Assessment of the Radiation Situation and the Presence of Heavy Metals in the Soil in the Poleski National Park
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling and Processing
2.3. Laboratory Research
2.3.1. Radiation Research
- CEi—total count of a peak at energy E,
- Ceff—detection efficiency at energy E,
- γ—the percentage of gamma emission probability of the radionuclide i for a transition at energy E,
- m—mass of measured samples (kg),
- t—counting time (s).
- Dep—surface concentration in kBq/m2 (deposition),
- —is a field the surface from which the soil is taken using a die with a diameter of D.
- T—the time to convert from year to hour (8760 hy−1),
- Q—dose conversion factor (Q = 0.7 SvGy−1),
- D—absorbed dose rate in the air (nGyh−1).
2.3.2. Heavy Metals Research
- Igeo ≤ 0 Uncontaminated
- 0 < Igeo ≤ 1 Uncontaminated to moderately
- 1 < Igeo ≤ 2 Moderately contaminated
- 2 < Igeo ≤ 3 Moderately to highly contaminated
- 3 < Igeo ≤ 4 Highly contaminated
- 4 < Igeo ≤ 5 Highly to extremely contaminated
- Igeo > 5 Extremely contaminated
3. Results
3.1. Radiation Research
3.2. Heavy Metals Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis Group: Milton Park, UK, 2015. [Google Scholar]
- UNSCEAR 2008. United Nations Scientific Committee on the Effects of Atomic Radiation. Volume I: (Sources) Report to the General Assembly, Scientific Annexes A and B. ISBN: 978-92-1-142274-0. Available online: https://www.unscear.org/ (accessed on 4 July 2023).
- do Carmo Leal, A.L.; da Costa Lauria, D.; Ribeiro, F.C.; Viglio, E.P.; Franzen, M.; Lima, E.D.A.M. Spatial distributions of natural radionuclides in soils of the state of Pernambuco, Brazil: Influence of bedrocks, soils types and climates. J. Environ. Radioact. 2019, 211, 106046. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.H.; Porghasem, M.; Mirzaei, N.; Mohseni, J.H.; Heidari, M.; Azargashb, E.; Movafagh, A.; Heidari, R.; Molouki, A.; Larijani, L. The effect of high level natural ionizing radiation on expression of PSA, CA19-9 and CEA tumor markers in blood serum of inhabitants of Ramsar, Iran. J. Environ. Radioact. 2014, 128, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, E.; Monfared, A.S.; Niaki, H.A.; Borzoueisileh, S.; Niksirat, F.; Fattahi, S.; Monfared, M.K.; Gorji, K.E. The expression of MLH1 and MSH2 genes among inhabitants of high background radiation area of Ramsar, Iran. J. Environ. Radioact. 2019, 208, 106012. [Google Scholar] [CrossRef]
- Rani, A.; Mittal, S.; Mehra, R.; Ramola, R.C. Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan. India. Appl. Radiat. Isot. 2015, 101, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Tondeur, F.; Dehandschutter, B. Mapping potassium and thorium concentrations in Belgian soils. J. Environ. Radioact. 2018, 185, 127–139. [Google Scholar] [CrossRef]
