# Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analysis of UG

#### 2.1. Hull Shape Design

#### 2.2. Hull Resistance Analysis

#### 2.3. Maximum Speed Analysis

## 3. Mathematical Model of the UG

#### 3.1. Structure of UG System

#### 3.2. Mathematical Model of UG

## 4. Experiment

#### Gliding Experiment

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Shin, D.H.; Bae, S.B.; Baek, W.K.; Joo, M.G. Way-point tracking of AUV using Fuzzy PD controller. Korea Inst. Inf. Technol.
**2013**, 11, 1–7. [Google Scholar] [CrossRef] - Chen, X.; Bose, N.; Brito, M.; Khan, F.; Thanyamanta, B.; Zou, T. A review of risk analysis research for the operations of autonomous underwater vehicles. Reliab. Eng. Syst. Saf.
**2021**, 216, 108011. [Google Scholar] [CrossRef] - Park, J.J. Underwater glider: Its applicability in the East/Japan Sea. Ocean. Polar Res.
**2013**, 35, 107–121. [Google Scholar] [CrossRef] - Park, Y.-S.; Lee, S.-J.; Lee, Y.-K.; Jung, S.-K.; Jang, N.-D.; Lee, H.-W. Report of east sea crossing by underwater glider. Sea J. Korean Soc. Oceanogr.
**2012**, 17, 130–137. [Google Scholar] [CrossRef] - Arima, M.; Tonai, H.; Kosuga, Y. Underwater glider ‘SOARER’ for ocean environmental monitoring. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–5. [Google Scholar]
- Claus, B.; Bachmayer, R.; Cooney, L. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, 24–27 September 2012; pp. 1–6. [Google Scholar]
- Ruiz, S.; Renault, L.; Garau, B.; Tintoré, J. Underwater glider observations and modeling of an abrupt mixing event in the upper ocean. Geophys. Res. Lett.
**2012**, 39, L01603. [Google Scholar] [CrossRef] - Sherman, J.; Davis, R.E.; Owens, W.; Valdes, J. The autonomous underwater glider “Spray”. IEEE J. Ocean. Eng.
**2001**, 26, 437–446. [Google Scholar] [CrossRef] - Yu, J.; Zhang, F.; Zhang, A.; Jin, W.; Tian, Y. Motion parameter optimization and sensor scheduling for the sea-wing underwater glider. IEEE J. Ocean. Eng.
**2013**, 38, 243–254. [Google Scholar] [CrossRef] - Bhatta, P.; Leonard, N.E. Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica
**2008**, 44, 1240–1250. [Google Scholar] [CrossRef] - Graver, J.G.; Leonard, N.E. Underwater glider dynamics and control. In Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology, Durham, UK, 27 August 2001; pp. 1710–1742. [Google Scholar]
- Isa, K.; Arshad, M.R. Dynamic modeling and characteristics estimation for USM underwater glider. In Proceedings of the 2011 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 27–28 June 2011; pp. 12–17. [Google Scholar]
- Niu, W.D.; Wang, S.X.; Wang, Y.H. Stability analysis of hybrid-driven underwater glider. China Ocean Eng.
**2017**, 31, 528–538. [Google Scholar] [CrossRef] - Wu, H.; Niu, W.; Wang, S.; Yan, S. An analysis method and a compensation strategy of motion accuracy for UG considering uncertain current. Ocean Eng.
**2021**, 226, 108877. [Google Scholar] [CrossRef] - Yang, M.; Wang, Y.H.; Yang, S.Q.; Zhang, L.H.; Deng, J.J. Shape optimization of underwater glider based on approximate model technology. Appl. Ocean Res.
**2021**, 110, 102580. [Google Scholar] [CrossRef] - Yang, M.; Yang, S.; Wang, Y.; Liang, Y.; Wang, S.; Zhang, L. Optimization design of neutrally buoyant hull for underwater gliders. Ocean Eng.
**2020**, 209, 107512. [Google Scholar] [CrossRef] - Wang, S.; Yang, M.; Wang, Y.; Yang, S.; Lan, S.; Zhang, X. Optimization of Flight Parameters for Petrel-L Underwater Glider. IEEE J. Ocean. Eng.
**2020**, 46, 817–828. [Google Scholar] [CrossRef] - Nguyen, N.-D.; Choi, H.-S.; Jin, H.-S.; Huang, J.; Lee, J.-H. Robust Adaptive Depth Control of hybrid underwater glider in vertical plane. Adv. Technol. Innov.
**2020**, 5, 135–146. [Google Scholar] [CrossRef] - Yang, M.; Wang, Y.; Liang, Y.; Wang, C. A new approach to system design optimization of underwater gliders. IEEE-ASME Trans. Mechatron.
**2022**, 27, 3494–3505. [Google Scholar] [CrossRef] - Wang, S.; Yang, M.; Niu, W.; Wang, Y.; Yang, S.; Zhang, L.; Deng, J. Multidisciplinary Design Optimization of Underwater Glider for Improving Endurance. Struct. Multidiscip. Optim.
**2021**, 63, 2835–2851. [Google Scholar] [CrossRef] - Huang, J.; Choi, H.-S.; Jung, D.-W.; Cho, H.-J.; Anh, P.H.N.; Zhang, R.; Park, J.-H.; Yun, C.-U. Simulation Study on a New Hybrid Autonomous Underwater Vehicle with Elevators. Proc. Eng. Technol. Innov.
**2023**, 25, 11–25. [Google Scholar] [CrossRef] - Myring, D. A theoretical study of body drag in subcritical axisymmetric flow. Aeronaut. Q.
**1976**, 27, 186–194. [Google Scholar] [CrossRef] - Prestero, T.J. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons Ltd.: Chichester, UK, 1994. [Google Scholar]
- Ji, D.-H.; Choi, H.-S.; Kang, J.-I.; Cho, H.-J.; Joo, M.-G.; Lee, J.-H. Design and control of hybrid underwater glider. Adv. Mech. Eng.
**2019**, 11, 1–9. [Google Scholar] [CrossRef] - Kim, D.-H.; Lee, S.-S.; Choi, H.-S.; Kim, J.-Y.; Lee, S.-J.; Lee, Y.-K. Dynamic modeling and motion analysis of unmanned underwater gliders with mass shifter unit and buoyancy engine. J. Ocean. Eng. Technol.
**2014**, 28, 466–473. [Google Scholar] [CrossRef]

Parameters | Description | Units |
---|---|---|

$a$ | Nose section length | m |

${a}_{offset}$ | Nose offset | m |

$b$ | Constant radius center section length | m |

$c$ | Tail section length | m |

${c}_{offset}$ | Tail offset | m |

$n$ | Exponential coefficient | - |

$\theta $ | Included tail angle | radians |

$d$ | Maximum hull diameter | m |

$l$ | Vehicle total length | m |

${l}_{f}$ | Vehicle forward length | m |

Index | Value | Units |
---|---|---|

Length | 2.14 | m |

Diameter | 0.28 | m |

Width | 1.45 | m |

Height | 0.348 | m |

Weight | 108 | kg |

Buoyancy | 108 | kg |

Classification | Axis | Motion | Fore and Moment | Velocity | Displacement |
---|---|---|---|---|---|

Translational motion | x | Surge | $X$ | $u$ | $x$ |

y | Sway | $Y$ | $v$ | $y$ | |

z | Heave | $Z$ | $w$ | $z$ | |

Rotational motion | x | Roll | $K$ | $\mu $ | $\phi $ |

y | Pitch | $M$ | $q$ | $\theta $ | |

z | Yaw | $N$ | $r$ | $\psi $ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ji, D.-H.; Lee, J.-H.; Ko, S.-H.; Hyeon, J.-W.; Lee, J.-H.; Choi, H.-S.; Jeong, S.-K.
Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine. *Appl. Sci.* **2023**, *13*, 11367.
https://doi.org/10.3390/app132011367

**AMA Style**

Ji D-H, Lee J-H, Ko S-H, Hyeon J-W, Lee J-H, Choi H-S, Jeong S-K.
Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine. *Applied Sciences*. 2023; 13(20):11367.
https://doi.org/10.3390/app132011367

**Chicago/Turabian Style**

Ji, Dae-Hyeong, Jung-Han Lee, Sung-Hyub Ko, Jong-Wu Hyeon, Ji-Hyeong Lee, Hyeung-Sik Choi, and Sang-Ki Jeong.
2023. "Design and Analysis of the High-Speed Underwater Glider with a Bladder-Type Buoyancy Engine" *Applied Sciences* 13, no. 20: 11367.
https://doi.org/10.3390/app132011367