Remote Control Device to Drive the Arm Gestures of an Assistant Humanoid Robot
Abstract
:1. Introduction
New Contribution
2. Background on Remote Robot Telecontrol
3. APR-02 Humanoid Robot
4. Remote Control Device
4.1. Electronic Control Board and Sensors
4.2. Humanoid Robot Joint Replication
4.3. Hand Gamepads
4.4. Device Implementation
4.5. Imitation Model
5. Experimental Evaluation
5.1. Measurement of Target Joint Positions
5.2. Measurement of the Structural Delay of the Imitation Model
5.3. Measurement of the Telecontrol Delay
6. Discussion and Conclusions
Limitations and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Royakkers, L.; van Est, R. A literature review on new robotics: Automation from love to war. Int. J. Soc. Robot. 2015, 7, 549–570. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Rassau, A.; Chai, D.; Islam, S.M.S. Teleoperation methods and enhancement techniques for mobile robots: A comprehensive survey. Robot. Auton. Syst. 2022, 150, 103973. [Google Scholar] [CrossRef]
- Fong, T.; Thorpe, C. Vehicle teleoperation interfaces. Auton. Robot. 2001, 11, 9–18. [Google Scholar] [CrossRef]
- Weber, B.; Balachandran, R.; Riecke, C.; Stulp, F.; Stelzer, M. Teleoperating Robots from the International Space Station: Microgravity Effects on Performance with Force Feedback. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar] [CrossRef]
- Dimitrov, V.; Padir, T. A comparative study of teleoperated and autonomous task completion for sample return rover missions. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014. [Google Scholar] [CrossRef]
- Watanabe, M. Decontamination and concrete core sampling by teleoperated robot at Fukushima Daiichi reactor buildings. In Proceedings of the International Conference on Nuclear Engineering: Nuclear Power—Reliable Global Energy, ICONE, Chiba, Japan, 17–21 May 2015. [Google Scholar]
- Qian, K.; Qian, K.; Song, A.; Bao, J.; Zhang, H. Small teleoperated robot for nuclear radiation and chemical leak detection. Int. J. Adv. Robot. Syst. 2012, 9, 73. [Google Scholar] [CrossRef]
- Vitanov, I.; Farkhatdinov, I.; Denoun, B.; Palermo, F.; Otaran, A.; Brown, J.; Omarali, B.; Abrar, T.; Hansard, M.; Oh, C.; et al. A Suite of Robotic Solutions for Nuclear Waste Decommissioning. Robotics 2021, 10, 112. [Google Scholar] [CrossRef]
- Minsky, M. Telepresence (Essay). In OMNI Magazine; OMNI Publications International Ltd.: New York, NY, USA, 1980; Volume 2, pp. 45–52. [Google Scholar]
- Pawłowski, A.; Wolniakowski, A.; Romaniuk, S. Comparison of Mobile Platform Teleoperation Systems Using a Force-Torque Sensor and a Joystick. In Proceedings of the 26th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 22–25 August 2022. [Google Scholar] [CrossRef]
- Choi, J.J.; Kim, Y.; Kwak, S.S. The autonomy levels and the human intervention levels of robots: The impact of robot types in humanrobot interaction. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014. [Google Scholar] [CrossRef]
- Klamt, T.; Rodriguez, D.; Schwarz, M.; Lenz, C.; Pavlichenko, D.; Droeschel, D.; Behnke, S. Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-Like Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar] [CrossRef]
- Di Bona, G.; Cesarotti, V.; Arcese, G.; Gallo, T. Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Comput. Sci. 2021, 180, 424–429. [Google Scholar] [CrossRef]
- Luperto, M.; Romeo, M.; Monroy, J.; Renoux, J.; Vuono, A.; Moreno, F.-A.; Gonzalez-Jimenez, J.; Basilico, N.; Borghese, N.A. User feedback and remote supervision for assisted living with mobile robots: A field study in long-term autonomy. Robot. Auton. Syst. 2022, 155, 104170. [Google Scholar] [CrossRef]
- Bao, X.; Guo, S.; Guo, Y.; Yang, C.; Shi, L.; Li, Y.; Jiang, Y. Multilevel Operation Strategy of a Vascular Interventional Robot System for Surgical Safety in Teleoperation. IEEE Trans. Robot. 2022, 38, 2238–2250. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, H. Robot Learning from Demonstration in Robotic Assembly: A Survey. Robotics 2018, 7, 17. [Google Scholar] [CrossRef]
- Hussein, A.; Gaber, M.M.; Elyan, E.; Jayne, C. Imitation Learning: A Survey of Learning Methods. ACM Comput. Surv. 2017, 50, 21. [Google Scholar] [CrossRef]