- Mehra, R.; Badhan, K.; Sonkawade, R.G.; Kansal, S. Analysis of terrestrial natural radionuclides in soil samples and assessment of average effective dose. Singh Indian J. Pure Appl. Phys. 2010, 48, 805–808. [Google Scholar]
- Dudzik, P.; Sawicka-Kapusta, K.; Tybik, R.; Pacwa, K. Assessment of environmental pollution by metals, sulphure dioxide and nitrogen in Woliński National Park. Nat. Environ. Monit. 2010, 11, 37–48. [Google Scholar]
- Dhawal, S.J.; Kulkarni, G.S.; Pawar, S.H. Terrestrial background radiation studies in South Konkan, Maharashtra, India. Int. J. Radiat. Res. 2013, 11, 263–270. [Google Scholar]
- Xiao, C.; He, N.; Liu, Y.; Wang, Y.; Liu, Q. Research progress on biodosimeters of ionizing radiation damage. Radiat. Med. Prot. 2020, 1, 127–132. [Google Scholar] [CrossRef]
- Cinelli, G.; Tollefsen, T.; Bossew, P.; Gruber, V.; Bogucarskis, K.; De Felice, L.; De Cort, M. Digital version of the European Atlas of natural radiation. J. Environ. Radioact. 2019, 196, 240–252. [Google Scholar] [CrossRef]
- Rafique, M.; Rehman, H.; Malik, M.F.; Rajput, M.U.; Rahman, S.U.; Rathore, M.H. Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir; Pakistan. Int. J. Radiat. Res. 2011, 9, 77–87. [Google Scholar]
- Saleh, I.H. Radioactivity of 238U, 232Th, 40K, and 137Cs and assessment of depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman. Turk. J. Eng. Environ. Sci. 2012, 36, 236–248. [Google Scholar] [CrossRef]
- Matisoff, G.; Ketterer, M.E.; Rosén, K.; Mietelski, J.W.; Vitko, L.F.; Persson, H.; Lokas, E. Downward migration of Chernobyl-derived radionuclides in soils in Poland and Sweden. Appl. Geochem. 2011, 26, 105–115. [Google Scholar] [CrossRef]
- Silant’Ev, A.N.; Silant’Ev, K.A.; Shkuratova, I.G. Dose-rate change due to137Cs migration in soil. At. Energy 1997, 83, 772–774. [Google Scholar] [CrossRef]
- Alexakhin, R.M.; Sanzharova, N.I.; Fesenko, S.; Panov, A.V. Chernobyl radionuclide distribution and migration. Health Phys. 2007, 93, 418–426. [Google Scholar] [CrossRef]
- Szabó, K.Z.; Udvardi, B.; Horváth, Á.; Bakacsi, Z.; Pásztor, L.; Szabó, J.; Laczkó, L.; Szabó, C. Cesium-137 concentration of soils in Pest County, Hungary. J. Environ. Radioact. 2012, 110, 38–45. [Google Scholar] [CrossRef]
- Chibowski, S.; Zygmunt, J. The influence of the sorptive properties of organic soils on the migration rate of 137Cs. J. Environ. Radioact. 2002, 61, 213–223. [Google Scholar] [CrossRef]
- Popovic, D.; Todorovic, D.; Spasic Jokic, V.; Nikolic, J.; Ajtic, J. Contents of Radionuclides in Soils in Serbia: Dose Calculations and Environmental Risk Assessment. In Advances in Environmental Research; Daniels, J.A., Ed.; Nova Science Publishers: New York, NY, USA, 2010; Chapter 3. [Google Scholar]
- Jokic, V.S.; Zupunski, L.; Zupunski, I. Measurement uncertainty estimation of health risk from exposure to natural radionuclides in soil. Measurement 2013, 46, 2376–2383. [Google Scholar] [CrossRef]
