Research on the Economic Optimization of an Electric–Gas Integrated Energy System Considering Energy Storage Life Attenuation
Abstract
:1. Introduction
2. Integrated Electricity–Gas Energy System Model with Energy Storage
2.1. Micro Gas Turbine Mathematical Model
2.2. Mathematical Model of the Electric Boiler
2.3. Mathematical Model of Electric Chillers
2.4. P2G Mathematical Model
2.5. Mathematical Model of Heat Exchangers and Absorption Chillers
3. Energy Storage Life Decay Model
3.1. Capacity Decay Model
3.2. Charge State Decay Model
4. Integrated Energy System Optimization Scheduling
4.1. Optimal Scheduling Model without Accounting for Energy Storage Lifetime Decay
4.1.1. Objective Function
4.1.2. Constraints
4.2. Optimal Scheduling Model for Energy Storage Life Decay and Calculation
4.2.1. Objective Function
4.2.2. Constraints
5. Example Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Patwary, A.K.; Qayyum, A.; Alharthi, M.; Bashir, F.; Mohsin, M.; Hanif, I.; Abbas, Q. The determinants of renewable energy sources for the fueling of green and sustainable economy. Energy 2022, 238, 122029. [Google Scholar] [CrossRef]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O.; Sekoai, P.T.; Wilson, U.N.; Eterigho-Ikelegbe, O. Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. Renew. Sustain. Energy Rev. 2021, 150, 111506. [Google Scholar] [CrossRef]
- Guo, M.; Xia, M.; Chen, Q. A review of regional energy internet in smart city from the perspective of energy community. Energy Rep. 2022, 8, 161–182. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Wang, N.; Yang, W.; Li, M.; Zhou, X.; Yin, Y.; Wang, J.; Guo, T. Stochastic robust optimal operation of community integrated energy system based on integrated demand response. Int. J. Electr. Power Energy Syst. 2021, 128, 106735. [Google Scholar] [CrossRef]
- Li, Y.; Zou, Y.; Tan, Y.; Cao, Y.; Liu, X.; Shahidehpour, M.; Tian, S.; Bu, F. Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System. IEEE Trans. Sustain. Energy 2018, 9, 273–283. [Google Scholar] [CrossRef]
- Nengroo, S.H.; Jin, H.; Lee, S. Management of Distributed Renewable Energy Resources with the Help of a Wireless Sensor Network. Appl. Sci. 2022, 12, 6908. [Google Scholar] [CrossRef]
- Xuewei, S.; Xuefang, S.; Wenqi, D.; Peng, Z.; Hongyan, J.; Jinfang, W.; Yang, W. Research on energy storage configuration method based on wind and solar volatility. In Proceedings of the 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 25–27 December 2020. [Google Scholar]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Amiryar, M.E.; Pullen, K.R. A Review of Flywheel Energy Storage System Technologies and Their Applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- da Silva Lima, L.; Quartier, M.; Buchmayr, A.; Sanjuan-Delmás, D.; Laget, H.; Corbisier, D.; Mertens, J.; Dewulf, J. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain. Energy Technol. Assess. 2021, 46, 101286. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Y.; Gao, F.; Wu, H. Two-Stage Robust Economic Dispatch of Regional Integrated Energy System Considering Source-Load Uncertainty Based on Carbon Neutral Vision. Energies 2022, 15, 1596. [Google Scholar] [CrossRef]
- Zhang, N.; Jian, X.; Ding, Y.; Wang, Y.; Chen, L. Day-ahead Low-Carbon Economical Dispatch of Integrated Energy System with CSP and ORC Based on Improved Imperialist Competitive Algorithm. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 814, No. 1. [Google Scholar]
- Gao, Y.; Ai, Q. A novel optimal dispatch method for multiple energy sources in regional integrated energy systems considering wind curtailment. CSEE J. Power Energy Syst. 2022. [Google Scholar] [CrossRef]
- Yan, X.W.; Deng, H.R.; Guo, Q.; Qu, W. Study on the stateof health detection of power batteries based on adaptiveunscented kalman filters and the battery echelon utilization. Trans. China Electrotech. Soc. 2019, 34, 3937–3948. [Google Scholar]
- Bai, Y.; He, H.; Li, J.; Li, S.; Wang, Y.-X.; Yang, Q. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy. J. Clean. Prod. 2019, 237, 117841. [Google Scholar] [CrossRef]
- Zhang, W.; Son, S.B.; Guthrey, H.; Ban, C. Mitigation of rapid capacity decay in silicon-LiNi0. 6Mn0. 2Co0. 2O2 full batteries. Energy Storage Mater. 2022, 49, 111–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, K.; Wang, X.; Gao, F.; MacRo, J.; Widanage, W.D. Model migration neural network for predicting battery aging trajectories. IEEE Trans. Transp. Electrific. 2020, 6, 363–374. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, S.; Guo, J.; Qin, T. State of health estimation of lithium-ion batteries based on the constant voltage charging curve. Energy 2019, 167, 661–669. [Google Scholar] [CrossRef]
