Land Subsidence Prediction Model Based on the Long Short-Term Memory Neural Network Optimized Using the Sparrow Search Algorithm
Abstract
:1. Introduction
2. Methods
2.1. Sparrow Search Algorithm (SSA)
2.2. LSTM Neural Network
2.3. SSA-LSTM Land Subsidence Prediction Model
2.4. Model Evaluation Metrics
3. Data Processing and Parameter Determination
3.1. Engineering Overview and Data Acquisition
3.2. Processing Sample Data
3.3. Determination of SSA-LSTM Model Parameters
4. Results and Discussion
4.1. Prediction and Analysis of Land Subsidence
4.2. Generalization Capability of the SSA-LSTM Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Xu, K.; Wang, H.; Li, L. Application of real-time monitoring technology to foundation settlement of sloping breakwaters in construction. Chin. J. Geotech. Eng. 2017, 39, 85–90, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhou, Z.; Heng, C.; Zhang, J.; Sun, X. Surface Settlement Characteristics of An Ultra-shallow-buried Rectangular Section Underpass. J. Basic Sci. Eng. 2020, 28, 900–912, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Goh, A.T.C.; Zhang, W.; Chen, Z. Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models. J. Rock Mech. Geotech. Eng. 2021, 13, 1478–1484. [Google Scholar] [CrossRef]
- Chen, R.-P.; Zhang, P.; Kang, X.; Zhong, Z.-Q.; Liu, Y.; Wu, H.-N. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods. Soils Found. 2019, 59, 284–295. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Mohammadi, M.; Daraei, A.; Ali, H.F.H.; Al-Salihi, N.K.; Omer, R.M.D. Forecasting maximum surface settlement caused by urban tunneling. Autom. Constr. 2020, 120, 103375. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, R.; Wu, X.; Wang, J. ANN-Based Dynamic Prediction of Daily Ground Settlement of Foundation Pit Considering Time-Dependent Influence Factors. Appl. Sci. 2022, 12, 6324. [Google Scholar] [CrossRef]
- Tang, L.; Na, S. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets. J. Rock Mech. Geotech. Eng. 2021, 13, 1274–1289. [Google Scholar] [CrossRef]
- Chen, R.P.; Dai, T.; Zhang, P.; Wu, H.N. Prediction Method of Tunneling-induced Ground Settlement Using Machine Learning Algorithms. J. Hunan Univ. 2021, 48, 111–118, (In Chinese with English Abstract). [Google Scholar]
- Moghaddasi, M.R.; Noorian-Bidgoli, M. ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling. Tunn. Undergr. Space Technol. 2018, 79, 197–209. [Google Scholar] [CrossRef]
- Yang, P.; Yong, W.; Li, C.; Peng, K.; Wei, W.; Qiu, Y.; Zhou, J. Hybrid Random Forest-Based Models for Earth Pressure Balance Tunneling-Induced Ground Settlement Prediction. Appl. Sci. 2023, 13, 2574. [Google Scholar] [CrossRef]
- Cao, X.Y.; Zhu, L.; Gong, H.L.; Guo, L.; Wei, Y.J.; Guo, T.; Chen, B.B.; Wang, H.G.; Li, H.J. Simulation of Ground Settlement in the Eastern Beijing Plain Using AM-LSTM Network. Natl. Remote Sens. Bull. 2022, 26, 1302–1314. (In Chinese) [Google Scholar] [CrossRef]
