Innovative Application of Subwavelength Periodic Polystyrene Microspheres as Saturable Absorbers in Nonlinear Optics
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Experimental Setup
4. Experimental Results and Discussion
4.1. Nonlinear Optical Feature
4.2. Output Characteristics of Q-Switched Laser Based on PSM-SA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crocker, J.C. Elusive photonic crystals come a step closer. Nature 2020, 585, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Joannopoulos, J.; Johnson, S.; Winn, J.; Meade, R.; Princeton, N. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D., Eds.; Princeton University Press: Princeton, NJ, USA, 2008; ISBN 978-0-691-12456-8. [Google Scholar]
- Kumar, A.; Verma, P.; Jindal, P. Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt. Quantum Electron. 2021, 53, 165. [Google Scholar] [CrossRef]
- Srinivasan, K.; Radhakrishnan, G.; Mohammadd, N.; Amin, R.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M.; Alsalem, K.A.J. Ultra-high negative dispersion compensating circular–shaped PCF with highly birefringent and nonlinear characteristics for optical applications. Opt. Quantum Electron. 2022, 54, 834. [Google Scholar] [CrossRef]
- Tian, P.; Bi, W.; Jin, W.; Xia, X.; Fu, X.; Fu, G. Ultra-broadband LP01-LP11 mode converter based on superimposed long period grating in PCF. Optik 2023, 272, 170260. [Google Scholar] [CrossRef]
- Taya, S.A.; Alhamss, D.N.; Almawgani, A.H.; Alzahrani, A.; Colak, I.; Patel, S.K. Tuberculosis detection using a low-loss and highly sensitive photonic crystal fiber technique in the terahertz regime. JOSA B 2023, 40, 2382–2391. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Gong, H.; Shao, J.; Fan, Z. Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors. Appl. Surf. Sci. 2003, 210, 353–358. [Google Scholar] [CrossRef]
- Liu, J.; Lin, C.-Y.; Tzou, W.-C.; Hsueh, N.-K.; Yang, C.-F.; Chen, Y. Reflection of Blue Light Using Bi-Layer Al2O3–TiO2 E-Beam Coating Films. Cryst. Growth Des. 2018, 18, 5426–5433. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Lee, C.-C.; Lu, K.-H.; Jheng, C.-Y.; Chen, Y.-J. Fabry-Perot based metal-dielectric multilayered filters and metamaterials. Opt. Express 2015, 23, 33008–33017. [Google Scholar] [CrossRef]
- Tkach, R.; Chraplyvy, A. Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Light. Technol. 1986, 4, 1655–1661. [Google Scholar] [CrossRef]
- Johnson, S.G.; Villeneuve, P.R.; Fan, S.; Joannopoulos, J.D. Linear waveguides in photonic-crystal slabs. Phys. Rev. B 2000, 62, 8212. [Google Scholar] [CrossRef]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Ghasemi, F.; Entezar, S.R.; Razi, S. Graphene based photonic crystal optical filter: Design and exploration of the tunability. Phys. Lett. A 2019, 383, 2551–2560. [Google Scholar] [CrossRef]
- Gong, Y.; Vučković, J. Photonic crystal cavities in silicon dioxide. Appl. Phys. Lett. 2010, 96, 031107. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Meng, Z.-M. Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices. J. Mater. Chem. C 2014, 2, 783–800. [Google Scholar] [CrossRef]
- Birner, A.; Wehrspohn, R.B.; Gösele, U.M.; Busch, K. Silicon-based photonic crystals. Adv. Mater. 2001, 13, 377–388. [Google Scholar] [CrossRef]
- Fleming, J.; Lin, S.; El-Kady, I.; Biswas, R.; Ho, K. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, F.; Wei, Z.-Y.; Meng, Q.-B.; Zhang, D.-Z.; Li, Z.-Y. 10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals. Appl. Phys. Lett. 2009, 95, 131116. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Kang, S.; Qin, L.; Yan, W.; Mu, J. Facile assembly and properties of polystyrene microsphere/reduced graphene oxide/Ag composite. J. Colloid Interface Sci. 2013, 402, 279–283. [Google Scholar] [CrossRef]
- Yu, S.; Tan, H.; Wang, J.; Liu, X.; Zhou, K. High Porosity Supermacroporous Polystyrene Materials with Excellent Oil–Water Separation and Gas Permeability Properties. ACS Appl. Mater. Interfaces 2015, 7, 6745. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.; Qiao, W.; Liu, C.; Liu, X.; Zhan, L.; Ling, L. Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene—ScienceDirect. Fuel Process. Technol. 2009, 90, 381–387. [Google Scholar] [CrossRef]
- Łańcucki, Ł.; Mizera, A.; Łącz, A.; Drożdż, E.; Pasierb, P. Development and chemical stability evaluation of enhanced surface LaFe 1–x Ti x O 3 (LFT) perovskites using polystyrene nanospheres as templating agent. J. Alloys Compd. 2017, 727, 863–870. [Google Scholar] [CrossRef]
- Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S.W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J.P. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Bredas, J.L.; Adant, C.; Tackx, P.; Persoons, A.; Pierce, B.M. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chem. Rev. 1994, 94, 243–278. [Google Scholar] [CrossRef]
