Urban Quarry Ground Vibration Forecasting: A Matrix Factorization Approach
Abstract
:1. Introduction
2. Related Work
2.1. Ground Vibrations from Blasting
2.2. Traditional PPV Prediction Methods
3. Target Site and Data Used
3.1. Target Site
3.2. Data
4. Measurement of PPV
4.1. Collection of Ground Vibration Data
4.2. Conversion to Peak Particle Velocity (PPV)
5. Methodology
5.1. WNMF
5.2. Prediction of PPV Using WNMF
5.2.1. Step 1: Data Collection
5.2.2. Step 2: Data Processing
5.2.3. Step 3: Matrix Creation
5.2.4. Step 4: PPV Prediction
6. Experiments and Results
6.1. Determination of Normalized Value Range
6.2. Effectiveness of Normalization Using ANN
6.3. Relationship between the Amount of Data and Prediction Accuracy
7. Discussion
7.1. Rank
7.2. Normalization
7.3. Data Volume
8. Conclusions
- Normalization with ANN resulted in higher accuracy compared to non-normalized methods. The PPV prediction error (root mean square error—RMSE) improved from 0.2219 to 0.1426.
- The method demonstrated high accuracy even with reduced measurement data (60 points) for ANN learning, decreasing the PPV prediction error from 0.1759 (with 100 points) to 0.1378 (with 60 points).
- The accuracy decreased when using extremely small amounts of measurement data (20 points), with the PPV prediction error increasing from 0.1759 (100 points) to 0.3630 (20 points).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandelwal, M.; Singh, T.N. Prediction of blast induced ground vibrations and frequency in opencast mine: A neural network approach. J. Sound Vib. 2006, 289, 711–725. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Evaluation of blast-induced ground vibration predictors. Soil Dyn. Earthq. Eng. 2007, 27, 116–125. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 2009, 46, 1214–1222. [Google Scholar] [CrossRef]
- Faramarzi, F.; Farsangi, M.A.E.; Mansouri, H. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting. Int. J. Min. Sci. Technol. 2014, 24, 663–669. [Google Scholar] [CrossRef]
- Navarro Torres, V.F.; Silveira, L.G.C.; Lopes, P.F.T.; de Lima, H.M. Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community. J. Clean. Prod. 2018, 187, 514–524. [Google Scholar] [CrossRef]
- Singh, P.K.; Roy, M.P. Damage to surface structures due to blast vibration. Int. J. Rock Mech. Min. Sci. 2010, 47, 949–961. [Google Scholar] [CrossRef]
- Monjezi, M.; Ghafurikalajahi, M.; Bahrami, A. Prediction of blast-induced ground vibration using artificial neural networks. Tunn. Undergr. Space Technol. 2011, 26, 46–50. [Google Scholar] [CrossRef]
- Hajihassani, M.; Armaghani, D.J.; Marto, A.; Mohamad, E.T. Vibrations au sol prédiction dans quarry dynamitage à travers un réseau neural artificiel optimisé par une concurrence impérialiste algorithme. Bull. Eng. Geol. Environ. 2015, 74, 873–886. [Google Scholar] [CrossRef]
- Saadat, M.; Khandelwal, M.; Monjezi, M. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. J. Rock Mech. Geotech. Eng. 2014, 6, 67–76. [Google Scholar] [CrossRef]
- Hudaverdi, T. Application of multivariate analysis for prediction of blast-induced ground vibrations. Soil Dyn. Earthq. Eng. 2012, 43, 300–308. [Google Scholar] [CrossRef]
- AS 2187.2-2006; Explosives—Storage and Use Part 2: Use of Explosives. Council of Standards Australia: Sydney, Australia, 2006.
- BS 6472-1:2008; Guide to Evaluation of Human Exposure to Vibration in Buildings. European Standard: Plzen, Czech Republic, 2008.
- Nicholls, H.R.; Johnson, C.F.; Duvall, W.I. Blasting Vibrations and Their Effects on Structures; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1971; BM-BULL-656. [Google Scholar]
- Siskind, D.E.; Stagg, M.S.; Kopp, J.W.; Dowding, C.H. Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting; United States, Bureau of Mines: Washington, DC, USA, 1980. [Google Scholar]
- Dowding, C.H. Blast Vibration Monitoring and Control; Prentice-Hall: Hoboken, NJ, USA, 1985. [Google Scholar]
- Duvall, W.I.; Petkof, B. Spherical Propagation of Explosion-Generated Strain Pulses in Rock; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1959. [Google Scholar]
- Langefors, U.; Kihlström, B. The Modern Technique of Rock Blasting; Wiley: Hoboken, NJ, USA, 1963. [Google Scholar]
- Pal Roy, P. Vibration control in an opencast mine based on improved blast vibration predictors. Min. Sci. Technol. 1991, 12, 157–165. [Google Scholar] [CrossRef]
- Kamali, M.; Ataei, M. Prediction of blast induced ground vibrations in Karoun III power plant and dam: A neural network. J. South. Afr. Inst. Min. Metall. 2010, 110, 481–490. [Google Scholar]
- Kawamura, Y.; Moriyama, Y.; Jang, H. Web-GIS Based Visualization System of Predicted Ground Vibration Induced by Blasting in Urban Quarry Sites. J. Geogr. Inf. Syst. 2019, 11, 17–31. [Google Scholar] [CrossRef]
- Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009, 42, 30–37. [Google Scholar] [CrossRef]
- Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, Chapel Hill, NC, USA, 22–26 October 1994; pp. 175–186. [Google Scholar]
- Squires, S.; Prügel-Bennett, A.; Niranjan, M. Rank Selection in Nonnegative Matrix Factorization using Minimum Description Length. Neural Comput. 2017, 29, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.N.; Singh, V. An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 2005, 23, 249–262. [Google Scholar] [CrossRef]
- Klæboe, R.; Amundsen, A.H.; Madshus, C.; Norén-Cosgriff, K.M.; Turunen-Rindel, I. Human reaction to vibrations from blasting activity - Norwegian exposure-effect relationships. Appl. Acoust. 2016, 111, 49–57. [Google Scholar] [CrossRef]
- Singh, T.N.; Dontha, L.K.; Bhardwaj, V. Study into blast vibration and frequency using ANFIS and MVRA. Min. Technol. 2008, 117, 116–121. [Google Scholar] [CrossRef]
- Dehghani, H.; Ataee-pour, M. Development of a model to predict peak particle velocity in a blasting operation. Int. J. Rock Mech. Min. Sci. 2011, 48, 51–58. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Hajihassani, M.; Mohamad, E.T.; Marto, A.; Noorani, S.A. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab. J. Geosci. 2014, 7, 5383–5396. [Google Scholar] [CrossRef]
- Mohamed, M.T. Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. Int. J. Rock Mech. Min. Sci. 2011, 48, 845–851. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Ford, J.; Makedon, F. Learning from Incomplete Ratings Using Non-negative Matrix Factorization. In Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; pp. 549–553. [Google Scholar]
Author | Method | Input | Output | Number | |
---|---|---|---|---|---|
Khandelwal [2] | ANN | B, S, HD, HL, CL, BI, E, DB, Y, PR, Vp, VOD, DE | PPV | 170 | 0.99 |
Khandelwal [2] | ANN | B, S, HD, HL, CL, BI, E, DB, Y, PR, Vp, VOD, DE | Frequency | 170 | 0.99 |
Khandelwal [3] | ANN | B, S, D, BI, MC, Y, PR, Vp, VOD | PPV | 174 | 0.99 |
Khandelwal [3] | ANN | B, S, D, BI, MC, Y, PR, Vp, VOD | Frequency | 174 | 0.91 |
Dehghani [27] | ANN | B, S, D, NR, PF, MC, MH, DB, PLI | PPV | 116 | 0.75 |
Monjezi [7] | ANN | HL, ST, MC, DB | PPV | 182 | 0.95 |
Mohamed [29] | ANN | MC, DB | PPV | 162 | 0.94 |
Armaghani [28] | PSO-ANN | B, S, HL, HD, ST, SD, NR, PF, MC, DB, RD, FRD | PPV | 44 | 0.93 |
Saadat [9] | ANN | HD, ST, MC | PPV | 69 | 0.96 |
Hajihassani [8] | ICA-ANN | BS, SL, MC, DB, Y, Vp | PPV | 95 | 0.98 |
Parameter [Unit] | Overview | Max | Min | Ave. |
---|---|---|---|---|
PPV [mm/s] | Peak Particle Velocity | 1.81 | 0.184 | 0.625 |
MIC [kg] | Amount of explosive used simultaneously within 8 ms | 32.5 | 23.0 | 26.1 |
Distance [m] | Parallel distance from the blasting point to the measuring point | 482 | 207 | 350 |
Difference elevation [m] | Difference in elevation between the blasting point and measuring point | 44.0 | 1.00 | 19.2 |
Direction [°] | Angle of the line connecting the blasting point to the measuring point (North = 360°) | 349 | 18.7 | 290 |
Blast-latitude [°] | Latitude of the blasting point | 39.988 | 39.985 | 39.986 |
Blast-longitude [°] | Longitude of the blasting point | 140.08 | 140.08 | 140.08 |
Measure-latitude [°] | Latitude of the measuring point | 39.990 | 39.985 | 39.988 |
Measure-longitude [°] | Longitude of the measuring point | 140.07 | 140.08 | 140.08 |
Hidden Neuron | MSE | Best Epoch | |
---|---|---|---|
2 | 0.0587 | 0.493 | 4 |
4 | 0.0381 | 0.837 | 8 |
6 | 0.0245 | 0.874 | 17 |
8 | 0.0816 | 0.605 | 5 |
10 | 0.123 | 0.724 | 9 |
12 | 0.121 | 0.566 | 7 |
14 | 0.200 | 0.497 | 3 |
Number of Rank | Nor-ANN | Nor-1-11 | Nor-None |
---|---|---|---|
1 | 0.509 | 0.313 | 0.359 |
2 | 0.520 | 0.299 | 0.332 |
3 | 0.517 | 0.297 | 0.318 |
4 | 0.264 | 0.366 | 0.272 |
5 | 0.184 | 0.357 | 0.269 |
6 | 0.245 | 0.448 | 0.362 |
7 | 0.143 | 0.273 | 0.222 |
8 | 0.225 | 0.341 | 0.275 |
Cases | Range of Error | Difference | |
---|---|---|---|
Min | Max | ||
Matrix100 | 0.410 | 0.636 | |
Matrix80 | 0.188 | 0.522 | |
Matrix60 | 0.106 | 0.417 | |
Matrix40 | 0.899 | 1.683 | |
Matrix20 | 0.476 | 1.273 | 0.798 |
Number of Rank | RMSE | ||||
---|---|---|---|---|---|
Matrix100 | Matrix80 | Matrix60 | Matrix40 | Matrix20 | |
1 | 0.463 | 0.490 | 0.578 | 0.524 | 0.715 |
2 | 0.469 | 0.554 | 0.605 | 0.432 | 0.507 |
3 | 0.453 | 0.352 | 0.602 | 0.330 | 0.519 |
4 | 0.279 | 0.261 | 0.370 | 0.394 | 0.363 |
5 | 0.278 | 0.204 | 0.289 | 0.468 | 55,392.383 |
6 | 0.278 | 0.166 | 0.138 | 0.494 | 0.369 |
7 | 0.176 | 0.166 | 0.286 | 0.411 | 0.393 |
8 | 0.255 | 0.307 | 0.290 | 0.493 | 0.668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, H.; Takeuchi, M.; Pansilvania, E.; Sinaice, B.B.; Toriya, H.; Adachi, T.; Kawamura, Y. Urban Quarry Ground Vibration Forecasting: A Matrix Factorization Approach. Appl. Sci. 2023, 13, 12674. https://doi.org/10.3390/app132312674
Ikeda H, Takeuchi M, Pansilvania E, Sinaice BB, Toriya H, Adachi T, Kawamura Y. Urban Quarry Ground Vibration Forecasting: A Matrix Factorization Approach. Applied Sciences. 2023; 13(23):12674. https://doi.org/10.3390/app132312674
Chicago/Turabian StyleIkeda, Hajime, Masato Takeuchi, Elsa Pansilvania, Brian Bino Sinaice, Hisatoshi Toriya, Tsuyoshi Adachi, and Youhei Kawamura. 2023. "Urban Quarry Ground Vibration Forecasting: A Matrix Factorization Approach" Applied Sciences 13, no. 23: 12674. https://doi.org/10.3390/app132312674
APA StyleIkeda, H., Takeuchi, M., Pansilvania, E., Sinaice, B. B., Toriya, H., Adachi, T., & Kawamura, Y. (2023). Urban Quarry Ground Vibration Forecasting: A Matrix Factorization Approach. Applied Sciences, 13(23), 12674. https://doi.org/10.3390/app132312674