Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions
Abstract
:1. Introduction
- Tasks to be performed in unstructured and dynamic environments, such as deep-sea exploration and space applications.
- Tasks involving operations in hazardous situations where human health is severely harmed. For example, in the Fukushima nuclear disaster, there was a high demand for emergency treatment and rescue. Mining scenarios are also increasingly typical.
- Tasks requiring dexterity, especially the coordination between hands and eyes. Medical surgery performed with remote robots is a typical example.
- Tasks requiring object recognition, obstacle detection, or situational awareness, for example, inspection in confined spaces.
2. Categories of Robotic Teleoperation
2.1. Collocated and Separated Teleoperation
2.2. Ego-Centric and Eco-Centric Teleoperation
2.3. Robotic Mechanism-Based and Motion Sensor-Based Teleoperation
3. Intuitive and Natural Teleoperation
4. Mixed Reality for Human-Robot Interaction
4.1. Human-Robot Interaction
4.2. Reality–Virtuality Continuum
4.3. Mixed Reality–Enhanced Telemanipulation
4.3.1. Mixed Reality–Enhanced Intuitive Telemanipulation
4.3.2. Mixed Reality–Based Vision Mapping and Merging
4.4. Mixed Reality-Enhanced Robotic Tele-Welding
4.4.1. Robotic Tele-Welding
4.4.2. Mixed Reality–Enhanced Robot-Assisted Welding
5. Challenges and Future Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kheddar, A.; Neo, E.S.; Tadakuma, R.; Yokoi, K. Enhanced Teleoperation through Virtual Reality Techniques. Springer Tracts Adv. Robot. 2007, 31, 139–159. [Google Scholar] [CrossRef]
- Ismet Can Dede, M.; Selvi, Ö.; Bilgincan, T.; Kant, Y. Design of a Haptic Device for Teleoperation and Virtual Reality Systems. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, SMC, San Antonio, TX, USA, 11–14 October 2009; pp. 3623–3628. [Google Scholar] [CrossRef]
- Phung, A.; Billings, G.; Daniele, A.F.; Walter, M.R.; Camilli, R. Enhancing Scientific Exploration of the Deep Sea through Shared Autonomy in Remote Manipulation. Sci. Robot. 2023, 8, eadi5227. [Google Scholar] [CrossRef] [PubMed]
- Vagvolgyi, B.; Niu, W.; Chen, Z.; Wilkening, P.; Kazanzides, P. Augmented Virtuality for Model-Based Teleoperation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3826–3833. [Google Scholar] [CrossRef]
- Vagvolgyi, B.P.; Pryor, W.; Reedy, R.; Niu, W.; Deguet, A.; Whitcomb, L.L.; Leonard, S.; Kazanzides, P. Scene Modeling and Augmented Virtuality Interface for Telerobotic Satellite Servicing. IEEE Robot. Autom. Lett. 2018, 3, 4241–4248. [Google Scholar] [CrossRef]
- Salman, A.E.; Roman, M.R. Augmented Reality-Assisted Gesture-Based Teleoperated System for Robot Motion Planning. Ind. Robot. 2023, 50, 765–780. [Google Scholar] [CrossRef]
- Wang, Z.; Reed, I.; Fey, A.M. Toward Intuitive Teleoperation in Surgery: Human-Centric Evaluation of Teleoperation Algorithms for Robotic Needle Steering. In Proceedings of the Proceedings—IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 5799–5806. [Google Scholar]
- Martin, E.J.; Erwin, B.; Katija, K.; Phung, A.; Gonzalez, E.; Thun, S.; Von Cullen, H.; Haddock, S.H.D. A Virtual Reality Video System for Deep Ocean Remotely Operated Vehicles. In Proceedings of the OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021. [Google Scholar] [CrossRef]
- Hedayati, H.; Walker, M.; Szafir, D. Improving Collocated Robot Teleoperation with Augmented Reality. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 78–86. [Google Scholar] [CrossRef]
- Liu, Y.C.; Khong, M.H.; Ou, T.W. Nonlinear Bilateral Teleoperators with Non-Collocated Remote Controller over Delayed Network. Mechatronics 2017, 45, 25–36. [Google Scholar] [CrossRef]
- Lai, Z.H.; Tao, W.; Leu, M.C.; Yin, Z. Smart Augmented Reality Instructional System for Mechanical Assembly towards Worker-Centered Intelligent Manufacturing. J. Manuf. Syst. 2020, 55, 69–81. [Google Scholar] [CrossRef]
- Walker, M.E.; Hedayati, H.; Szafir, D. Robot Teleoperation with Augmented Reality Virtual Surrogates. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Daegu, Republic of Korea, 11–14 March 2019; pp. 202–210. [Google Scholar]
- Liu, H.; Wang, L. Remote Human—Robot Collaboration: A Cyber—Physical System Application for Hazard Manufacturing Environment. J. Manuf. Syst. 2020, 54, 24–34. [Google Scholar] [CrossRef]
- Stotko, P.; Krumpen, S.; Schwarz, M.; Lenz, C.; Behnke, S.; Klein, R.; Weinmann, M. A VR System for Immersive Teleoperation and Live Exploration with a Mobile Robot. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Macao, China, 3–8 November 2019; pp. 3630–3637. [Google Scholar]
- Almeida, L.; Menezes, P.; Dias, J. Improving Robot Teleoperation Experience via Immersive Interfaces. In Proceedings of the 2017 4th Experiment at International Conference: Online Experimentation, Faro, Portugal, 6–8 June 2017; pp. 87–92. [Google Scholar] [CrossRef]
- Pace, F.; De Gorjup, G.; Bai, H.; Sanna, A.; Liarokapis, M.; Billinghurst, M. Leveraging Enhanced Virtual Reality Methods and Environments for Efficient, Intuitive, and Immersive Teleoperation of Robots. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 5 June 2021; pp. 12967–12973. [Google Scholar] [CrossRef]
- Zhou, T.; Zhu, Q.; Du, J. Intuitive Robot Teleoperation for Civil Engineering Operations with Virtual Reality and Deep Learning Scene Reconstruction. Adv. Eng. Inform. 2020, 46, 10170–10190. [Google Scholar] [CrossRef]
- Duong, M.D.; Teraoka, C.; Imamura, T.; Miyoshi, T.; Terashima, K. Master-Slave System with Teleoperation for Rehabilitation. IFAC Proc. Vol. 2005, 16, 48–53. [Google Scholar] [CrossRef]
- Hung, N.V.Q.; Narikiyo, T.; Tuan, H.D.; Fuwa, K. A Dynamics-Based Adaptive Control for Master-Slave System in Teleoperation. IFAC Proc. Vol. 2001, 34, 237–242. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, D.; Guo, Y. Adaptive Neural Network Based Position Tracking Control for Dual-Master/Single-Slave Teleoperation System under Communication Constant Time Delays. ISA Trans. 2019, 93, 80–92. [Google Scholar] [CrossRef] [PubMed]
- LIU, G.; GENG, X.; LIU, L.; WANG, Y. Haptic Based Teleoperation with Master-Slave Motion Mapping and Haptic Rendering for Space Exploration. Chin. J. Aeronaut. 2019, 32, 723–736. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, L.; Rockel, S.; Zhang, J.; Hu, Y.; Zhang, J. A Novel Optical Tracking Based Tele-Control System for Tabletop Object Manipulation Tasks. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 636–642. [Google Scholar] [CrossRef]
- Cerulo, I.; Ficuciello, F.; Lippiello, V.; Siciliano, B. Teleoperation of the SCHUNK S5FH Under-Actuated Anthropomorphic Hand Using Human Hand Motion Tracking. Rob. Auton. Syst. 2017, 89, 75–84. [Google Scholar] [CrossRef]
- Suligoj, F.; Jerbic, B.; Svaco, M.; Sekoranja, B.; Mihalinec, D.; Vidakovic, J. Medical Applicability of a Low-Cost Industrial Robot Arm Guided with an Optical Tracking System. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 3785–3790. [Google Scholar] [CrossRef]
- Dinh, T.Q.; Yoon, J., II; Marco, J.; Jennings, P.; Ahn, K.K.; Ha, C. Sensorless Force Feedback Joystick Control for Teleoperation of Construction Equipment. Int. J. Precis. Eng. Manuf. 2017, 18, 955–969. [Google Scholar] [CrossRef]
- Truong, D.Q.; Truong, B.N.M.; Trung, N.T.; Nahian, S.A.; Ahn, K.K. Force Reflecting Joystick Control for Applications to Bilateral Teleoperation in Construction Machinery. Int. J. Precis. Eng. Manuf. 2017, 18, 301–315. [Google Scholar] [CrossRef]
- Nakanishi, J.; Itadera, S.; Aoyama, T.; Hasegawa, Y. Towards the Development of an Intuitive Teleoperation System for Human Support Robot Using a VR Device. Adv. Robot. 2020, 34, 1239–1253. [Google Scholar] [CrossRef]
- Meeker, C.; Rasmussen, T.; Ciocarlie, M. Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace. In Proceedings of the Proceedings—IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 5821–5827. [Google Scholar]
- Ellis, S.R.; Adelstein, B.D.; Welch, R.B. Kinesthetic Compensation for Misalignment of Teleoperator Controls through Cross-Modal Transfer of Movement Coordinates. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Santa Barbara, CA, USA, 1 September 2002; Volume 46, pp. 1551–1555. [Google Scholar]
- Li, G.; Caponetto, F.; Del Bianco, E.; Katsageorgiou, V.; Sarakoglou, I.; Tsagarakis, N.G. Incomplete Orientation Mapping for Teleoperation with One DoF Master-Slave Asymmetry. IEEE Robot. Autom. Lett. 2020, 5, 5167–5174. [Google Scholar] [CrossRef]
- Bejczy, B.; Bozyil, R.; Vaiekauskas, E.; Petersen, S.B.K.; Bogh, S.; Hjorth, S.S.; Hansen, E.B. Mixed Reality Interface for Improving Mobile Manipulator Teleoperation in Contamination Critical Applications. Procedia Manuf. 2020, 51, 620–626. [Google Scholar] [CrossRef]
- Triantafyllidis, E.; McGreavy, C.; Gu, J.; Li, Z. Study of Multimodal Interfaces and the Improvements on Teleoperation. IEEE Access 2020, 8, 78213–78227. [Google Scholar] [CrossRef]
- Yew, A.W.W.; Ong, S.K.; Nee, A.Y.C. Immersive Augmented Reality Environment for the Teleoperation of Maintenance Robots. Procedia CIRP 2017, 61, 305–310. [Google Scholar] [CrossRef]
- Komatsu, R.; Fujii, H.; Tamura, Y.; Yamashita, A.; Asama, H. Free Viewpoint Image Generation System Using Fisheye Cameras and a Laser Rangefinder for Indoor Robot Teleoperation. ROBOMECH J. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Ribeiro, L.G.; Suominen, O.J.; Durmush, A.; Peltonen, S.; Morales, E.R.; Gotchev, A. Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment. Appl. Sci. 2021, 11, 3. [Google Scholar] [CrossRef]
- Illing, B.; Westhoven, M.; Gaspers, B.; Smets, N.; Bruggemann, B.; Mathew, T. Evaluation of Immersive Teleoperation Systems Using Standardized Tasks and Measurements. In Proceedings of the 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, Naples, Italy, 31 August–4 September 2020; pp. 278–285. [Google Scholar] [CrossRef]
- Chen, J.; Glover, M.; Yang, C.; Li, C.; Li, Z.; Cangelosi, A. Development of an Immersive Interface for Robot Teleoperation. In Proceedings of the Annual Conference towards Autonomous Robotic Systems, Guildford, UK, 9–21 July 2017; pp. 1–15. [Google Scholar]