- Szarek, Ł.; Falaciński, P.; Wojtkowska, M. Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries. Arch. Civ. Eng. 2018, 64, 131–144. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Netw. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Modaihsh, A.; Ai-Swailem, M.; Mahjoub, M. Heavy Metals Content of Commercial Inorganic Fertilizers Used in the Kingdom of Saudi Arabia. J. Agric. Mar. Sci. 2004, 9, 21–25. [Google Scholar] [CrossRef]
- Chehregani, A.; Malayeri, B.E. Removal of heavy metals by native accumulator plants. Int. J. Agric. Biol. 2007, 9, 462–465. [Google Scholar]
- Fulekar, M.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol. 2009, 8, 529–535. [Google Scholar]
- Javied, S.; Mehmood, T.; Chaudhry, M.; Tufail, M.; Irfan, N. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem. J. 2009, 91, 94–99. [Google Scholar] [CrossRef]
- Liaghati, T.; Preda, M.; Cox, M. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ. Int. 2004, 29, 935–948. [Google Scholar] [CrossRef]
- Mmolawa, K.B.; Likuku, A.S.; Gaboutloeloe, G.K. Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr. J. Environ. Sci. Technol. 2011, 3, 186–196. [Google Scholar]
- Alloway, B.J.; Ayres, D.C. Chemical Foundations of Environmental Pollution; Scientific Publishers PWN: Warszawa, Poland, 1999. [Google Scholar]
- Marchanda, C.; Allenbachb, M.; Lallier-Vergèsc, E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma 2011, 160, 444–456. [Google Scholar] [CrossRef]
- Karczewska, A. Soil Protection and Reclamation of Degraded Areas; Wydawnictwo Uniwersytet Przyrodniczy: Wrocław, Poland, 2012. [Google Scholar]
- Piotrowski, W.; Piasecka, E.; Szymański, J. Museum of the Polesie National Park. 21; PPH Zapol, Domachowski Sobczyk: Urszulin, Poland, 2005; ISBN 83-60140-11-1. [Google Scholar]
- Chmielewski, T.J. Poleski National Park. Nat. Pol. 1990, 10, 10–11. [Google Scholar]
- Isajenko, K.; Kardaś, M.; Piotrowska, B.; Kwiatkowska, I.; Stawarz, O.; Wojtkowski, K.; Kiełbasińskan, A. Ionizing Radiation Monitoring Carried out as Part of the State Environmental Monitoring, Task 3: Monitoring of 137Cs Concentration in the Soil, Annual Report on the Third Stage of Work; CLOR: Warszawa, Poland, 2018. [Google Scholar]
- PN ISO 11466; Soil Quality—Extraction Of Trace Elements Soluble in Aqua Regia. TC 191. Polish Committee for Standardization: Warsaw, Polish, 2002.
- Długosz-Lisiecka, M.; Ziomek, M. Direct determination of radionuclides in building materials with self-absorption correction for the 63 and 186 keV γ-energy lines. J. Environ. Radioact. 2015, 150, 44–48. [Google Scholar] [CrossRef]
- Inoue, K.; Fukushi, M.; Van Le, T.; Tsuruoka, H.; Kasahara, S.; Nimelan, V. Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment. Sci. Rep. 2020, 10, 12428. [Google Scholar] [CrossRef]
- Kurnaz, A.; Küçükömeroğlu, B.; Keser, R.; Okumusoglu, N.; Korkmaz, F.; Karahan, G.; Çevik, U. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl. Radiat. Isot. 2007, 65, 1281–1289. [Google Scholar] [CrossRef]
