Research on the Strawberry Recognition Algorithm Based on Deep Learning
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Strawberry Image Acquisition
2.2. Strawberry Image Preprocessing
2.2.1. Image Clipping
2.2.2. Image Enhancement
2.2.3. Image Denoising
2.2.4. Image Scaling and Data Augmentation
2.3. Introduction of Faster R-CNN Network Structure and Optimization
2.3.1. ResNet50 Backbone Feature Extraction Network
2.3.2. VGG16 Backbone Feature Extraction Network
2.3.3. Region Proposal Network
2.3.4. Soft-NMS, ROI Pooling, Classification and Regression
2.4. Experimental Description and Evaluation Methods
2.4.1. Production of Data Sets
2.4.2. Evaluation Analysis and Experimental Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A.; Tylingo, R. Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules 2023, 28, 2711. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Jeong, S.; Kim, H.; Jeong, S.; Yun, G.-Y.; Park, K. Detecting Ripeness of Strawberry and Coordinates of Strawberry Stalk using Deep Learning. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 454–458. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, C.; Yan, T.; Zhu, J.; Zeng, Y.; Lu, X.; Gao, P.; Feng, L.; He, L.; Fan, L. Application of Hyperspectral Imaging for Maturity and Soluble Solids Content Determination of Strawberry With Deep Learning Approaches. Front. Plant Sci. 2021, 12, 736334. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.P.; Liu, Y.Y.; Shao, Z.E.; Huang, K.W. An improved VGG16 model for pneumonia image classification. Appl. Sci. 2021, 11, 11185. [Google Scholar] [CrossRef]
- Zheng, H.; Sherazi, S.W.A.; Son, S.H.; Lee, J.Y. A deep convolutional neural network-based multi-class image classification for automatic wafer map failure recognition in semiconductor manufacturing. Appl. Sci. 2021, 11, 9769. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. A review of key techniques of vision-based control for harvesting robot. Comput. Electron. Agric. 2016, 127, 311–323. [Google Scholar] [CrossRef]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning–Method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 2019, 162, 219–234. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J.; Guda, B. Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
- Laroca, R.; Severo, E.; Zanlorensi, L.A.; Oliveira, L.S.; Gonçalves, G.R.; Schwartz, W.R.; Menotti, D. A robust real-time automatic license plate recognition based on the YOLO detector. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–10. [Google Scholar]
- Wu, J.; Ren, H.; Lin, T.; Yao, Y.; Fang, Z.; Liu, C. Autonomous Path Finding and Obstacle Avoidance Method for Unmanned Construction Machinery. Electronics 2023, 12, 1998. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Lan, Y.; Deng, J.; Zhang, Q.; Zhang, Z.; Li, Z.; Liu, L.; Huang, X.; Ma, J. Application Progress of UAV-LARS in Identification of Crop Diseases and Pests. Agronomy 2023, 13, 2232. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, Y.; Xuan, G.; Wang, Y.; Liu, Y.; Han, X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 2020, 4, 31–38. [Google Scholar] [CrossRef]
- Xiao, B.; Nguyen, M.; Yan, W.Q. Fruit ripeness identification using transformers. In Applied Intelligence; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–12. [Google Scholar]
- Li, X.; Li, J.; Tang, J. A deep learning method for recognizing elevated mature strawberries. In Proceedings of the 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China, 18–20 May 2018; pp. 1072–1077. [Google Scholar]
- Niu, Y.; Lu, M.; Liang, X.; Wu, Q.; Mu, J. YOLO-plum: A high precision and real-time improved algorithm for plum recognition. PLoS ONE 2023, 18, e0287778. [Google Scholar] [CrossRef] [PubMed]
- Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl. 2023, 35, 13895–13906. [Google Scholar] [CrossRef]
- Wang, G.; Zheng, H.; Li, X. ResNeXt-SVM: A novel strawberry appearance quality identification method based on ResNeXt network and support vector machine. J. Food Meas. Charact. 2023, 17, 4345–4356. [Google Scholar] [CrossRef]
- Ridho, M.F. Strawberry Fruit Quality Assessment for Harvesting Robot using SSD Convolutional Neural Network. In Proceedings of the 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021; pp. 157–162. [Google Scholar]
- An, Q.; Wang, K.; Li, Z.; Song, C.; Tang, X.; Song, J. Real-Time Monitoring Method of Strawberry Fruit Growth State Based on YOLO Improved Model. IEEE Access 2022, 10, 124363–124372. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Chen, Y.; Yang, W.; Zhang, W.; He, Y. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application. Comput. Electron. Agric. 2022, 192, 106586. [Google Scholar] [CrossRef]
- Fu, L.; Feng, Y.; Majeed, Y.; Zhang, X.; Zhang, J.; Karkee, M.; Zhang, Q. Kiwifruit detection in field images using Faster R-CNN with ZFNet. IFAC-PapersOnLine 2018, 51, 45–50. [Google Scholar] [CrossRef]
- Nishizawa, T. Current status and future prospect of strawberry production in East Asia and Southeast Asia. In Proceedings of the IX International Strawberry Symposium, Rimini, Italy, 1–5 May 2021; pp. 395–402. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv preprint 2017, arXiv:1710.09412. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Qi, L.; Li, B.; Chen, L.; Wang, W.; Dong, L.; Jia, X.; Huang, J.; Ge, C.; Xue, G.; Wang, D. Ship Target Detection Algorithm Based on Improved Faster R-CNN. Electronics 2019, 8, 959. [Google Scholar] [CrossRef]
- Ullah, A.; Xie, H.; Farooq, M.O.; Sun, Z. Pedestrian detection in infrared images using fast RCNN. In Proceedings of the 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA), Xi’an, China, 7–10 November 2018; pp. 1–6. [Google Scholar]
- Li, D.J.; Li, R.H. Mug defect detection method based on improved Faster RCNN. Laser Optoelectron. Prog. 2020, 57, 353–360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhou, C.; Hu, J.; Xu, Z.; Yue, J.; Ye, H.; Yang, G. A novel greenhouse-based system for the detection and plumpness assessment of strawberry using an improved deep learning technique. Front. Plant Sci. 2020, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wu, P.; Hoi, S.C. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.Y.; Fan, H.; Mangalam, K.; Xiong, B.; Malik, J.; Feichtenhofer, C. Mvitv2: Improved multiscale vision transformers for classification and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4804–4814. [Google Scholar]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS--improving object detection with one line of code. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5561–5569. [Google Scholar]
Layer Name | Output Size | 50-Layer |
---|---|---|
Conv1 | 300 × 300 | 7 × 7, 64, stride 2 |
Conv2 | 150 × 150 | 3 × 3 max pool, stride 2 |
Conv3 | 75 × 75 | |
Conv4 | 38 × 38 | |
Conv5 | 19 × 19 | |
1 × 1 | Average pool, 1000-d fc, Softmax |
Hyperparameter Name | Initialize Learning Rate (Init_lr) | Minimum Learning Rate | Momentum Value | Optimizer | Weight Decay | Learning Rate Decay | Backbone | nms_iou | Training Epochs | Batch Size |
---|---|---|---|---|---|---|---|---|---|---|
Numerical value | 10−2 | Init_lr × 0.01 | 0.9 | SGD | 0 | cos | ResNet50 | 0.3 | 350 | 8 |
Hyperparameter Name | Initialize Learning Rate (Init_lr) | Minimum Learning Rate | Momentum Value | Optimizer | Weight Decay | Learning Rate Decay | Backbone | nms_iou | Training Epochs | Batch Size |
---|---|---|---|---|---|---|---|---|---|---|
Numerical value | 10−2 | Init_lr × 0.01 | 0.9 | SGD | 0 | cos | VGG16 | 0.3 | 350 | 8 |
Hyperparameter Name | Initialize Learning Rate (Init_lr) | Minimum Learning Rate | Momentum Value | Optimizer | Weight Decay | Learning Rate Decay | Backbone | nms_iou | Training Epochs | Batch Size |
---|---|---|---|---|---|---|---|---|---|---|
Numerical value | 10−2 | Init_lr × 0.01 | 0.9 | SGD | 0 | cos | ResNet50 | 0.3 | 350 | 8 |
Experimental Group | Classification | Precision | Recall | AP | |
---|---|---|---|---|---|
R Faster R-CNN | Mature | 94.11% | 94.31% | 93.91% | 94.10% |
Immature | 84.32% | 82.45% | 86.27% | 78.66% | |
MVS Faster R-CNN | Mature | 83.58% | 83.51% | 83.65% | 81.75% |
Immature | 71.52% | 72.67% | 70.41% | 68.49% | |
MRS Faster R-CNN (the method of this article) | Mature | 95.20% | 95.12% | 95.29% | 94.36% |
Immature | 88.48% | 88.79% | 88.17% | 84.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, L.; Yu, H.; Guo, Z.; Zhang, R.; Zhou, X. Research on the Strawberry Recognition Algorithm Based on Deep Learning. Appl. Sci. 2023, 13, 11298. https://doi.org/10.3390/app132011298
Zhang Y, Zhang L, Yu H, Guo Z, Zhang R, Zhou X. Research on the Strawberry Recognition Algorithm Based on Deep Learning. Applied Sciences. 2023; 13(20):11298. https://doi.org/10.3390/app132011298
Chicago/Turabian StyleZhang, Yunlong, Laigang Zhang, Hanwen Yu, Zhijun Guo, Ran Zhang, and Xiangyu Zhou. 2023. "Research on the Strawberry Recognition Algorithm Based on Deep Learning" Applied Sciences 13, no. 20: 11298. https://doi.org/10.3390/app132011298
APA StyleZhang, Y., Zhang, L., Yu, H., Guo, Z., Zhang, R., & Zhou, X. (2023). Research on the Strawberry Recognition Algorithm Based on Deep Learning. Applied Sciences, 13(20), 11298. https://doi.org/10.3390/app132011298