- Cody, G.; Brian, R.; Allison, W.; Miller, M.; Stoytchev, A. An Effective and Intuitive Control Interface for Remote Robot Teleoperation with Complete Haptic Feedback. In Proceedings of the Emerging Technologies Conference-ETC, Islamabad, Pakistan, 19–20 October 2009. [Google Scholar]
- Kaplish, A.; Yamane, K. Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Toronto, ON, Canada, 15–17 October 2019; pp. 723–730. [Google Scholar] [CrossRef]
- Rakita, D.; Mutlu, B.; Gleicher, M. A Motion Retargeting Method for Effective Mimicry-Based Teleoperation of Robot Arms. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction Part. F127194, Vienna, Austria, 6–9 March 2017; pp. 361–370. [Google Scholar] [CrossRef]
- Hong, A.; Lee, D.G.; Bülthoff, H.H.; Son, H. Il Multimodal Feedback for Teleoperation of Multiple Mobile Robots in an Outdoor Environment. J. Multimodal User Interfaces 2017, 11, 67–80. [Google Scholar] [CrossRef]
- Wang, X.; Dunston, P.S. Mixed Reality—Enhanced Operator Interface for Teleoperation Systems in Unstructured Environment. In Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments—Earth and Space 2006, Houston, TX, USA, 5–8 March 2006; Volume 2006, p. 93. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Li, Z.; Li, Y.; Su, C.Y. Teleoperation Control Based on Combination of Wave Variable and Neural Networks. IEEE Trans. Syst. Man. Cybern. Syst. 2017, 47, 2125–2136. [Google Scholar] [CrossRef]
- Girbes-Juan, V.; Schettino, V.; Demiris, Y.; Tornero, J. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks. IEEE Trans. Haptics 2021, 14, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Zolotas, M.; Wonsick, M.; Long, P.; Padır, T. Motion Polytopes in Virtual Reality for Shared Control in Remote Manipulation Applications. Front. Robot. AI 2021, 8, 730433. [Google Scholar] [CrossRef]
- Gao, X.; Silverio, J.; Pignat, E.; Calinon, S.; Li, M.; Xiao, X. Motion Mappings for Continuous Bilateral Teleoperation. IEEE Robot. Autom. Lett. 2021, 6, 5048–5055. [Google Scholar] [CrossRef]
- Ferre, M.; Cobos, S.; Aracil, R.; Urán, M.A.S. 3D-Image Visualization and Its Performance in Teleoperation. In Proceedings of the Second International Conference, ICVR 2007, Held as part of HCI International 2007, Beijing, China, 22–27 July 2007; Volume 4563, pp. 21–27. [Google Scholar]
- Arévalo Arboleda, S.; Dierks, T.; Rücker, F.; Gerken, J. Exploring the Visual Space to Improve Depth Perception in Robot Teleoperation Using Augmented Reality: The Role of Distance and Target’s Pose in Time, Success, and Certainty. In Proceedings of the IFIP Conference on Human-Computer Interaction, York, UK, 28 August–1 September 2021; Volume 12932, pp. 522–543. [Google Scholar]
- Guzsvinecz, T.; Kovacs, C.; Reich, D.; Szucs, V.; Sik-Lanyi, C. Developing a Virtual Reality Application for the Improvement of Depth Perception. In Proceedings of the 2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 17–22. [Google Scholar]
- Chenf, F.; Gao, B.; Selvaggio, M.; Li, Z.; Caldwell, D.; Kershaw, K.; Masi, A.; Di Castro, M.; Losito, R. A Framework of Teleoperated and Stereo Vision Guided Mobile Manipulation for Industrial Automation. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2016, Harbin, China, 7–10 August 2016; pp. 1641–1648. [Google Scholar]
- McHenry, N.; Spencer, J.; Zhong, P.; Cox, J.; Amiscaray, M.; Wong, K.C.; Chamitoff, G. Predictive XR Telepresence for Robotic Operations in Space. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 6–13 March 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Smolyanskiy, N.; Gonzalez-Franco, M. Stereoscopic First Person View System for Drone Navigation. Front. Robot. AI 2017, 4, 11. [Google Scholar] [CrossRef]
- Livatino, S.; Muscato, G.; Privitera, F. Stereo Viewing and Virtual Reality Technologies in Mobile Robot Teleguide. IEEE Trans. Robot. 2009, 25, 1343–1355. [Google Scholar] [CrossRef]
- Niu, L.; Aha, L.; Mattila, J.; Gotchev, A.; Ruiz, E. A Stereoscopic Eye-in-Hand Vision System for Remote Handling in ITER. Fusion. Eng. Des. 2019, 146, 1790–1795. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, D.; Zhou, Q.; Zhang, X.; Geng, J.; Zeng, S.; Lv, C.; Hao, A. Applications of Virtual Reality in Maintenance during the Industrial Product Lifecycle: A Systematic Review. J. Manuf. Syst. 2020, 56, 525–538. [Google Scholar] [CrossRef]
- Panzirsch, M.; Balachandran, R.; Weber, B.; Ferre, M.; Artigas, J. Haptic Augmentation for Teleoperation through Virtual Grasping Points. IEEE Trans. Haptics 2018, 11, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Abi-Farrajl, F.; Henze, B.; Werner, A.; Panzirsch, M.; Ott, C.; Roa, M.A. Humanoid Teleoperation Using Task-Relevant Haptic Feedback. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2018, Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Singh, J.; Srinivasan, A.R.; Neumann, G.; Kucukyilmaz, A. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm with an Identical Twin Master. IEEE Trans. Haptics 2020, 13, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Shankhwar, K.; Chuang, T.J.; Tsai, Y.Y.; Smith, S. A Visuo-Haptic Extended Reality–Based Training System for Hands-on Manual Metal Arc Welding Training. Int. J. Adv. Manuf. Technol. 2022, 121, 249–265. [Google Scholar] [CrossRef]