- PN ISO 11047; Soil Quality Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc Flame and Electrothermal Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 2001.
- Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574. [Google Scholar] [CrossRef] [PubMed]
- Bantan, R.A.; Al-Dubai, T.A.; Al-Zubieri, A.G. Geo-environmental assessment of heavy metals in the bottom sediments of the Southern Corniche of Jeddah, Saudi Arabia. Mar. Pollut. Bull. 2020, 161, 111721. [Google Scholar] [CrossRef]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Hrabovskyy, V.; Dzendzelyuk, O.; Katerynchuk, I.; Furgala, Y. Monitoring of radionuclides contamination of soils in Shatsk National Natural Park (Volyn Region, Ukraine) during 1994–2001. J. Environ. Radioact. 2004, 72, 25–33. [Google Scholar] [CrossRef]
- Tanasković, I.; Golobocanin, D.; Miljević, N. Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J. Geochem. Explor. 2012, 112, 226–234. [Google Scholar] [CrossRef]
- Avdic, S.; Demirovic, D.; Kunosic, S.; Pehlivanovic, B.; Kadic, I.; Ilic, Z. A study of daily variations of the outdoor background radiation measured in continuous mode in Federation of Bosnia and Herzegovina. J. Environ. Radioact. 2020, 217, 106212. [Google Scholar] [CrossRef]
- Janković, M.; Todorović, D.; Savanović, M. Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat. Meas. 2008, 43, 1448–1452. [Google Scholar] [CrossRef]
- Ivanić, M.; Fiket, Z.; Medunić, G.; Turk, M.F.; Marović, G.; Senčar, J.; Kniewald, G. Corrigendum to “Multi-element composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia)”. Chemosphere 2019, 234, 987–989. [Google Scholar] [CrossRef]
- Radolić, V.; Miklavčić, I.; Sovilj, M.P.; Stanić, D.; Petrinec, B.; Vuković, B. The natural radioactivity of Istria, Croatia. Radiat. Phys. Chem. 2019, 155, 332–340. [Google Scholar] [CrossRef]
- Sarap, N.B.; Rajačić, M.M.; Đalović, I.G.; Šeremešić, S.I.; Đorđević, A.R.; Janković, M.M.; Daković, M.Z. Distribution of natural and artificial radionuclides in chernozem soil/crop system from stationary experiments. Environ. Sci. Pollut. Res. 2016, 23, 17761–17773. [Google Scholar] [CrossRef] [PubMed]
- Jasaitis, D.; Klima, V.; Pečiulienė, M.; Vasiliauskienė, V.; Konstantinova, M. Comparative Assessment of Radiation Background Due to Natural and Artificial Radionuclides in Soil in Specific Areas on the Territories of State of Washington (USA) and Lithuania. Water Air Soil Pollut. 2020, 231, 347. [Google Scholar] [CrossRef]
- Marčiulionienė, D.; Lukšienė, B.; Montvydienė, D.; Jefanova, O.; Mažeika, J.; Taraškevičius, R.; Stakėnienė, R.; Petrošius, R.; Maceika, E.; Tarasiuk, N.; et al. 137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: A case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP). J. Environ. Radioact. 2017, 178, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Długosz-Lisiecka, M. Public Health Decision Making in the Case of the Use of a Nuclear Weapon. Int. J. Environ. Res. Public Health 2022, 19, 12766. [Google Scholar] [CrossRef] [PubMed]