- Cardelino, B.H. Organic Materials For Optical Switching. Polym. Adv. Technol. 1993, 11, 553–559. [Google Scholar]
- Hu, X.; Zhang, Q.; Liu, Y.; Cheng, B.; Zhang, D. Ultrafast three-dimensional tunable photonic crystal. Appl. Phys. Lett. 2003, 83, 2518–2520. [Google Scholar] [CrossRef]
- Xu, T.; Guo, S.; Qi, W.; Li, S.; Xu, M.; Wang, W. Organic transistor nonvolatile memory with three-level information storage and optical detection functions. ACS Appl. Mater. Interfaces 2020, 12, 21952–21960. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Ishizaki, K.; Noda, S. Light propagation in three-dimensional photonic crystals. Optics Express 2009, 18, 386–392. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Florescu, M.; Lee, H.; Stimpson, A.J.; Dowling, J. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals. Phys. Rev. A 2005, 72, 033821. [Google Scholar] [CrossRef]
- Mayonado, G.; Mian, S.M.; Robbiano, V.; Cacialli, F. Investigation of the Bragg-Snell law in photonic crystals. In Proceedings of the Conference on Lab Instruction Beyond the First Year, College Park, MD, USA, 22–24 July 2015; pp. 60–63. [Google Scholar]
- Liu, K.; Schmedake, T.; Tsu, R. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg’s law. Phys. Lett. A 2008, 372, 4517–4520. [Google Scholar] [CrossRef]
- Moscardi, L.; Lanzani, G.; Paternò, G.M.; Scotognella, F. Stimuli-responsive photonic crystals. Appl. Sci. 2021, 11, 2119. [Google Scholar] [CrossRef]
- Wang, X. Fabrication, Structural and Optical Study of Self-Assembled Hyperbolic Metamaterial. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2017. [Google Scholar]
- Wang, Q.; Hou, L.; Li, C.; Zhou, H.; Gan, X.; Liu, K.; Xiao, F.; Zhao, J. Toward high-performance refractive index sensor using single Au nanoplate-on-mirror nanocavity. Nanoscale 2022, 14, 10773–10779. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shen, Y.R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 2006, 97, 206806. [Google Scholar] [CrossRef]
- Tang, C.; Zhan, P.; Cao, Z.; Pan, J.; Chen, Z.; Wang, Z. Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys. Rev. B 2011, 83, 041402. [Google Scholar] [CrossRef]
- Cipparrone, G.; Duca, D.; Umeton, C.; Tabiryan, N. Observation of Doppler-like redshift due to light interaction with matter. Phys. Rev. Lett. 1993, 71, 3955. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, Z.; Li, K.; Fang, F.; Wang, L. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy. Appl. Surf. Sci. 2015, 355, 1168–1174. [Google Scholar] [CrossRef]
- Kanger, J.S.; Otto, C.; Greve, J. Stimulated Raman Gain Spectroscopy of Thin Layers Using Dielectric Waveguides. J. Phys. Chem. 1996, 100, 16293–16297. [Google Scholar] [CrossRef]
- Jiang, C.; Ning, J.; Li, X.; Wang, X.; Zhang, Z. Development of a 1550-nm InAs/GaAs Quantum Dot Saturable Absorber Mirror with a Short-Period Superlattice Capping Structure Towards Femtosecond Fiber Laser Applications. Nanoscale Res. Lett. 2019, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Chiu, T.H.; Ferguson, J.F. Self-starting and self-Q-switching dynamics of passively mode-locked Nd:YLF and Nd:YAG lasers. Opt. Lett. 1993, 18, 217. [Google Scholar] [CrossRef]
- Robert, W.; Edmund, K. 2D Saturable Absorbers for Fibre Lasers. Appl. Ences 2015, 5, 1440–1456. [Google Scholar]
- Yu, Y.; Si, J.; Yan, L.; Li, M.; Hou, X. Enhanced nonlinear absorption and ultrafast carrier dynamics in graphene/gold nanoparticles nanocomposites. Carbon 2019, 148, 72–79. [Google Scholar] [CrossRef]
- Vincenti, A.M.; Ceglia, D.; Grande, M.; D’Orazio, A.; Scalora, M. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt. Lett. 2013, 38, 3550–3553. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, H.; Chu, H.; Dai, H.; Liu, B.; Zhang, Z.; Jiang, C. Innovative Application of Subwavelength Periodic Polystyrene Microspheres as Saturable Absorbers in Nonlinear Optics. Appl. Sci. 2023, 13, 12153. https://doi.org/10.3390/app132212153
Huang Y, Wang H, Chu H, Dai H, Liu B, Zhang Z, Jiang C. Innovative Application of Subwavelength Periodic Polystyrene Microspheres as Saturable Absorbers in Nonlinear Optics. Applied Sciences. 2023; 13(22):12153. https://doi.org/10.3390/app132212153
Chicago/Turabian StyleHuang, Yancheng, Hongpei Wang, Huiyuan Chu, Hao Dai, Boyuan Liu, Ziyang Zhang, and Cheng Jiang. 2023. "Innovative Application of Subwavelength Periodic Polystyrene Microspheres as Saturable Absorbers in Nonlinear Optics" Applied Sciences 13, no. 22: 12153. https://doi.org/10.3390/app132212153
APA StyleHuang, Y., Wang, H., Chu, H., Dai, H., Liu, B., Zhang, Z., & Jiang, C. (2023). Innovative Application of Subwavelength Periodic Polystyrene Microspheres as Saturable Absorbers in Nonlinear Optics. Applied Sciences, 13(22), 12153. https://doi.org/10.3390/app132212153