- Nuzzi, C.; Ghidini, S.; Pagani, R.; Pasinetti, S.; Coffetti, G.; Sansoni, G. Hands-Free: A Robot Augmented Reality Teleoperation System. In Proceedings of the 2020 17th International Conference on Ubiquitous Robots, UR, Kyoto, Japan, 22–26 June 2020; pp. 617–624. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Zhang, H.; Li, D.; Zhang, T. Distributed Teleoperation System for Controlling Heterogeneous Robots Based on ROS. In Proceedings of the IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO 2019, Beijing, China, 31 October–2 November 2019; pp. 7–12. [Google Scholar] [CrossRef]
- Bai, W.; Cao, Q.; Wang, P.; Chen, P.; Leng, C.; Pan, T. Modular Design of a Teleoperated Robotic Control System for Laparoscopic Minimally Invasive Surgery Based on ROS & RT-Middleware. Ind. Robot. 2017, 44, 596–608. [Google Scholar] [CrossRef]
- Lee, D.; Park, Y.S. Implementation of Augmented Teleoperation System Based on Robot Operating System (ROS). In Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2018, Madrid, Spain, 1–5 October 2018; pp. 5497–5502. [Google Scholar] [CrossRef]
- Mortimer, M.; Horan, B.; Joordens, M. Kinect with ROS, Interact with Oculus: Towards Dynamic User Interfaces for Robotic Teleoperation. In Proceedings of the 2016 11th Systems of Systems Engineering Conference, SoSE 2016, Kongsberg, Norway, 12–16 June 2016. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, Y.; Yang, B.; Zheng, W.; Liu, S.; Liu, C. A Review of Bilateral Teleoperation Control Strategies with Soft Environment. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2021, Chongqing, China, 3–5 July 2021; pp. 459–464. [Google Scholar] [CrossRef]
- Kebria, P.M.; Khosravi, A.; Nahavandi, S.; Shi, P.; Alizadehsani, R. Robust Adaptive Control Scheme for Teleoperation Systems with Delay and Uncertainties. IEEE Trans. Cybern. 2020, 50, 3243–3253. [Google Scholar] [CrossRef]
- Luo, J.; He, W.; Yang, C. Combined Perception, Control, and Learning for Teleoperation: Key Technologies, Applications, and Challenges. Cogn. Comput. Syst. 2020, 2, 33–43. [Google Scholar] [CrossRef]
- Sun, D.; Kiselev, A.; Liao, Q.; Stoyanov, T.; Loutfi, A. A New Mixed-Reality-Based Teleoperation System for Telepresence and Maneuverability Enhancement. IEEE Trans. Hum. Mach. Syst. 2020, 50, 55–67. [Google Scholar] [CrossRef]
- Nittari, G.; Khuman, R.; Baldoni, S.; Pallotta, G.; Battineni, G.; Sirignano, A.; Amenta, F.; Ricci, G. Telemedicine Practice: Review of the Current Ethical and Legal Challenges. Telemed. E-Health 2020, 26, 1427–1437. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, J.; Joshua, L.M.; Huda, F.; Kumar, N.; Basu, S.; Singh, S.K.; Sharma, J.; Joshua, L.M.; Huda, F.; et al. Telesurgery and Robotics: Current Status and Future Perspectives; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Miao, Y.; Jiang, Y.; Peng, L.; Hossain, M.S.; Muhammad, G. Telesurgery Robot Based on 5G Tactile Internet. Mob. Netw. Appl. 2018, 23, 1645–1654. [Google Scholar] [CrossRef]
- Dinh, A.; Yin, A.L.; Estrin, D.; Greenwald, P.; Fortenko, A. Augmented Reality in Real-Time Telemedicine and Telementoring: Scoping Review. JMIR Mhealth Uhealth 2023, 11, e45464. [Google Scholar] [CrossRef]
- Jin, M.L.; Brown, M.M.; Patwa, D.; Nirmalan, A.; Edwards, P.A. Telemedicine, Telementoring, and Telesurgery for Surgical Practices. Curr. Probl. Surg. 2021, 58, 100986. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Miao, J.; Liao, Z.; Luan, X.; Meng, L. Dynamic Constraint and Objective Generation Approach for Real-Time Train Rescheduling Model under Human-Computer Interaction. High-Speed Railw. 2023. [Google Scholar] [CrossRef]
- Liu, J.B.; Ang, M.C.; Chaw, J.K.; Kor, A.L.; Ng, K.W. Emotion Assessment and Application in Human–Computer Interaction Interface Based on Backpropagation Neural Network and Artificial Bee Colony Algorithm. Expert. Syst. Appl. 2023, 232, 120857. [Google Scholar] [CrossRef]
- Chen, H.; Zendehdel, N.; Leu, M.C.; Yin, Z. Real-Time Human-Computer Interaction Using Eye Gazes. Manuf. Lett. 2023, 35, 883–894. [Google Scholar] [CrossRef]
- Lopes, S.L.; Ferreira, A.I.; Prada, R.; Schwarzer, R. Social Robots as Health Promoting Agents: An Application of the Health Action Process Approach to Human-Robot Interaction at the Workplace. Int. J. Hum. Comput. Stud. 2023, 180, 103124. [Google Scholar] [CrossRef]
- Popov, D.; Pashkevich, A.; Klimchik, A. Adaptive Technique for Physical Human–Robot Interaction Handling Using Proprioceptive Sensors. Eng. Appl. Artif. Intell. 2023, 126, 107141. [Google Scholar] [CrossRef]
- Spatola, N.; Cherif, E. Spontaneous Humanization of Robots in Passive Observation of Human-Robot Interaction: A Path toward Ethical Consideration and Human-Robot Cooperation. Comput. Hum. Behav. Artif. Hum. 2023, 1, 100012. [Google Scholar] [CrossRef]
- Ratclife, J.; Soave, F.; Bryan-Kinns, N.; Tokarchuk, L.; Farkhatdinov, I. Extended Reality (XR) Remote Research: A Survey of Drawbacks and Opportunities. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 8–13 May 2021. [Google Scholar] [CrossRef]
- Doolani, S.; Wessels, C.; Kanal, V.; Sevastopoulos, C.; Jaiswal, A.; Nambiappan, H.; Makedon, F. A Review of Extended Reality (XR) Technologies for Manufacturing Training. Technologies 2020, 8, 77. [Google Scholar] [CrossRef]
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Otani, K.; Sugimoto, M.; Tsukamoto, M.; Yoshihara, T.; Ueno, M.; Mawatari, M. XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J. Clin. Med. 2022, 11, 470. [Google Scholar] [CrossRef]
- Zwolinski, G.; Kaminska, D.; Laska-Lesniewicz, A.; Eric Haamer, R.; Vairinhos, M.; Raposo, R.; Urem, F.; Reisinho, P. Extended Reality in Education and Training: Case Studies in Management Education. Electron 2022, 11, 336. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77-D, 1321–1329. [Google Scholar]
- Han, X.; Chen, Y.; Feng, Q.; Luo, H. Augmented Reality in Professional Training: A Review of the Literature from 2001 to 2020. Appl. Sci. 2022, 12, 1024. [Google Scholar] [CrossRef]
- Makhataeva, Z.; Varol, H.A. Augmented Reality for Robotics: A Review. Robotics 2020, 9, 21. [Google Scholar] [CrossRef]
- Li, C.; Fahmy, A.; Sienz, J. An Augmented Reality Based Human-Robot Interaction Interface Using Kalman Filter Sensor Fusion. Sensors 2019, 19, 4586. [Google Scholar] [CrossRef]
- Wonsick, M.; Padir, T. A Systematic Review of Virtual Reality Interfaces for Controlling and Interacting with Robots. Appl. Sci. 2020, 10, 9051. [Google Scholar] [CrossRef]
- Prati, E.; Villani, V.; Peruzzini, M.; Sabattini, L. An Approach Based on VR to Design Industrial Human-Robot Collaborative Workstations. Appl. Sci. 2021, 11, 11773. [Google Scholar] [CrossRef]
- Sievers, T.S.; Schmitt, B.; Rückert, P.; Petersen, M.; Tracht, K. Concept of a Mixed-Reality Learning Environment for Collaborative Robotics. Procedia Manuf. 2020, 45, 19–24. [Google Scholar] [CrossRef]
- Frank, J.A.; Moorhead, M.; Kapila, V. Mobile Mixed-Reality Interfaces That Enhance Human-Robot Interaction in Shared Spaces. Front. Robot. AI 2017, 4, 20. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, X.; Shuai, J.; Zheng, L. Collaborative Robot and Mixed Reality Assisted Microgravity Assembly for Large Space Mechanism. Procedia Manuf. 2020, 51, 38–45. [Google Scholar] [CrossRef]
- Choi, S.H.; Park, K.B.; Roh, D.H.; Lee, J.Y.; Mohammed, M.; Ghasemi, Y.; Jeong, H. An Integrated Mixed Reality System for Safety-Aware Human-Robot Collaboration Using Deep Learning and Digital Twin Generation. Robot. Comput. Integr. Manuf. 2022, 73, 102258. [Google Scholar] [CrossRef]
- Khatib, M.; Al Khudir, K.; De Luca, A. Human-Robot Contactless Collaboration with Mixed Reality Interface. Robot. Comput. Integr. Manuf. 2021, 67, 102030. [Google Scholar] [CrossRef]
- Palma, G.; Perry, S.; Cignoni, P. Augmented Virtuality Using Touch-Sensitive 3D-Printed Objects. Remote Sens. 2021, 13, 2186. [Google Scholar] [CrossRef]
- Gralak, R. A Method of Navigational Information Display Using Augmented Virtuality. J. Mar. Sci. Eng. 2020, 8, 237. [Google Scholar] [CrossRef]
- Ostanin, M.; Yagfarov, R.; Klimchik, A. Interactive Robots Control Using Mixed Reality. IFAC-Pap. 2019, 52, 695–700. [Google Scholar] [CrossRef]
- Dianatfar, M.; Latokartano, J.; Lanz, M. Review on Existing VR/AR Solutions in Human–Robot Collaboration. Procedia CIRP 2021, 97, 407–411. [Google Scholar] [CrossRef]
- Suzuki, R.; Karim, A.; Xia, T.; Hedayati, H.; Marquardt, N. Augmented Reality and Robotics: A Survey and Taxonomy for AR-Enhanced Human-Robot Interaction and Robotic Interfaces. In Proceedings of the Conference on Human Factors in Computing Systems, Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar] [CrossRef]
- Coronado, E.; Itadera, S.; Ramirez-Alpizar, I.G. Integrating Virtual, Mixed, and Augmented Reality to Human–Robot Interaction Applications Using Game Engines: A Brief Review of Accessible Software Tools and Frameworks. Appl. Sci. 2023, 13, 1292. [Google Scholar] [CrossRef]
- Roth, T.; Weier, M.; Hinkenjann, A.; Li, Y.; Slusallek, P. A Quality-Centered Analysis of Eye Tracking Data in Foveated. J. Eye Mov. Res. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Nakamura, K.; Tohashi, K.; Funayama, Y.; Harasawa, H.; Ogawa, J. Dual-Arm Robot Teleoperation Support with the Virtual World. Artif. Life Robot. 2020, 25, 286–293. [Google Scholar] [CrossRef]
- Whitney, D.; Rosen, E.; Ullman, D.; Phillips, E.; Tellex, S. ROS Reality: A Virtual Reality Framework Using Consumer-Grade Hardware for ROS-Enabled Robots. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 5018–5025. [Google Scholar]
- Whitney, D.; Rosen, E.; Phillips, E.; Konidaris, G.; Tellex, S. Comparing Robot Grasping Teleoperation Across Desktop and Virtual Reality with ROS Reality. Springer Proc. Adv. Robot. 2020, 10, 335–350. [Google Scholar] [CrossRef]
- Delpreto, J.; Lipton, J.I.; Sanneman, L.; Fay, A.J.; Fourie, C.; Choi, C.; Rus, D. Helping Robots Learn: A Human-Robot Master-Apprentice Model Using Demonstrations via Virtual Reality Teleoperation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 10226–10233. [Google Scholar] [CrossRef]
- Britton, N.; Yoshida, K.; Walker, J.; Nagatani, K.; Taylor, G.; Dauphin, L. Lunar Micro Rover Design for Exploration through Virtual Reality Tele-Operation. Springer Tracts Adv. Robot. 2015, 105, 259–272. [Google Scholar] [CrossRef]
- Su, Y.P.; Chen, X.Q.; Zhou, T.; Pretty, C.; Chase, J.G. Mixed Reality-Enhanced Intuitive Teleoperation with Hybrid Virtual Fixtures for Intelligent Robotic Welding. Appl. Sci. 2021, 11, 11280. [Google Scholar] [CrossRef]
- Livatino, S.; Guastella, D.C.; Muscato, G.; Rinaldi, V.; Cantelli, L.; Melita, C.D.; Caniglia, A.; Mazza, R.; Padula, G. Intuitive Robot Teleoperation through Multi-Sensor Informed Mixed Reality Visual Aids. IEEE Access 2021, 9, 25795–25808. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Wang, L.; Cheng, Z.; Mo, Z.; Zhang, S. Research on Mixed Reality Visual Augmentation Method for Teleoperation Interactive System; Springer: Berlin/Heidelberg, Germany, 2023; pp. 490–502. [Google Scholar] [CrossRef]
- Naceri, A.; Mazzanti, D.; Bimbo, J.; Prattichizzo, D.; Caldwell, D.G.; Mattos, L.S.; Deshpande, N. Towards a Virtual Reality Interface for Remote Robotic Teleoperation. In Proceedings of the 2019 19th International Conference on Advanced Robotics, ICAR 2019, Belo Horizonte, Brazil, 2–6 December 2019; pp. 284–289. [Google Scholar]
- Zhang, T.; McCarthy, Z.; Jowl, O.; Lee, D.; Chen, X.; Goldberg, K.; Abbeel, P. Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5628–5635. [Google Scholar] [CrossRef]
- Concannon, D.; Flynn, R.; Murray, N. A Quality of Experience Evaluation System and Research Challenges for Networked Virtual Reality-Based Teleoperation Applications. In Proceedings of the 11th ACM Workshop on Immersive Mixed and Virtual Environment Systems, MMVE 2019, Amherst, MA, USA, 18 June 2019; pp. 10–12. [Google Scholar]
- Stein, C.; Stein, C. Virtual Reality Design: How Head-Mounted Displays Change Design Paradigms of Virtual Reality Worlds. MediaTropes 2016, 6, 52–85. [Google Scholar] [CrossRef]
- Krupke, D.; Einig, L.; Langbehn, E.; Zhang, J.; Steinicke, F. Immersive Remote Grasping: Realtime Gripper Control by a Heterogenous Robot Control System. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Munich, Germany, 2–4 November 2016; pp. 337–338. [Google Scholar]
- Lipton, J.I.; Fay, A.J.; Rus, D. Baxter’s Homunculus: Virtual Reality Spaces for Teleoperation in Manufacturing. IEEE Robot. Autom. Lett. 2018, 3, 179–186. [Google Scholar] [CrossRef]
- Azar, A.T.; Humaidi, A.J.; Al Mhdawi, A.K.; Kaarlela, T.; Pitkäaho, T.; Pieskä, S.; Padrão, P.; Bobadilla, L.; Tikanmäki, M.; Haavisto, T.; et al. Towards Metaverse: Utilizing Extended Reality and Digital Twins to Control Robotic Systems. Actuators 2023 2023, 12, 219. [Google Scholar] [CrossRef]
- Su, Y.P.; Chen, X.Q.; Zhou, T.; Pretty, C.; Chase, G. Mixed-Reality-Enhanced Human–Robot Interaction with an Imitation-Based Mapping Approach for Intuitive Teleoperation of a Robotic Arm-Hand System. Appl. Sci. 2022, 12, 4740. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Zhou, T.; Pretty, C.; Chase, G. Mixed Reality-Integrated 3D/2D Vision Mapping for Intuitive Teleoperation of Mobile Manipulator. Robot. Comput. Integr. Manuf. 2022, 77, 102332. [Google Scholar] [CrossRef]
- Souchet, A.D.; Philippe, S.; Lourdeaux, D.; Leroy, L. Measuring Visual Fatigue and Cognitive Load via Eye Tracking While Learning with Virtual Reality Head-Mounted Displays: A Review. Int. J. Hum. Comput. Interact. 2022, 38, 801–824. [Google Scholar] [CrossRef]
- Szczurek, K.A.; Prades, R.M.; Matheson, E.; Perier, H.; Buonocore, L.R.; Castro, M. Di from 2D to 3D Mixed Reality Human-Robot Interface in Hazardous Robotic Interventions with the Use of Redundant Mobile Manipulator. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021, Paris, France, 6–8 July 2021; pp. 388–395. [Google Scholar] [CrossRef]
- Wei, D.; Huang, B.; Li, Q. Multi-View Merging for Robot Teleoperation with Virtual Reality. IEEE Robot. Autom. Lett. 2021, 6, 8537–8544. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Liang, H.-N.; Luo, S.; Lim, E.G. Monoscopic vs. Stereoscopic Views and Display Types in the Teleoperation of Unmanned Ground Vehicles for Object Avoidance. In Proceedings of the 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, BC, Canada, 8–12 August 2021; pp. 418–425. [Google Scholar]
- Sehad, N.; Tu, X.; Rajasekaran, A.; Hellaoui, H.; Jäntti, R.; Debbah, M. Towards Enabling Reliable Immersive Teleoperation through Digital Twin: A UAV Command and Control Use Case. arXiv 2023, arXiv:2308.14524. [Google Scholar]
- Li, H.; Ma, W.; Wang, H.; Liu, G.; Wen, X.; Zhang, Y.; Yang, M.; Luo, G.; Xie, G.; Sun, C. A Framework and Method for Human-Robot Cooperative Safe Control Based on Digital Twin. Adv. Eng. Inform. 2022, 53, 101701. [Google Scholar] [CrossRef]
- Mazumder, A.; Sahed, M.F.; Tasneem, Z.; Das, P.; Badal, F.R.; Ali, M.F.; Ahamed, M.H.; Abhi, S.H.; Sarker, S.K.; Das, S.K.; et al. Towards next Generation Digital Twin in Robotics: Trends, Scopes, Challenges, and Future. Heliyon 2023, 9, e13359. [Google Scholar] [CrossRef] [PubMed]
- Kuts, V.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital Twin Based Synchronised Control and Simulation of the Industrial Robotic Cell Using Virtual Reality. J. Mach. Eng. 2019, 19, 128–144. [Google Scholar] [CrossRef]
- Kaarlela, T.; Arnarson, H.; Pitkäaho, T.; Shu, B.; Solvang, B.; Pieskä, S. Common Educational Teleoperation Platform for Robotics Utilizing Digital Twins. Machines 2022, 10, 577. [Google Scholar] [CrossRef]
- Cichon, T.; Robmann, J. Digital Twins: Assisting and Supporting Cooperation in Human-Robot Teams. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, Singapore, 18–21 November 2018; pp. 486–491. [Google Scholar] [CrossRef]
- Tsokalo, I.A.; Kuss, D.; Kharabet, I.; Fitzek, F.H.P.; Reisslein, M. Remote Robot Control with Human-in-the-Loop over Long Distances Using Digital Twins. In Proceedings of the 2019 IEEE Global Communications Conference, GLOBECOM 2019—Proceedings, Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.D.; Amin, M.A.U. Al Control Framework for Collaborative Robot Using Imitation Learning-Based Teleoperation from Human Digital Twin to Robot Digital Twin. Mechatronics 2022, 85, 102833. [Google Scholar] [CrossRef]
- Lopez Pulgarin, E.J.; Niu, H.; Herrmann, G.; Carrasco, J. Implementing and Assessing a Remote Teleoperation Setup with a Digital Twin Using Cloud Networking. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2022, 13546, 238–250. [Google Scholar] [CrossRef]
- Kattepur, A. Robotic Tele-Operation Performance Analysis via Digital Twin Simulations. In Proceedings of the 2022 14th International Conference on COMmunication Systems and NETworkS, COMSNETS 2022, Bangalore, India, 4–8 January 2022; pp. 415–417. [Google Scholar] [CrossRef]
- Li, C.; Zheng, P.; Li, S.; Pang, Y.; Lee, C.K.M. AR-Assisted Digital Twin-Enabled Robot Collaborative Manufacturing System with Human-in-the-Loop. Robot. Comput. Integr. Manuf. 2022, 76, 102321. [Google Scholar] [CrossRef]
- Falleni, S.; Filippeschi, A.; Ruffaldi, E.; Avizzano, C.A. Teleoperated Multimodal Robotic Interface for Telemedicine: A Case Study on Remote Auscultation. In Proceedings of the RO-MAN 2017—26th IEEE International Symposium on Robot and Human Interactive Communication, Lisbon, Portugal, 28 August–1 September 2017; pp. 476–482. [Google Scholar] [CrossRef]
- Brizzi, F.; Peppoloni, L.; Graziano, A.; Di Stefano, E.; Avizzano, C.A.; Ruffaldi, E. Effects of Augmented Reality on the Performance of Teleoperated Industrial Assembly Tasks in a Robotic Embodiment. IEEE Trans. Hum. Mach. Syst. 2018, 48, 197–206. [Google Scholar] [CrossRef]
- Pereira, A.; Carter, E.J.; Leite, I.; Mars, J.; Lehman, J.F. Augmented Reality Dialog Interface for Multimodal Teleoperation. In Proceedings of the RO-MAN 2017–26th IEEE International Symposium on Robot and Human Interactive Communication, Lisbon, Portugal, 28–31 August; pp. 764–771. [CrossRef]
- González, C.; Solanes, J.E.; Muñoz, A.; Gracia, L.; Girbés-Juan, V.; Tornero, J. Advanced Teleoperation and Control System for Industrial Robots Based on Augmented Virtuality and Haptic Feedback. J. Manuf. Syst. 2021, 59, 283–298. [Google Scholar] [CrossRef]
- Fu, B.; Seidelman, W.; Liu, Y.; Kent, T.; Carswell, M.; Zhang, Y.; Yang, R. Towards Virtualized Welding: Visualization and Monitoring of Remote Welding. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Cherbourg, France, 30 June–2 July 2014; pp. 1–6. [Google Scholar]
- Baklouti, S.; Gallot, G.; Viaud, J.; Subrin, K. On the Improvement of Ros-Based Control for Teleoperated Yaskawa Robots. Appl. Sci. 2021, 11, 7190. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.J.; Sun, L.; Freiheit, T. Intelligent Welding System Technologies: State-of-the-Art Review and Perspectives. J. Manuf. Syst. 2020, 56, 373–391. [Google Scholar] [CrossRef]
- Liu, Y.K. Toward Intelligent Welding Robots: Virtualized Welding Based Learning of Human Welder Behaviors. Weld. World 2016, 60, 719–729. [Google Scholar] [CrossRef]
- Ming, H.; Huat, Y.S.; Lin, W.; Hui Bin, Z. On Teleoperation of an Arc Welding Robotic System. Proc. IEEE Int. Conf. Robot. Autom. 1996, 2, 1275–1280. [Google Scholar] [CrossRef]
- Ding, D.; Shen, C.; Pan, Z.; Cuiuri, D.; Li, H.; Larkin, N.; Van Duin, S. Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part. CAD Comput. Aided Des. 2016, 73, 66–75. [Google Scholar] [CrossRef]
- Van Essen, J.; Van Der Jagt, M.; Troll, N.; Wanders, M.; Erden, M.S.; Van Beek, T.; Tomiyama, T. Identifying Welding Skills for Robot Assistance. In Proceedings of the 2008 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, MESA 2008, Beijing, China, 12–15 October 2008; pp. 437–442. [Google Scholar]
- Erden, M.S.; Billard, A. End-Point Impedance Measurements across Dominant and Nondominant Hands and Robotic Assistance with Directional Damping. IEEE Trans. Cybern. 2015, 45, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.K.; Shao, Z.; Zhang, Y.M. Learning Human Welder Movement in Pipe GTAW: A Virtualized Welding Approach. Weld. J. 2014, 93, 388–398. [Google Scholar]