- Długosz-Lisiecka, M.; Bem, H. Aerosol residence times and changes in radioiodine-131I and radiocaesium-137Cs activity over Central Poland after the Fukushima-Daiichi nuclear reactor accident. J. Environ. Monit. 2012, 14, 1483–1489. [Google Scholar] [CrossRef]
- Koua, A.; Michel, H.; Alabdullah, J.; Barci, V.; Aka, H.; Barci-Funel, G.; Ardisson, G. First measurements of anthropogenic and natural radionuclides in surface soils (10 cm) of Côte d’Ivoire. Comptes Rendus Chim. 2009, 12, 850–853. [Google Scholar] [CrossRef]
- Devi, V.; Chauhan, R.P. Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India. Nucl. Eng. Technol. 2020, 52, 1289–1296. [Google Scholar] [CrossRef]
- Matolín, M. Verification of the radiometric map of the Czech Republic. J. Environ. Radioact. 2017, 166, 289–295. [Google Scholar] [CrossRef]
- Rybach, L.; Bächler, D.; Bucher, B.; Schwarz, G. Radiation doses of Swiss population from external sources. J. Environ. Radioact. 2002, 62, 277–286. [Google Scholar] [CrossRef]
- Chrzan, A. The content of selected heavy metals in soil and soil fauna. Proc. ECOpole 2013, 7, 295–302. [Google Scholar] [CrossRef]
- Pająk, M.; Gąsiorek, M.; Cygan, A.; Wanic, T. Concentration of Cd, Pb and Zn in top layer of soil and needles of scots pine (Pinus Sylvestris L.): A case study of two extremely different conditions of the forest environment in Poland. Fresen. Environ. Bull. 2015, 24, 71–76. [Google Scholar]
- Sienkiewicz, A. Content of selected heavy metals in autogenic soils in the Supraśl and Dojlidy forest division in the Knyszyńska Forest. Civ. Environ. Eng. 2012, 2, 91–94. [Google Scholar]
- Vrbek, B.; Buzjak, N. Contribution to Knowledge of the Content of Heavy Metals (Pb, Cu, Zn and Cd) in Speleological Objects in the Risnjak National Park (Croatia). Acta Carsologica 2004, 33, 181–188. [Google Scholar] [CrossRef]
- Tomaškin, J.; Tomaškinová, J.; Kmeťová, J.; Drimal, M. The concentration of heavy metals in grassland ecosystems of the central Slovakia National Parks. Carpathian J. Earth Environ. Sci. 2013, 8, 35–40. [Google Scholar]
- Staszewski, T.; Łukasik, W.; Kubiesa, P. Contamination of Polish national parks with heavy metals. Environ. Monit. Assess. 2011, 184, 4597–4608. [Google Scholar] [CrossRef]
- Mortazavi, S.; Ghiassi-Nejad, M.; Ikushima, T. Do the findings on the health effects of prolonged exposure to very high levels of natural radiation contradict current ultra-conservative radiation protection regulations? Int. Congr. Ser. 2002, 1236, 19–21. [Google Scholar] [CrossRef]
