, 316, 111–119. [Google Scholar] [CrossRef]
- Rasskazov, I.L.; Markel, V.A.; Karpov, S.V. Transmission and spectral properties of short opitcal plasmon waveguides. Opt. Spectrosc. 2013, 115, 666–674. [Google Scholar] [CrossRef]
- Klimov, V.V.; Guzatov, D.V. Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom. Phys. Rev. B 2007, 75, 24303. [Google Scholar] [CrossRef]
- Klimov, V.; Guzatov, D. Plasmonic atoms and plasmonic molecules. Appl. Phys. A 2007, 89, 305–314. [Google Scholar] [CrossRef]
- Guzatov, D.V.; Klimov, V.V. Optical properties of a plasmonic nano-antenna: An analytical approach. New J. Phys. 2011, 13, 053034. [Google Scholar] [CrossRef]
- Lu, B.; Vegso, K.; Micky, S.; Ritz, C.; Bodik, M.; Fedoryshyn, Y.M.; Siffalovic, P.; Stemmer, A. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement. ACS Nano 2023, 17, 12774–12787. [Google Scholar] [CrossRef]
- Ding, F.; Yang, Y.; Deshpande, R.A.; Bozhevoinyi, S.I. A review of gap-surface plasmon metasurfaces: Fundamentals and applications. Nanophotonics 2018, 7, 1129–1156. [Google Scholar] [CrossRef]
- Liu, W.; Lee, B.; Naylor, C.H.; Ee, H.S.; Park, J.; Johnson, A.C.; Agarwal, R. Strong Exciton–Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. Nano Lett. 2016, 16, 1262–1269. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Yang, J.; Xue, M.; Wu, S.; Xiao, S.; Song, F.; Dang, J.; Sun, S.; Zuo, Z.; et al. Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way. Nano Lett. 2022, 22, 2177–2186. [Google Scholar] [CrossRef]
- Dong, L.; Yang, X.; Zhang, C.; Cerjan, B.; Zhou, L.; Tseng, M.L.; Zhang, Y.; Alabastri, A.; Nordlander, P.; Halas, N.J. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Lett. 2017, 17, 5768–5774. [Google Scholar] [CrossRef]
- Paoletta, A.L.; Fung, E.-D.; Venkataraman, L. Gap Size-Dependent Plasmonic Enhancement in Electroluminescent Tunnel Junctions. ACS Photonics 2022, 9, 688–693. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D.C.J.; Valuckas, V.; Paniagua-Dominguez, R.; Yang, J.K.W.; Demir, H.V.; Kuznetsov, A.I. Hybrid Dielectric-Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics 2023, 10, 582–594. [Google Scholar] [CrossRef]
- Boroviks, S.; Lin, Z.-H.; Zenin, V.A.; Ziegler, M.; Dellith, A.; Gonçalves, P.A.D.; Wolff, C.; Bozhevolnyi, S.I.; Huang, J.-S.; Mortensen, N.A. Extremely confined gap plasmon modes: When nonlocality matters. Nat. Commun. 2022, 13, 3105. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, H.; Han, S.; Kim, J.; Kim, Y.; Eom, S.; Barulin, A.; Choi, I.; Rho, J.; Lee, L.P. Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer. Adv. Mater. 2023, 35, 2300229. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Valentine, J.G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 2017, 6, 177–191. [Google Scholar] [CrossRef]
- Barbillon, G.; Ivanov, A.; Sarychev, A.K. SERS Amplification in Au/Si Asymmetric Dimer Array Coupled to Efficient Adsorption of Thiophenol Molecules. Nanomaterials 2021, 11, 1521. [Google Scholar] [CrossRef]
- Kneipp, J. Interrogating Cells, Tissues, and Live Animals with New Generations of Surface-Enhanced Raman Scattering Probes and Labels. ACS Nano 2017, 11, 1136–1141. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; et al. Surface-Enhanced Raman Scattering-Active Gold Nanoparticles with Enzyme Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano 2017, 11, 5558–5566. [Google Scholar] [CrossRef]
- Andreou, C.; Neuschmelting, V.; Tschaharganeh, D.F.; Huang, C.H.; Oseledchyk, A.; Iacono, P.; Karabeber, H.; Colen, R.R.; Mannelli, L.; Lowe, S.W.; et al. Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles. ACS Nano 2016, 10, 5015–5026. [Google Scholar] [CrossRef]
- Chon, H.; Lee, S.; Yoon, S.Y.; Lee, E.K.; Chang, S.L.; Choo, J. SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem. Commun. 2014, 50, 1058–1060. [Google Scholar] [CrossRef]
- Boginskaya, I.A.; Slipchenko, E.A.; Sedova, M.V.; Zvyagina, J.Y.; Maximov, A.D.; Baburin, A.S.; Rodionov, I.A.; Merzlikin, A.M.; Ryzhikov, I.A.; Lagarkov, A.N. Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films. Chemosensors 2023, 11, 321. [Google Scholar] [CrossRef]
- Kraft, M.; Luo, Y.; Maier, S.A.; Pendry, J.B. Designing Plasmonic Gratings with Transformation Optics. Phys. Rev. X 2015, 5, 031029. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Luo, Y.; Fernandez-Dominguez, A.I.; Wiener, A.; Maier, S.A.; Pendry, J.B. Surface Plasmons and Nonlocality: A Simple Model. Phys. Rev. Lett. 2013, 111, 093901. [Google Scholar] [CrossRef]
- Yue, W.; Wang, Z.; Whittaker, J.; Lopez-Royo, F.; Yang, Y.; Zayats, A.V. Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers. J. Mater. Chem. C 2017, 5, 4075–4084. [Google Scholar] [CrossRef]
- Li, Z.; You, Q.; Li, J.; Zhu, C.; Zhang, L.; Yang, L.; Fang, Y.; Wang, P. Boosting Light–Matter Interaction in a Longitudinal Bonding Dipole Plasmon Hybrid Anapole System. J. Phys. Chem. C 2023, 127, 3594–3601. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Simon, J.; Nowak, M.P.; Pagadala, K.; Nyga, P.; Fruhling, C.; Bravo, E.G.; Maćkowski, S.; Shalaev, V.M.; Kildishev, A.V.; et al. Wide-Range Angle-Sensitive Plasmonic Color Printing on Lossy-Resonator Substrates. Adv. Opt. Mater. 2023, 2301678. [Google Scholar] [CrossRef]
- Kanipe, K.; Chidester, P.; Stucky, G.; Meinhart, C.; Moskovits, M. Properly Structured, Any Metal Can Produce Intense Surface Enhanced Raman Spectra. J. Phys. Chem. C 2017, 121, 14269–14273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarychev, A.K.; Barbillon, G.; Ivanov, A. Nanogap Plasmon Resonator: An Analytical Model. Appl. Sci. 2023, 13, 12882. https://doi.org/10.3390/app132312882
Sarychev AK, Barbillon G, Ivanov A. Nanogap Plasmon Resonator: An Analytical Model. Applied Sciences. 2023; 13(23):12882. https://doi.org/10.3390/app132312882
Chicago/Turabian StyleSarychev, Andrey K., Grégory Barbillon, and Andrey Ivanov. 2023. "Nanogap Plasmon Resonator: An Analytical Model" Applied Sciences 13, no. 23: 12882. https://doi.org/10.3390/app132312882
APA StyleSarychev, A. K., Barbillon, G., & Ivanov, A. (2023). Nanogap Plasmon Resonator: An Analytical Model. Applied Sciences, 13(23), 12882. https://doi.org/10.3390/app132312882