- Richardson, R.R.; Birkl, C.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for in situ capacity estimation of lithium-ion batteries. IEEE Trans. Ind. Inf. 2019, 15, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Battery health prediction under generalized conditions using a Gaussian process transition model. J. Energy Storage 2019, 23, 320–328. [Google Scholar] [CrossRef]
- Chinomona, B.; Chung, C.; Chang, L.-K.; Su, W.-C.; Tsai, M.-C. Long short-term memory approach to estimate battery remaining useful life using partial data. IEEE Access 2020, 8, 165419–165431. [Google Scholar] [CrossRef]
- Lucu, M.; Martinez-Laserna, E.; Gandiaga, I.; Liu, K.; Camblong, H.; Widanage, W.D.; Marco, J. Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data—Part A: Storage operation. J. Energy Storage 2020, 30, 101409. [Google Scholar] [CrossRef]
- Lee, S.; Siegel, J.B.; Stefanopoulou, A.G.; Lee, J.-W.; Lee, T.-K. Electrode state of health estimation for lithium ion batteries considering half-cell potential change due to aging. J. Electrochem. Soc. 2020, 167, 090531. [Google Scholar] [CrossRef]
- Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. J. Power Sources 2020, 478, 229026. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, B.; Wang, D.; Zhang, B. Using battery storage for peak shaving and frequency regulation: Joint optimization for superlinear gains. IEEE Trans. Power Syst. 2017, 33, 2882–2894. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zou, C.; Tang, X. Cost-optimal energy management of hybrid electric vehicles using fuel cell/battery health-aware predictive control. IEEE Trans. Power Electron. 2020, 35, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Li, X.; Zhong, Y. Life decay characteristics identification method of retired power batteries based on inverse power law model of accelerated life test. Energy Rep. 2022, 8, 950–956. [Google Scholar] [CrossRef]
- Han, S.; Han, S.; Aki, H. A practical battery wear model for electric vehicle charging applications. Appl. Energy 2014, 113, 1100–1108. [Google Scholar] [CrossRef]
- Foggo, B.; Yu, N. Improved battery storage valuation through degradation reduction. IEEE Trans. Smart Grid 2017, 9, 5721–5732. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Q.; He, G.; Zhong, G.; Kang, C. Plasticity plan optimization considering battery energy storage life model. Autom. Electr. Power Syst. 2019, 43, 93–100. [Google Scholar]
- Feng, Z.; Xu, Y.; Wang, K.; Yin, H. Optimized configuration of microcarbon battery storage capacity considering life loss. J. Power Supply 2022, 1–16. [Google Scholar]
- Hamouda, N.; Babes, B.; Boutaghane, A.; Kahla, S.; Mezaache, M. Optimal tuning of PIλDμ controller for PMDC motor speed control using ant colony optimization algorithm for enhancing robustness of WFSs. In Proceedings of the 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), EL Oued, Algeria, 16–17 May 2020; pp. 364–369. [Google Scholar]
- Krama, A.; Zellouma, L.; Benaissa, A.; Rabhi, B.; Bouzidi, M. Design and experimentalinvestigation of predictive direct power control of three-phase shunt active filter with space vector modulationusing anti-windup PI controller optimized by PSO. Arab. J. Sci. Eng. 2019, 44, 6741–6755. [Google Scholar] [CrossRef]
- Babes, B.; Boutaghane, A.; Hamouda, N.; Kahla, S.; Kellai, A.; Ellinger, T.; Petzoldt, J. New Optimal Control of Permanent Magnet DC Motor for Photovoltaic Wire FeederSystems. J. Eur. Des Systèmes Autom. 2020, 53, 811–823. [Google Scholar] [CrossRef]
- Hamouda, N.; Babes, B.; Kahla, S.; Boutaghane, A.; Beddar, A.; Aissa, O. ANFIS controller design using PSO algorithm for MPPT of solar PV system powered brushless DC motor based wire feeder unit. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020. [Google Scholar]
- Babes, B.; Albalawi, F.; Hamouda, N.; Kahla, S.; Ghoneim, S.S.M. Fractional-fuzzy PID control approach of photovoltaic-wire feeder system (PV-WFS): Simulation and HIL-based experimental investigation. IEEE Access 2021, 9, 159933–159954. [Google Scholar] [CrossRef]
- Menos-Aikateriniadis, C.; Lamprinos, I.; Georgilakis, P.S. Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision. Energies 2022, 15, 2211. [Google Scholar] [CrossRef]
- Reale, F.; Sannino, R. Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review. Energies 2022, 15, 900. [Google Scholar] [CrossRef]