- Dharani, N.; Onyari, J.M.; Maina, D.M.; Mavuti, K.M. The Distribution of Cu and Pb Levels in Soils and Acacia xanthophloea Benth. from Lake Nakuru National Park Kenya. Bull. Environ. Contam. Toxicol. 2007, 79, 172–177. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. In Annex B. Exposures from Natural Radiation Sources; United Nations Publication: New York, NY, USA, 2000. [Google Scholar]
- Kapanadze, K.; Magalashvili, A.; Imnadze, P. Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon 2019, 5, e01377. [Google Scholar] [CrossRef]
- Tong, J.; Hei, T.K. Aging and age-related health effects of ionizing radiation. Radiat. Med. Prot. 2020, 1, 15–23. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, Y.; Li, Y.; Wang, P.; Zhu, C.; Shi, L.; Hou, X.; Qie, X. Spatial distribution, risk assessment and influence factors of terrestrial gamma radiation dose in China. J. Environ. Radioact. 2020, 222, 106325. [Google Scholar] [CrossRef]
- Araromi, O.I.; Ojo, A.O.; Olaluwoye, M.O.; Odefemi, O.B. The concentration of natural radionuclides in soil samples from the practical year agricultural farmland, University of Ibadan. IOSR J. Appl. Phys. 2016, 8, 60–68. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Długosz-Lisiecka, M. Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity. J. Radioanal. Nucl. Chem. 2016, 309, 941–945. [Google Scholar] [CrossRef] [PubMed]
Site | Name of Point | Attitude | Longitude |
---|---|---|---|
1 | Astrościeżka | 51°25′13″ | 23°9′58″ |
2 | Blizionki | 51°25′59″ | 23°3′32″ |
3 | Ciek Zienkowski | 51°28′35″ | 23°6′28″ |
4 | Czahary | 51°22′41″ | 23°16′57″ |
5 | Czeremnik | 51°20′41″ | 23°16′55″ |
6 | Dąb Dominik | 51°26′57″ | 23°7′10″ |
7 | Karczunek | 51°21′9″ | 23°19′16″ |
8 | Las Tafle | 51°25′51″ | 23°11′36″ |
9 | Lipniak | 51°27′42″ | 23°9′15″ |
10 | Łąka Pokrzywnik | 51°20′22″ | 23°20′11″ |
11 | Mietiułka | 51°27′51″ | 23°16′8″ |
12 | Ostoja Poleska | 51°25′8″ | 23°5′45″ |
13 | Piwonica | 51°24′38″ | 23°3′53″ |
14 | Puszczyk Mszarny | 51°27′22″ | 23°13′59″ |
15 | Ścieżka Spławy | 51°24′32″ | 23°5′46″ |
16 | Uroczysko Laski | 51°21′26″ | 23°15′36″ |
17 | Urszulin Prehod | 51°27′45″ | 23°7′24″ |
18 | Wielki Łan | 51°28′56″ | 23°11′36″ |
19 | Wola Wereszczyńska | 51°26′7″ | 23°6′8″ |
20 | Wólka Wytycka | 51°26′39″ | 23°12′46″ |
21 | Zeremińska | 51°28′52″ | 23°9′15″ |
Site | Concentration in Bqkg−1 | Deposition in kBqm−2 | |||
---|---|---|---|---|---|
226Ra | 228Ac | 40K | 137Cs | 137Cs | |
1 | 6.67 ± 0.44 | 5.71 ± 0.20 | 133 ± 5 | 9.05 ± 0.20 | 2.77 ± 0.06 |
2 | 14.1 ± 1.16 | 11.6 ± 0.33 | 258 ± 15 | 0.47 ± 0.03 | 0.16 ± 0.01 |
3 | 4.81 ± 0.48 | 4.87 ± 0.19 | 124 ± 5 | 17.8 ± 0.37 | 5.03 ± 0.10 |
4 | 6.32 ± 0.46 | 5.42 ± 0.20 | 131 ± 5 | 8.21 ± 0.18 | 1.89 ± 0.04 |
5 | 6.86 ± 0.49 | 5.46 ± 0.20 | 142 ± 6 | 12.1 ± 0.26 | 2.18 ± 0.05 |
6 | 9.99 ± 0.60 | 7.67 ± 0.27 | 165 ± 6 | 13.5 ± 0.29 | 3.54 ± 0.08 |
7 | 9.12 ± 0.52 | 7.71 ± 0.25 | 201 ± 8 | 3.94 ± 0.10 | 0.76 ± 0.02 |
8 | 4.33 ± 0.39 | 3.35 ± 0.15 | 59 ± 2 | 6.98 ± 0.16 | 2.05 ± 0.05 |
9 | 6.71 ± 0.47 | 6.07 ± 0.21 | 154 ± 6 | 7.90 ± 0.18 | 2.07 ± 0.05 |