- Bekker, M.M.; Olson, J.S.; Olson, G.M. Analysis of gestures in face-to-face design teams provides guidance for how to use groupware in design. In Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, & Techniques (DIS ’95), Ann Arbor, MI, USA, 23–25 August 1995. [Google Scholar] [CrossRef]
- Stahl, C.; Anastasiou, D.; Latour, T. Social Telepresence Robots: The role of gesture for collaboration over a distance. In Proceedings of the 11th Pervasive Technologies Related to Assistive Environments Conference (PETRA ’18), Corfu, Greece, 26–29 June 2018. [Google Scholar] [CrossRef]
- Jung, H.; Song, Y.-E. Robotic remote control based on human motion via virtual collaboration system: A survey. J. Adv. Mech. Des. Syst. Manuf. 2018, 12, JAMDSM0126. [Google Scholar] [CrossRef]
- Sheridan, T. Human supervisory control of robot systems. In Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7–10 April 1986. [Google Scholar] [CrossRef]
- Sergeant, J.; Sunderhauf, N.; Milford, M.; Upcroft, B. Multimodal deep autoencoders for control of a mobile robot. In Proceedings of the Australasian Conference on Robotics and Automation, ACRA, Canberra, Australia, 2–4 December 2015. [Google Scholar]
- Nahri, S.N.F.; Du, S.; Van Wyk, B.J. A Review on Haptic Bilateral Teleoperation Systems. J. Intell. Robot. Syst. 2022, 104, 13. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, Y.; Yang, B.; Zheng, W.; Liu, S.; Liu, C. A Review of Bilateral Teleoperation Control Strategies with Soft Environment. In Proceedings of the 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021. [Google Scholar] [CrossRef]
- Fong, T.; Thorpe, C.; Baur, C. Robot as partner: Vehicle teleoperation with collaborative control. In Multi-Robot Systems: From Swarms to Intelligent Automata; Schultz, A.C., Parker, L.E., Eds.; Springer: Dordrecht, Netherlands, 2002; pp. 195–202. [Google Scholar] [CrossRef]
- Bruemmer, D.J.; Marble, J.L.; Dudenhoeffer, D.D.; Anderson, M.; McKay, M.D. Mixed-initiative control for remote characterization of hazardous environments. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, HICSS, Big Island, HI, USA, 6–9 January 2003. [Google Scholar] [CrossRef]
- Dorais, G.; Bonasso, R.P.; Kortenkamp, D.; Pell, B.; Schreckenghost, D. Adjustable autonomy for human-centered autonomous systems. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence Workshop on Adjustable Autonomy Systems, Stockholm, Sweden, 31 July–6 August 1999; pp. 16–35. [Google Scholar]
- Sellner, B.; Heger, F.W.; Hiatt, L.M.; Simmons, R.; Singh, S. Coordinated multiagent teams and sliding autonomy for large-scale assembly. Proc. IEEE 2006, 94, 1425–1444. [Google Scholar] [CrossRef]
- Vozar, S.; Tilbury, D.M. Augmented reality user interface for mobile robots with manipulator arms: Development, testing, and qualitative analysis. In Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, 12–15 August 2012. [Google Scholar] [CrossRef]
- Shim, H.; Jun, B.H.; Lee, P.M.; Baek, H.; Lee, J. Workspace control system of underwater tele-operated manipulators on an ROV. Ocean. Eng. 2010, 37, 1036–1047. [Google Scholar] [CrossRef]
- Deichler, A.; Wang, S.; Alexanderson, S.; Beskow, J. Learning to generate pointing gestures in situated embodied conversational agents. Front. Robot. AI 2023, 10, 1110534. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.; You, B.; Oh, S. Stable whole-body motion generation for humanoid robots to imitate human motions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009. [Google Scholar] [CrossRef]
- Suleiman, W.; Yoshida, E.; Kanehiro, F.; Laumond, J.-P.; Monin, A. On human motion imitation by humanoid robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar] [CrossRef]
- Chalodhorn, R.; Grimes, D.B.; Grochow, K.; Rao, R.P. Learning to Walk through Imitation. In Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007. [Google Scholar]
- Nakaoka, S.; Nakazawa, A.; Kanehiro, F.; Kaneko, K.; Morisawa, M.; Hirukawa, H.; Ikeuchi, K. Learning from observation paradigm: Leg task models for enabling a biped humanoid robot to imitate human dances. Int. J. Robot. Res. 2007, 26, 777–884. [Google Scholar] [CrossRef]
- Ude, A.; Atkeson, C.; Riley, M. Programming full-body movements for humanoid robots by observation. Robot. Auton. Syst. 2004, 47, 93–108. [Google Scholar] [CrossRef]
- Safonova, A.; Pollard, N.; Hodgins, J.K. Optimizing human motion for the control of a humanoid robot. In Proceedings of the International Symposium on Adaptive Motion of Animals and Machines (AMAM ’03), Kyoto, Japan, 4–8 March 2003. [Google Scholar]