- Dai, Y.; Dai, W.; Yu, W.; Bai, D. Determination of Landslide Displacement Warning Thresholds by Applying DBA-LSTM and Numerical Simulation Algorithms. Appl. Sci. 2022, 12, 6690. [Google Scholar] [CrossRef]
- Kim, D.; Han, H.; Wang, W.; Kang, Y.; Lee, H.; Kim, H. Application of Deep Learning Models and Network Method for Comprehensive Air-Quality Index Prediction. Appl. Sci. 2022, 12, 6699. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, X.; Zhang, R.; Li, G.; Han, L.; Hu, X.; Li, D.; Yang, D.; Qin, F. A Hybrid Neural Network Model for Predicting Bottomhole Pressure in Managed Pressure Drilling. Appl. Sci. 2022, 12, 6728. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Ma, Z.X.; Zhang, L.Q.; Qiu, Z.J.; Wang, Z.P.; Liu, G.C.; Wang, X. Two-stage Optimal Scheduling of the Park Integrated Energy System Based on CEEMD-SSA-LSTM. High Volt. Eng. 2022, 49, 1430–1440, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Leng, L.Y.; Fu, J.Z.; Ning, B. Rsearch on IGBT Sequentially Prediction Based on SSA-LSTM Mode. Semicond. Technol. 2023, 48, 66–72, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zu, L.L.; Liu, P.Z.; Zhao, Y.P.; Li, T.H.; Li, H. Solar Greenhouse Environment Prediction Model Based on SSA-LSTM. Trans. Chin. Soc. Agric. Mach. 2022, 54, 351–358, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yu, Z.Z.; Zou, H.F.; Yu, D.S.; Wang, C.; Liu, T.X.; Zhang, X.Y. SSA-STM-based Model for Predicting Soil Oxygen Content in Maize. Trans. Chin. Soc. Agric. Mach. 2022, 53, 360–368+411, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.Y.; Xiao, C.Y.; Zhao, X.L.; Li, K.; Pang, L.L.; Shi, Y.X.; Li, S.H. Overlapping Peak Analysis of Soil Heavy Metal X-Ray Fluorescence Spectra Based on Sparrow Search Algorithm. Spectrosc. Spectr. Anal. 2021, 41, 2175–2180, (In Chinese with English Abstract). [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Soltau, H.; Liao, H.; Sak, H. Neural Speech Recognizer: Acoustic-to-Word LSTM Model for Large Vocabulary Speech Recognition. arXiv 2016, arXiv:1610.09975. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Hu, Z.R.; Zhao, W.F.; Song, Y.X.; Wang, F.; Lin, Y.M. Prediction Spatial Distribution of Soil Organic Matter Based on Improved BP Neural Network with Optimized Sparrow Search Algorithm. Environ. Sci. 2023, 15. (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, J.; Huang, Z.; Qiao, H.; Wei, B.; Zhao, Y.; Li, J.; Zhao, J. Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network. J. Cent. South Univ. 2022, 29, 3346–3360. [Google Scholar] [CrossRef]