- Erden, M.S.; Tomiyama, T. Identifying Welding Skills for Training and Assistance with Robot. Sci. Technol. Weld. Join. 2009, 14, 523–532. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zhang, Y.M. Control of Human Arm Movement in Machine-Human Cooperative Welding Process. Control Eng. Pr. 2014, 32, 161–171. [Google Scholar] [CrossRef]
- Tian, N.; Tanwani, A.K.; Goldberg, K.; Sojoudi, S. Mitigating Network Latency in Cloud-Based Teleoperation Using Motion Segmentation and Synthesis. Springer Proc. Adv. Robot. 2022, 20 SPAR, 906–921. [Google Scholar] [CrossRef]
- Luz, R.; Silva, J.L.; Ventura, R. Enhanced Teleoperation Interfaces for Multi-Second Latency Conditions: System Design and Evaluation. IEEE Access 2023, 11, 10935–10953. [Google Scholar] [CrossRef]
- Chi, P.; Wang, Z.; Liao, H.; Li, T.; Zhan, J.; Wu, X.; Tian, J.; Zhang, Q. Low-Latency Visual-Based High-Quality 3-D Reconstruction Using Point Cloud Optimization. IEEE Sens. J. 2023, 23, 20055–20065. [Google Scholar] [CrossRef]
- Qin, B.; Luo, Q.; Luo, Y.; Zhang, J.; Liu, J.; Cui, L. Research and Application of Key Technologies of Edge Computing for Industrial Robots. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2020, Chongqing, China, 12–14 June 2020; pp. 2157–2164. [Google Scholar] [CrossRef]
- Ipsita, A.; Erickson, L.; Dong, Y.; Huang, J.; Bushinski, A.K.; Saradhi, S.; Villanueva, A.M.; Peppler, K.A.; Redick, T.S.; Ramani, K. Towards Modeling of Virtual Reality Welding Simulators to Promote Accessible and Scalable Training. In Proceedings of the Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Nan, Z.; Hu, Y. Study on Welder Training by Means of Haptic Guidance and Virtual Reality for Arc Welding. In Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 17–20 December 2006; pp. 954–958. [Google Scholar]
- Ciszak, O.; Juszkiewicz, J.; Suszyński, M. Programming of Industrial Robots Using the Recognition of Geometric Signs in Flexible Welding Process. Symmetry 2020, 12, 1429. [Google Scholar] [CrossRef]
- Yu, H.; Qin, J.; Zhao, K. Innovation in Interactive Design of Tele-Robotic Welding in the Trend of Interaction Change. Des. Eng. 2020, 322–330. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, W.; Yu, R.; Johnson, M.T.; Zhang, Y.M. Virtual Reality Robot-Assisted Welding Based on Human Intention Recognition. IEEE Trans. Autom. Sci. Eng. 2020, 17, 799–808. [Google Scholar] [CrossRef]
- Wells, T.; Miller, G. The Effect of Virtual Reality Technology on Welding Skill Performance. J. Agric. Educ. 2020, 61, 152–171. [Google Scholar] [CrossRef]
- Byrd, A.P.; Stone, R.T.; Anderson, R.G.; Woltjer, K. The Use of Virtual Welding Simulators to Evaluate Experienced Welders. Weld. J. 2015, 94, 389–395. [Google Scholar]
- Liu, Y.; Zhang, Y. Human Welder 3-D Hand Movement Learning in Virtualized GTAW: Theory and Experiments. Trans. Intell. Weld. Manuf. 2019, 1, 3–25. [Google Scholar]
- Liu, Y.K.; Zhang, Y.M. Supervised Learning of Human Welder Behaviors for Intelligent Robotic Welding. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1532–1541. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zhang, Y.M. Fusing Machine Algorithm with Welder Intelligence for Adaptive Welding Robots. J. Manuf. Process 2017, 27, 18–25. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y.; Jiao, W.; Johnson, M.T.; Zhang, Y.M. Virtual Reality Human-Robot Collaborative Welding: A Case Study of Weaving Gas Tungsten Arc Welding. J. Manuf. Process. 2019, 48, 210–217. [Google Scholar] [CrossRef]
- Ni, D.; Yew, A.W.W.; Ong, S.K.; Nee, A.Y.C. Haptic and Visual Augmented Reality Interface for Programming Welding Robots. Adv. Manuf. 2017, 5, 191–198. [Google Scholar] [CrossRef]
- Selvaggio, M.; Notomista, G.; Chen, F.; Gao, B.; Trapani, F.; Caldwell, D. Enhancing Bilateral Teleoperation Using Camera-Based Online Virtual Fixtures Generation. IEEE Int. Conf. Intell. Robot. Syst. 2016, 2016, 1483–1488. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.M. A Review on Mixed Reality: Current Trends, Challenges and Prospects. Appl. Sci. 2020, 10, 636. [Google Scholar] [CrossRef]
- Aygün, M.M.; Ögüt, Y.Ç.; Baysal, H.; Taşcioglu, Y. Visuo-Haptic Mixed Reality Simulation Using Unbound Handheld Tools. Appl. Sci. 2020, 10, 5344. [Google Scholar] [CrossRef]
- Tu, X.; Autiosalo, J.; Jadid, A.; Tammi, K.; Klinker, G. A Mixed Reality Interface for a Digital Twin Based Crane. Appl. Sci. 2021, 11, 9480. [Google Scholar] [CrossRef]
Reference | Year | Topics Focused on Recent Papers | Differences with This Article |
---|---|---|---|
[98] | 2021 |
|
|
[99] | 2022 |
|
|
[100] | 2023 |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-P.; Chen, X.-Q.; Zhou, C.; Pearson, L.H.; Pretty, C.G.; Chase, J.G. Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions. Appl. Sci. 2023, 13, 12129. https://doi.org/10.3390/app132212129
Su Y-P, Chen X-Q, Zhou C, Pearson LH, Pretty CG, Chase JG. Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions. Applied Sciences. 2023; 13(22):12129. https://doi.org/10.3390/app132212129
Chicago/Turabian StyleSu, Yun-Peng, Xiao-Qi Chen, Cong Zhou, Lui Holder Pearson, Christopher G. Pretty, and J. Geoffrey Chase. 2023. "Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions" Applied Sciences 13, no. 22: 12129. https://doi.org/10.3390/app132212129