- Munirathinam, K.; Chevallereau, C.; Sakka, S. Offline Imitation of a Human Motion by a Humanoid Robot Under Balance Constraint. In New Trends in Medical and Service Robots; Rodić, A., Pisla, D., Bleuler, H., Eds.; Springer: Cham, Switzerland, 2014; Volume 20, pp. 269–282. [Google Scholar] [CrossRef]
- Gonen, E.C.; Chae, Y.J.; Kim, C. Imitation of Human Upper-Body Motions by Humanoid Robots. In Proceedings of the 16th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019. [Google Scholar] [CrossRef]
- Oh, J.; Lee, I.; Jeong, H.; Oh, J.-H. Real-time humanoid whole-body remote control framework for imitating human motion based on kinematic mapping and motion constraints. Adv. Robot. 2019, 33, 293–305. [Google Scholar] [CrossRef]
- Stanton, C.; Bogdanovych, A.; Ratanasen, E. Teleoperation of a humanoid robot using full-body motion capture, example movements, and machine learning. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA 2012), Wellington, New Zealand, 3–5 December 2012. [Google Scholar]
- Yamane, K.; Hodgins, J. Controlling humanoid robots with human motion data: Experimental validation. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010. [Google Scholar] [CrossRef]
- Ott, C.; Lee, D.; Nakamura, Y. Motion capture based human motion recognition and imitation by direct marker control. In Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Republic of Korea, 1–3 December 2008. [Google Scholar] [CrossRef]
- Dariush, B.; Gienger, M.; Arumbakkam, A.; Zhu, Y.; Jian, B.; FujiMura, K.; Goerick, C. Online transfer of human motion to humanoids. Int. J. Humanoid Robot. 2009, 6, 265–289. [Google Scholar] [CrossRef]
- Do, M.; Azad, P.; Asfour, T.; Dillmann, R. Imitation of human motion on a humanoid robot using non-linear optimization. In Proceedings of the Humanoids 2008—8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Republic of Korea, 1–3 December 2008. [Google Scholar] [CrossRef]
- Qiu, X.; Yu, Z.; Meng, L.; Chen, X.; Zhao, L.; Huang, G.; Meng, F. Upright and Crawling Locomotion and Its Transition for a Wheel-Legged Robot. Micromachines 2022, 13, 1252. [Google Scholar] [CrossRef]
- Chen, T.L.; Ciocarlie, M.; Cousins, S.; Grice, P.; Hawkins, K.; Hsiao, K.; Kemp, C.C.; King, C.-H.; Lazewatsky, D.A.; Leeper, A.; et al. Robots for Humanity: A Case Study in Assistive Mobile Manipulation. IEEE Robot. Autom. Mag. 2013, 20, 30–39. [Google Scholar] [CrossRef]
- Koenemann, J.; Burget, F.; Bennewitz, M. Real-time imitation of human whole-body motions by humanoids. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar] [CrossRef]
- Cerón, J.C.; Sunny, M.S.H.; Brahmi, B.; Mendez, L.M.; Fareh, R.; Ahmed, H.U.; Rahman, M.H. A Novel Multi-Modal Teleoperation of a Humanoid Assistive Robot with Real-Time Motion Mimic. Micromachines 2023, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Balmik, A.; Paikaray, A.; Jha, M.; Nandy, A. Motion recognition using deep convolutional neural network for Kinect-based NAO teleoperation. Robotica 2022, 40, 3233–3253. [Google Scholar] [CrossRef]
- Eirale, A.; Martini, M.; Tagliavini, L.; Gandini, D.; Chiaberge, M.; Quaglia, G. Marvin: An Innovative Omni-Directional Robotic Assistant for Domestic Environments. Sensors 2022, 22, 5261. [Google Scholar] [CrossRef] [PubMed]
- Materna, Z.; Španěl, M.; Mast, M.; Beran, V.; Weisshardt, F.; Burmester, M.; Smrž, P. Teleoperating Assistive Robots: A Novel User Interface Relying on Semi-Autonomy and 3D Environment Mapping. J. Robot. Mechatron. 2017, 29, 381–394. [Google Scholar] [CrossRef]
- Moczulski, W. Autonomous systems control aided by Virtual Teleportation of remote operator. IFAC Pap. 2022, 55, 59–64. [Google Scholar] [CrossRef]
- Su, Y.-P.; Chen, X.-Q.; Zhou, T.; Pretty, C.; Chase, G. Mixed-Reality-Enhanced Human–Robot Interaction with an Imitation-Based Mapping Approach for Intuitive Teleoperation of a Robotic Arm-Hand System. Appl. Sci. 2022, 12, 4740. [Google Scholar] [CrossRef]
- Lim, D.; Kim, D.; Park, J. Online Telemanipulation Framework on Humanoid for both Manipulation and Imitation. In Proceedings of the 19th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 4–6 July 2022. [Google Scholar] [CrossRef]
- Leeper, A.E.; Hsiao, K.; Ciocarlie, M.; Takayama, L.; