Detection of Cavities from Dental Panoramic X-ray Images Using Nested U-Net Models
Abstract
:1. Introduction
2. Methodology
2.1. Models Employed
2.1.1. U-Net
2.1.2. U-Net ++
2.1.3. U-Net 3+
2.2. U-Net3+ Model for Cavity Segmentation
2.3. Dataset Preparation Procedure
2.3.1. Dataset Pre-Processing
2.3.2. Dataset Normalization
2.3.3. Data Annotation and Labelling
2.3.4. Data Augmentation
2.4. Experimental Setup and Hyper-Parameters
3. Results and Analysis
3.1. Evaluation Matrices Used in Models Comparison
3.2. Quantitative Validation
3.3. Qualitative Validation
4. Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Mardiah, A. Improving Awareness and Clean and Healthy Living Behavior among Students in Preventing Dental Caries. Path Sci. 2023, 9, 7. [Google Scholar] [CrossRef]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.P.; Lee, S.Y. An Effective and Reliable Methodology for Deep Machine Learning Application in Caries Detection. medRxiv 2021, 21256502. [Google Scholar]
- Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schürmann, F.; Krejci, I.; Markram, H. Caries Detection With Near-Infrared Transillumination Using Deep Learning. J. Dent. Res. 2019, 98, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Gordan, V.V.; Riley, J.L., III; Carvalho, R.M.; Snyder, J.; Sanderson, J., Jr.; Anderson, M.; Gilbert, G.; Group, D.C. Methods used by Dental Practice-based Research Network (DPBRN) dentists to diagnose dental caries. Oper. Dent. 2011, 36, 2–11. [Google Scholar] [CrossRef]
- Lee, S.; Oh, S.I.; Jo, J.; Kang, S.; Shin, Y.; Park, J.W. Deep Learning for Early Dental Caries Detection in Bitewing Radiographs. Sci. Rep. 2021, 11, 16807. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, N. Improved hepatocellular carcinoma fatality prognosis using ensemble learning approach. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 5763–5777. [Google Scholar] [CrossRef]
- Kumaraswamy, E.; Kumar, S.; Sharma, M. An Invasive Ductal Carcinomas Breast Cancer Grade Classification Using an Ensemble of Convolutional Neural Networks. Diagnostics 2023, 13, 1977. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Wang, S.; Zhang, Y. A review of deep learning in dentistry. Neurocomputing 2023, 2023, 126629. [Google Scholar] [CrossRef]
- Ding, H.; Wu, J.; Zhao, W.; Matinlinna, J.P.; Burrow, M.F.; Tsoi, J.K. Artificial intelligence in dentistry—A review. Front. Dent. Med. 2023, 4, 1085251. [Google Scholar] [CrossRef]
- Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated Caries Detection With Smartphone Color Photography Using Machine Learning. Health Inform. J. 2021, 27, 14604582211007530. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Yan, H.; Setzer, F.C.; Shi, K.J.; Mupparapu, M.; Li, J. Anatomically Constrained Deep Learning For Automating Dental cbct Segmentation And Lesion Detection. IEEE Trans. Autom. Sci. Eng. 2020, 18, 603–614. [Google Scholar] [CrossRef]
- Prados-Privado, M.; García Villalón, J.; Martínez-Martínez, C.H.; Ivorra, C.; Prados-Frutos, J.C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. J. Clin. Med. 2020, 9, 3579. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef]
- Viniavskyi, O.; Dobko, M.; Dobosevych, O. Weakly-supervised segmentation for disease localization in chest X-ray images. In Proceedings of the International Conference on Artificial Intelligence in Medicine, Minneapolis, MN, USA, 25–28 August 2020; pp. 249–259. [Google Scholar]
- Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A.K. Medical image segmentation using deep learning: A survey. IET Image Process. 2022, 16, 1243–1267. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. Dental X-ray image segmentation using a U-shaped Deep Convolutional network. In Proceedings of the International Symposium on Biomedical Imaging, New York, NY, USA, 16–19 April 2015; Volume 1, p. 3. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Granada, Spain, 2018; pp. 3–11. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- ALbahbah, A.A.; El-Bakry, H.M.; Abd-Elgahany, S. Detection of caries in panoramic dental X-ray images using back-propagation neural network. Int. J. Electron. Commun. Comput. Eng. 2016, 7, 250. [Google Scholar]
- Ali, R.B.; Ejbali, R.; Zaied, M. Detection and classification of dental caries in X-ray images using deep neural networks. In Proceedings of the International Conference on Software Engineering Advances (ICSEA), Rome, Italy, 21–25 August 2016. [Google Scholar]
- Schwendicke, F.; Elhennawy, K.; Paris, S.; Friebertshäuser, P.; Krois, J. Deep Learning For Caries Lesion Detection In Near-Infrared Light Transillumination Images: A Pilot Study. J. Dent. 2020, 92, 103260. [Google Scholar] [CrossRef] [PubMed]
- Haghanifar, A.; Majdabadi, M.M.; Ko, S.B. Paxnet: Dental Caries Detection in Panoramic X-ray Using Ensemble Transfer Learning and Capsule Classifier. arXiv Preprint 2020, arXiv:2012.13666. [Google Scholar] [CrossRef]
- Lian, L.; Zhu, T.; Zhu, F.; Zhu, H. Deep Learning for Caries Detection and Classification. Diagnostics 2021, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.; Faria, M.; Giraldi, G.; Bastos, L.; Oliveira, L.; Conci, A. Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks. Sensors 2021, 21, 5192. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Meyer, O.; Hesenius, M.; Hickel, R.; Gruhn, V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 2022, 101, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection And Diagnosis of Dental Caries Using A Deep Learning-Based Convolutional Neural Network Algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, Y.; Li, W.; Liu, C.; Gu, D.; Sun, W.; Miao, L. Development and Evaluation Of Deep Learning For Screening Dental Caries From Oral Photographs. Oral Dis. 2020, 28, 173–181. [Google Scholar] [CrossRef]
- Bouchahma, M.; Hammouda, S.B.; Kouki, S.; Alshemaili, M.; Samara, K. An automatic dental decay treatment prediction using a deep convolutional neural network on X-ray images. In Proceedings of the IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–4. [Google Scholar]
- Lee, S.; Woo, S.; Yu, J.; Seo, J.; Lee, J.; Lee, C. Automated CNN-Based Tooth Segmentation In Cone-Beam CT For Dental Implant Planning. IEEE Access 2020, 8, 50507–50518. [Google Scholar] [CrossRef]
- Sivagami, S.; Chitra, P.; Kailash, G.S.R.; Muralidharan, S. Unet architecture based dental panoramic image segmentation. In Proceedings of the International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 4–6 August 2020; pp. 187–191. [Google Scholar]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting Caries Lesions of Different Radiographic Extension on Bitewings Using Deep Learning. J. Dent. 2020, 100, 103425. [Google Scholar] [CrossRef]
- Khan, H.A.; Haider, M.A.; Ansari, H.A.; Ishaq, H.; Kiyani, A.; Sohail, K.; Muhammad, M.; Khurram, S.A. Automated feature detection in dental periapical radiographs by using deep learning. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 711–720. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, Z.; Lian, L.; Ye, G.; Gao, H.; Wu, J. CariesNet: A deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Comput. Appl. 2022, 35, 16051–16059. [Google Scholar] [CrossRef] [PubMed]
- Dayı, B.; Üzen, H.; Çiçek, İ.B.; Duman, Ş.B. A Novel Deep Learning-Based Approach for Segmentation of Different Type Caries Lesions on Panoramic Radiographs. Diagnostics 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, F.; Chen, L.; Xu, F.; Chen, X.; Wu, H.; Cao, M.; Li, Y.; Wang, Y.; Huang, X. Children’s dental panoramic radiographs dataset for caries segmentation and dental disease detection. Sci. Data 2023, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Pinheiro, L.; Oliveira, L.; Pithon, M. A study on tooth segmentation and numbering using end-to-end deep neural networks. In Proceedings of the Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 164–171. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G. Python Programming Language. In Proceedings of the USENIX Annual Technical Conference, Santa Clara, CA, USA, 17–22 June 2007; Volume 41, pp. 1–36. [Google Scholar]
- Ketkar, N.; Ketkar, N. Introduction to keras. In Deep Learning with Python: A Hands-on Introduction; Apress: New York, NY, USA, 2017; pp. 97–111. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the Osdi, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. [Google Scholar]
- Xu, Y.; Hou, S.; Wang, X.; Li, D.; Lu, L. A Medical Image Segmentation Method Based on Improved UNet 3+ Network. Diagnostics 2023, 13, 576. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Song, Y.; Liu, Z.; Yin, J.; Han, K.; Liu, Y. CMFCUNet: Cascaded multi-scale feature calibration UNet for pancreas segmentation. Multimed. Syst. 2023, 29, 871–886. [Google Scholar] [CrossRef]
- Paithane, P.; Kakarwal, S. LMNS-Net: Lightweight Multiscale Novel Semantic-Net deep learning approach used for automatic pancreas image segmentation in CT scan images. Expert Syst. Appl. 2023, 234, 121064. [Google Scholar] [CrossRef]
Hyperparameters | Value |
---|---|
Learning rate | 0.0001 |
Optimizer | Adam |
Activation function | gelu |
Regularizers | No |
Early Stopping | No |
Batch size | 4 |
Dropout | 0.4 |
Dense activation function | ReLU |
Metrics | Formula | Definition |
---|---|---|
Mean Squared Error (MSE) | Function that determines how much the values that were predicted and those that were observed differ. | |
Intersection over Union (IoU) | It is used to identify which members are similar and which are distinct; this index calculates the degree of similarity between two groups of members. | |
Dice | It is used to assess how closely a predicted segmentation mask and the ground truth segmentation mask resemble each other. | |
Accuracy | It is determined by the number of correctly predicted data points. |
Dataset | Train | Validate | Test | Total |
---|---|---|---|---|
Original without cropping and augmentation | 459 | - | 51 | 510 |
Dataset after cropping | 605 | - | 68 | 673 |
Dataset with 80–20% split and augmentation | 4296 | - | 136 | 4432 |
Dataset with 90–10% split and augmentation | 4840 | - | 68 | 4908 |
Dataset with 80–10–10% split and augmentation | 4296 | 68 | 68 | 4432 |
Dataset with 60–40% validation size: 0.1 and augmentation | 2887 | 321 | 272 | 3480 |
Model | Task | loss | IoU | Dice | Accuracy |
---|---|---|---|---|---|
Training | 0.07 | 0.77 | 0.92 | 0.98 | |
U-Net | Validating | 0.39 | 0.67 | 0.60 | 0.95 |
Testing | 0.41 | 0.67 | 0.58 | 0.95 | |
Training | 0.10 | 0.77 | 0.89 | 0.98 | |
U-NET++ | Validating | 0.50 | 0.62 | 0.49 | 0.95 |
Testing | 0.47 | 0.65 | 0.53 | 0.95 | |
Training | 0.09 | 0.77 | 0.90 | 0.98 | |
U-Net 3+ | Validating | 0.48 | 0.62 | 0.51 | 0.95 |
Testing | 0.44 | 0.67 | 0.60 | 0.95 |
Dataset | IoU | Dice | Accuracy |
---|---|---|---|
Training | 0.77 | 0.89 | 0.98 |
Validating | 0.77 | 0.90 | 0.98 |
Testing | 0.67 | 0.60 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, S.S.; AlRugaibah, A.A.; Alhasson, H.F.; Khan, R.U. Detection of Cavities from Dental Panoramic X-ray Images Using Nested U-Net Models. Appl. Sci. 2023, 13, 12771. https://doi.org/10.3390/app132312771
Alharbi SS, AlRugaibah AA, Alhasson HF, Khan RU. Detection of Cavities from Dental Panoramic X-ray Images Using Nested U-Net Models. Applied Sciences. 2023; 13(23):12771. https://doi.org/10.3390/app132312771
Chicago/Turabian StyleAlharbi, Shuaa S., Athbah A. AlRugaibah, Haifa F. Alhasson, and Rehan Ullah Khan. 2023. "Detection of Cavities from Dental Panoramic X-ray Images Using Nested U-Net Models" Applied Sciences 13, no. 23: 12771. https://doi.org/10.3390/app132312771
APA StyleAlharbi, S. S., AlRugaibah, A. A., Alhasson, H. F., & Khan, R. U. (2023). Detection of Cavities from Dental Panoramic X-ray Images Using Nested U-Net Models. Applied Sciences, 13(23), 12771. https://doi.org/10.3390/app132312771