- Li, Q.L.; Liu, Y.M.; Zhang, L.; Zhou, M.; Liang, J.; Wang, Y.; Sun, L. A Neural Networks Based Method for Suspended Sediment Concentration Retrieval from GF-5 Hyperspectral Images. J. Infrared Millim. Waves 2022, 41, 323–336, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhao, H.Y.; Huang, J.; Wang, J.D.; Wen, H.D.; Li, X. Improved SSA-VMD Algorithm and Its Application in Fault Diagnosis of Reciprocating Compressors. Lubr. Eng. 2022, 47, 147–152, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, D.D.; Wu, Y.X.; Zhu, C.C.; Li, Z.K. Parameter Identification Method for J-A Hysteresis Model Based on the Sparrow Search and Genetic Algorithm. High Volt. Eng. 2021, 48, 4181–4188, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ma, X.Y.; Zhang, H.F.; Wang, Z.; Zhang, C.; Dong, Z. Prediction of transformer bushing temperature based on SSA-BPNN-ARIMA residual correction. Foreign Electron. Meas. Technol. 2022, 41, 151–156, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Time | Subsidence Value (mm) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
4 January 2023 | −0.87 | 0.42 | −0.08 | 0.03 |
5 January 2023 | 0.14 | 0.10 | 0.31 | 0.26 |
6 January 2023 | −1.09 | −0.73 | 0.03 | −0.21 |
7 January 2023 | −0.71 | −0.32 | −0.92 | 0.39 |
8 January 2023 | 0.33 | 0.28 | −0.53 | −0.98 |
9 January 2023 | −0.62 | −0.94 | −0.88 | 0.36 |
10 January 2023 | −0.48 | −0.37 | 0.43 | −0.83 |
11 January 2023 | −0.88 | 0.37 | −0.59 | −0.92 |
12 January 2023 | −0.33 | −0.34 | −1.03 | −0.01 |
… | … | … | … | … |
22 March 2023 | −0.15 | −0.56 | 0.03 | −0.32 |
23 March 2023 | 0.25 | −0.66 | −0.3 | −0.72 |
24 March 2023 | −0.41 | −0.02 | 0.30 | 0.07 |
25 March 2023 | −0.16 | −0.22 | −0.34 | 0.36 |
26 March 2023 | −0.65 | −0.41 | −0.33 | −0.37 |
N Input | M Output |
---|---|
X1, X2, …, XN | XN+1 |
X2, X3, …, XN+1 | XN+2 |
… | … |
XK, XK+1, …, XN+K−1 | XN+K |
Number | Input Value | Expected Value | |||||
---|---|---|---|---|---|---|---|
1 | −0.711 | 0.618 | −1.000 | −0.500 | 0.868 | −0.382 | −0.197 |
2 | 0.618 | −1.000 | −0.500 | 0.868 | −0.382 | −0.197 | −0.724 |
3 | −1.000 | −0.500 | 0.868 | −0.382 | −0.197 | −0.724 | 0.000 |
4 | −0.500 | 0.868 | −0.382 | −0.197 | −0.724 | 0.000 | 0.605 |
5 | 0.868 | −0.382 | −0.197 | −0.724 | 0.000 | 0.605 | −0.737 |
6 | −0.382 | −0.197 | −0.724 | 0.000 | 0.605 | −0.737 | 0.711 |
7 | −0.197 | −0.724 | 0.000 | 0.605 | −0.737 | 0.711 | 0.066 |
8 | −0.724 | 0.000 | 0.605 | −0.737 | 0.711 | 0.066 | −0.382 |
9 | 0.000 | 0.605 | −0.737 | 0.711 | 0.066 | −0.382 | 0.539 |
10 | 0.605 | −0.737 | 0.711 | 0.066 | −0.382 | 0.539 | −0.395 |
11 | −0.737 | 0.711 | 0.066 | −0.382 | 0.539 | −0.395 | 0.816 |
12 | 0.711 | 0.066 | −0.382 | 0.539 | −0.395 | 0.816 | −0.566 |
13 | 0.066 | −0.382 | 0.539 | −0.395 | 0.816 | −0.566 | −0.592 |
14 | −0.382 | 0.539 | −0.395 | 0.816 | −0.566 | −0.592 | 0.434 |
15 | 0.539 | −0.395 | 0.816 | −0.566 | −0.592 | 0.434 | 0.961 |
16 | −0.395 | 0.816 | −0.566 | −0.592 | 0.434 | 0.961 | 0.368 |
17 | 0.816 | −0.566 | −0.592 | 0.434 | 0.961 | 0.368 | 0.526 |
18 | −0.566 | −0.592 | 0.434 | 0.961 | 0.368 | 0.526 | −0.329 |
19 | −0.592 | 0.434 | 0.961 | 0.368 | 0.526 | −0.329 | −0.329 |
20 | 0.434 | 0.961 | 0.368 | 0.526 | −0.329 | −0.329 | −0.618 |
Number | Input Value | Expected Value | |||||
---|---|---|---|---|---|---|---|
1 | −0.382 | −0.421 | 0.539 | 0.921 | 0.921 | 0.921 | 0.763 |
2 | −0.421 | 0.539 | 0.921 | 0.921 | 0.921 | 0.763 | 0.158 |
3 | 0.539 | 0.921 | 0.921 | 0.921 | 0.763 | 0.158 | −0.013 |
4 | 0.921 | 0.921 | 0.921 | 0.763 | 0.158 | −0.013 | 0.934 |
5 | 0.921 | 0.921 | 0.763 | 0.158 | −0.013 | 0.934 | 0.618 |
6 | 0.921 | 0.763 | 0.158 | −0.013 | 0.934 | 0.618 | 0.237 |
7 | 0.763 | 0.158 | −0.013 | 0.934 | 0.618 | 0.237 | 0.763 |
8 | 0.158 | −0.013 | 0.934 | 0.618 | 0.237 | 0.763 | −0.105 |
9 | −0.013 | 0.934 | 0.618 | 0.237 | 0.763 | −0.105 | 0.224 |
10 | 0.934 | 0.618 | 0.237 | 0.763 | −0.105 | 0.224 | −0.421 |
Subsidence Value (mm) | |||||
---|---|---|---|---|---|
Number | True Value | Predicted Value 1 | Predicted Value 2 | Residual Value 1 | Residual Value 2 |
1 | −0.48 | −0.13 | −0.43 | −0.35 | −0.05 |
2 | −0.88 | −0.70 | −0.86 | −0.18 | −0.02 |
3 | −0.33 | −0.03 | −0.35 | −0.30 | 0.02 |
4 | 0.13 | 0.60 | 0.13 | −0.47 | 0.00 |
5 | −0.89 | −0.64 | −0.81 | −0.25 | −0.08 |
6 | 0.21 | 0.64 | 0.16 | −0.43 | 0.05 |
7 | −0.28 | 0.03 | −0.31 | −0.31 | 0.03 |
8 | −0.62 | −0.35 | −0.60 | −0.27 | −0.02 |
9 | 0.08 | 0.53 | 0.07 | −0.45 | 0.01 |
10 | −0.63 | −0.38 | −0.62 | −0.25 | −0.01 |
Subsidence Value (mm) | |||||
---|---|---|---|---|---|
Number | True Value | Predicted Value 1 | Predicted Value 2 | Residual Value 1 | Residual Value 2 |
1 | 0.25 | 0.73 | 0.22 | −0.48 | 0.03 |
2 | −0.21 | 0.16 | −0.21 | −0.37 | 0.00 |
3 | −0.34 | −0.02 | −0.34 | −0.32 | 0.00 |
4 | 0.38 | 0.90 | 0.36 | −0.52 | 0.02 |
5 | 0.14 | 0.64 | 0.16 | −0.50 | −0.02 |
6 | −0.15 | 0.27 | −0.12 | −0.42 | −0.03 |
7 | 0.25 | 0.73 | 0.22 | −0.48 | 0.03 |
8 | −0.41 | −0.13 | −0.43 | −0.28 | 0.02 |
9 | −0.16 | 0.21 | −0.17 | −0.37 | 0.01 |
10 | −0.65 | −0.38 | −0.62 | −0.27 | −0.03 |
Point | MAE | MSE | RMSE |
---|---|---|---|
1 | 0.0212 | 0.0007 | 0.0269 |
2 | 0.0229 | 0.0010 | 0.0319 |
3 | 0.0155 | 0.0004 | 0.0204 |
4 | 0.0149 | 0.0004 | 0.0210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, P.; Liu, F.; Zhang, J. Land Subsidence Prediction Model Based on the Long Short-Term Memory Neural Network Optimized Using the Sparrow Search Algorithm. Appl. Sci. 2023, 13, 11156. https://doi.org/10.3390/app132011156
Qiu P, Liu F, Zhang J. Land Subsidence Prediction Model Based on the Long Short-Term Memory Neural Network Optimized Using the Sparrow Search Algorithm. Applied Sciences. 2023; 13(20):11156. https://doi.org/10.3390/app132011156
Chicago/Turabian StyleQiu, Peicheng, Fei Liu, and Jiaming Zhang. 2023. "Land Subsidence Prediction Model Based on the Long Short-Term Memory Neural Network Optimized Using the Sparrow Search Algorithm" Applied Sciences 13, no. 20: 11156. https://doi.org/10.3390/app132011156
APA StyleQiu, P., Liu, F., & Zhang, J. (2023). Land Subsidence Prediction Model Based on the Long Short-Term Memory Neural Network Optimized Using the Sparrow Search Algorithm. Applied Sciences, 13(20), 11156. https://doi.org/10.3390/app132011156