10 | 9.51 ± 0.81 | 7.22 ± 0.22 | 222 ± 13 | 4.73 ± 0.12 | 0.85 ± 0.02 |
11 | 4.74 ± 0.39 | 4.37 ± 0.16 | 106 ± 4 | 7.14 ± 0.16 | 2.11 ± 0.05 |
12 | 6.92 ± 0.65 | 5.51 ± 0.19 | 141 ± 8 | 21.4 ± 0.48 | 4.33 ± 0.10 |
13 | 5.53 ± 0.42 | 5.38 ± 0.19 | 143 ± 6 | 5.82 ± 0.13 | 1.97 ± 0.04 |
14 | 6.42 ± 0.50 | 4.80 ± 0.19 | 90 ± 4 | 23.4 ± 0.47 | 5.45 ± 0.11 |
15 | 7.58 ± 0.68 | 5.92 ± 0.19 | 149 ± 9 | 10.4 ± 0.24 | 3.58 ± 0.08 |
16 | 7.41 ± 0.47 | 6.09 ± 0.21 | 152 ± 6 | 10.2 ± 0.22 | 2.12 ± 0.05 |
17 | 8.15 ± 0.55 | 6.10 ± 0.22 | 162 ± 6 | 19.4 ± 0.40 | 4.49 ± 0.09 |
18 | 7.24 ± 0.48 | 5.87 ± 0.21 | 150 ± 6 | 3.21 ± 0.09 | 1.03 ± 0.03 |
19 | 12.9 ± 0.83 | 8.23 ± 0.32 | 97 ± 3 | 8.28 ± 0.21 | 0.59 ± 0.01 |
20 | 7.12 ± 0.44 | 6.15 ± 0.21 | 141 ± 5 | 1.49 ± 0.05 | 0.42 ± 0.01 |
21 | 11.2 ± 0.67 | 8.18 ± 0.28 | 147 ± 6 | 27.0 ± 0.55 | 4.77 ± 0.10 |
Average: | 7.80 | 6.27 | 146 | 10.6 | 2.48 |
Std. dev. | 2.57 | 1.74 | 43.5 | 7.34 | 1.62 |
Site | Name of Point | Cr | Cd | Cu | Ni | Pb |
---|---|---|---|---|---|---|
1 | Astrościeżka | 2.4 ± 0.4 | 1.1 ± 0.2 | 20.7 ± 5.0 | 11.5 ± 1.0 | 16.2 ± 3.0 |
2 | Buzionki | 3.1 ± 0.5 | 1.4 ± 0.3 | 4.0 ± 0.4 | 1.8 ± 0.1 | 14.5 ± 3.0 |
3 | Ciek Zienkowski | 0.9 ± 0.2 | 1.3 ± 0.25 | 3.2 ± 0.3 | 0.59 ± 0.06 | 12.8 ± 2.0 |
4 | Czachary | 3.6 ± 0.5 | 0.6 ± 0.05 | 3.5 ± 0.3 | 1.35 ± 0.1 | 6.81 ± 0.8 |
5 | Czeremnik | 1.0 ± 0.2 | 1.1 ± 0.2 | 0.7 ± 0.06 | 0.63 ± 0.06 | 11.5 ± 2.0 |
6 | Dąb Dominik | 0.8 ± 0.2 | 1.5 ± 0.3 | 1.9 ± 0.15 | 0.57 ± 0.06 | 9.46 ± 2.0 |
7 | Karczunek | 1.7 ± 0.3 | 1.2 ± 0.2 | 3.5 ± 0.3 | 3.42 ± 0.4 | 11.4 ± 2.0 |
8 | Las Tafle | 2.5 ± 0.4 | 1.3 ± 0.2 | 5.2 ± 0.5 | 56.7 ± 5.0 | 6.33 ± 0.8 |
9 | Lipniak | 11.9 ± 2.0 | 0.9 ± 0.1 | 3.6 ± 0.3 | 1.80 ± 0.1 | 9.08 ± 1.0 |
10 | Łąki Pokrzywnik | 2.6 ± 0.4 | 1.4 ± 0.3 | 3.4 ± 0.3 | 2.10 ± 0.2 | 16.5 ± 3.0 |
11 | Mietiułka | 12.8 ± 2.0 | 1.7 ± 0.5 | 1.6 ± 0.15 | 0.7 ± 0.06 | 11.9 ± 2.0 |
12 | Ostoja Poleska | 3.0 ± 0.5 | 1.7 ± 0.5 | 17.9 ± 4.00 | 2.12 ± 0.3 | 10.1 ± 2.0 |
13 | Piwonica | 1.7 ± 0.3 | 1.1 ± 0.2 | 3.6 ± 0.3 | 0.58 ± 0.06 | 11.9 ± 2.0 |
14 | Puszczyk Mszarny | 4.0 ± 0.7 | 1.7 ± 0.4 | 1.8 ± 0.15 | 2.40 ± 0.3 | 15.0 ± 3.0 |
15 | Ścieżka Spławy | 3.6 ± 0.5 | 1.7 ± 0.4 | 5.0 ± 0.5 | 0.65 ± 0.06 | 17.4 ± 4.0 |
16 | Uroczysko Laski | 4.8 ± 0.8 | 1.2 ± 0.2 | 8.6 ± 1.0 | 1.10 ± 0.1 | 14.1 ± 3.0 |
17 | Urszulin Prehod | 2.9 ± 0.4 | 1.7 ± 0.5 | 4.9 ± 0.5 | 2.77 ± 0.3 | 10.6 ± 2.0 |
18 | Wielki Łan | 1.0 ± 0.2 | 1.0 ± 0.2 | 5.4 ± 0.5 | 3.64 ± 0.4 | 5.81 ± 0.7 |
19 | Wola Wereszczyńska | 3.2 ± 0.5 | 1.6 ± 0.4 | 10.9 ± 1.5 | 0.85 ± 0.07 | 10.6 ± 2.0 |
20 | Wólka Wytycka | 5.4 ± 1.0 | 0.6 ± 0.1 | 2.9 ± 0.3 | 3.4 ± 0.4 | 8.07 ± 1.5 |
21 | Zeremińska | 2.6 ± 0.4 | 1.9 ± 0.5 | 7.6 ± 0.6 | 10.8 ± 1.0 | 20.4 ± 5.0 |
22 | Minimum | 0.8 ± 0.9 | 0.6 ± 0.1 | 0.7 ± 0.06 | 0.57 ± 0.06 | 5.81 ± 0.7 |
23 | Maximum | 12.8 ± 2.0 | 1.9 ± 0.5 | 20.7 ± 5.0 | 56.2 ± 5.0 | 20.4 ± 5.0 |