- Mao, A.; Yu, T.; Ding, Z.; Fang, S.; Guo, J.; Sheng, Q. Optimal scheduling for seaport integrated energy system considering flexible berth allocation. Appl. Energy 2022, 308, 118386. [Google Scholar] [CrossRef]
- Teng, Y.; Sun, P.; Leng, O.; Chen, Z.; Zhou, G. Optimal operation strategy for combined heat and power system based on solid electric thermal storage boiler and thermal inertia. IEEE Access 2019, 7, 180761–180770. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J.; Xiao, N.; Yang, L.; Zhao, W.; Geng, J.; Lu, T.; Luo, M.; Dong, C. Low Carbon Economic Dispatch Optimization of Regional Integrated Energy Systems Considering Heating Network and P2G. Energies 2022, 15, 5494. [Google Scholar] [CrossRef]
- Wang, L.; Dong, H.; Lin, J.; Zeng, M. Multi-objective optimal scheduling model with IGDT method of integrated energy system considering ladder-type carbon trading mechanism. Int. J. Electr. Power Energy Syst. 2022, 143, 108386. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef] [Green Version]
- Xu, C. Optimal configuration of energy storage capacity under the access of electric vehicles in V2G mode. Nanjing Univ. Posts Telecommun. 2021, 001098. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Jin, Y.; Wang, S.; Guo, X.; Xiao, X.; Huang, X. Commercial Li_4TI_5O_(12) Battery Rate Circulation Capacity Attenuation Model. Energy Storage Sci. Technol. 2017, 6, 584–589. [Google Scholar]
- Ren, J.; Sun, Z.; Gu, Q.; Geng, S.; Chang, F.; Wang, Q. Optimized configuration of integrated energy system for energy storage full life cycle operation and maintenance. Guangdong Electr. Power 2019, 32, 71–78. [Google Scholar]
- Du, L. Research on economic scheduling for integrated electricity and natural gas energy systems. Tohoku Univ. Electr. Power 2018. [Google Scholar]
- Xu, Q.; Li, L.; Cai, J.; Luan, K.; Yang, B. Day-ahead Optimization of Economic Dispatching of Cold, Hot and electric Multi-micro grid System considering electrical energy interaction. Power Syst. Autom. 2018, 42, 36–46. [Google Scholar]
- Xu, C.; Dong, S.; Zhang, S.; Liu, Y.; Xiong, W. Centralized distributed integrated Demand Response Method for Industrial Parks. Power Grid Technol. 2021, 45, 489–500. [Google Scholar]
- Huang, W.; Liu, W. Optimization planning of integrated energy station in the Park based on multi-energy complementation. Autom. Power Syst. 2020, 44, 20–28. [Google Scholar]
Parameters of Each Equipment | Value/Unit |
---|---|
Rated power of electric chillers | |
Rated power of the electric boiler | |
The power rating of P2G | |
Rated power of the micro gas turbine | |
The power rating of heat exchangers | |
The power rating of absorption chillers | |
The initial capacity of the battery | |
Maximum battery state of charge | 0.9 |
Minimum battery state of charge | 0.2 |
Battery charging and discharging efficiency | 0.97 |
The efficiency of electric chillers | 4 |
The efficiency of electric boilers | 0.94 |
The efficiency of P2G | 0.6 |
Micro gas turbine efficiency | 0.32 |
Heat exchanger efficiency | 0.9 |
Unit maintenance cost of electric chillers | |
Unit maintenance cost of electric boilers | |
Unit maintenance cost of P2G | |
Unit maintenance cost of micro gas turbines | |
Heat exchanger unit maintenance cost | |
Unit maintenance cost of absorption chillers | |
Energy storage per day investment cost | 1000 yuan |
Project Category (Tariff) | Time Period | Unit Price |
---|---|---|
Peak | 8:00–11:00 18:00–20:00 | 0.886 |
Flat value | 11:00–18:00 20:00–21:00 | 0.559 |
Valley value | 23:00–8:00 the next day | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Dang, W.; Jia, R.; Dang, J. Research on the Economic Optimization of an Electric–Gas Integrated Energy System Considering Energy Storage Life Attenuation. Appl. Sci. 2023, 13, 1080. https://doi.org/10.3390/app13021080
Zhang H, Dang W, Jia R, Dang J. Research on the Economic Optimization of an Electric–Gas Integrated Energy System Considering Energy Storage Life Attenuation. Applied Sciences. 2023; 13(2):1080. https://doi.org/10.3390/app13021080
Chicago/Turabian StyleZhang, Huizhi, Weihong Dang, Rong Jia, and Jian Dang. 2023. "Research on the Economic Optimization of an Electric–Gas Integrated Energy System Considering Energy Storage Life Attenuation" Applied Sciences 13, no. 2: 1080. https://doi.org/10.3390/app13021080
APA StyleZhang, H., Dang, W., Jia, R., & Dang, J. (2023). Research on the Economic Optimization of an Electric–Gas Integrated Energy System Considering Energy Storage Life Attenuation. Applied Sciences, 13(2), 1080. https://doi.org/10.3390/app13021080