24 | Avarage | 3.6 ± 0.5 | 1.3 ± 0.3 | 5.7 ± 0.5 | 5.2 ± 0.6 | 11.9 ± 2.0 |
25 | Median | 2.9 ± 0.4 | 1.3 ± 0.3 | 3.6 ± 0.3 | 1.8 ± 0.1 | 11.5 ± 2.0 |
26 | St. dev. | 0.69 | 0.08 | 1.12 | 2.66 | 0.84 |
29 | Number of results | 21 | 21 | 21 | 21 | 21 |
Site | Source | Concentration in Bqkg−1 | |||
---|---|---|---|---|---|
226Ra(238U) | 228Ac(232Th) | 40K | 137Cs | ||
The study | Current study | 7.80 | 6.27 | 146.00 | 10.59 |
POLAND | [2] | 25.20 | 24.70 | 410.00 | - |
North Europe | [2] | 32.08 | 27.42 | 522.67 | - |
West Europe | [2] | 40.22 | 37.50 | 547.67 | - |
East Europe | [2] | 34.90 | 33.09 | 462.12 | - |
South Europe | [2] | 28.34 | 26.40 | 332.67 | - |
Republic of Srpska (Bosnia and Herzegovina) | [47] | 47.00 | 41.00 | 536.00 | 26.00 |
Prasnik rainforest, Croatia | [48] | 44.70 | 42.30 | 542.00 | 30.80 |
Region of Croatia | [49] | 61.00 | 60.00 | 418.00 | - |
Novi Sad, Republic of Serbia | [50] | 37.00–55.00 | 45.00–55.00 | 570.00–730.00 | 5.49 |
Parks in Lithuania | [51] | 14.50 | 5.470 | 348.07 | 13.27 |
Shatsk National Natural Park, Ukraine | [44] | 6.00–9.00 | 6.00–9.00 | 106.00–148.00 | about 25.00 * |
Worldwide average | [2] | 32.00 | 45.00 | 412.00 | - |
Site | Source | Absorbed Dose (nGyh−1) | Annual Effective Dose (mSv/y) | ||
---|---|---|---|---|---|
Average | Range | Average | Range | ||
The study | Current study | 47.00 | 40.00–58.00 | 0.173 | 0.124–0.222 |
POLAND | [2] | 47.40 | 18.80–86.00 | - | - |
North Europe | [2] | 54.40 | 4.00–580.00 | - | - |
West Europe | [2] | 47.75 | 2.00–209.00 | - | - |
East Europe | [2] | 59.68 | 4.00–245.00 | - | - |
South Europe | [2] | 47.00 | 17.00–150 | - | - |
Czech Republic | [57] | 65.60 | 6.00–245.00 | 0.575 | 0.053–2.148 |
Switzerland | [58] | 68.00 | 6.00–368.00 | 0.950 | 0.745–1.052 |
Novi Sad, Republic of Serbia | [50] | 78.20 | 70.9–83.80 | 0.096 | 0.087–0.103 |
Parks in Lithuania | [51] | 24.51 | 21.52–28.65 | 0.052 | 0.050–0.061 |
Republic of Srpska (Bosnia and Herzegovina) | [47] | 69.00 | 9–118 | 0.0848 | 0.011–0.1440 |
Worldwide | [2] | 58.00 | 1–1300 | 0.07 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtkowski, K.; Wojtkowska, M.; Długosz-Lisiecka, M.; Walczak, A. Assessment of the Radiation Situation and the Presence of Heavy Metals in the Soil in the Poleski National Park. Appl. Sci. 2023, 13, 11699. https://doi.org/10.3390/app132111699
Wojtkowski K, Wojtkowska M, Długosz-Lisiecka M, Walczak A. Assessment of the Radiation Situation and the Presence of Heavy Metals in the Soil in the Poleski National Park. Applied Sciences. 2023; 13(21):11699. https://doi.org/10.3390/app132111699
Chicago/Turabian StyleWojtkowski, Karol, Małgorzata Wojtkowska, Magdalena Długosz-Lisiecka, and Agata Walczak. 2023. "Assessment of the Radiation Situation and the Presence of Heavy Metals in the Soil in the Poleski National Park" Applied Sciences 13, no. 21: 11699. https://doi.org/10.3390/app132111699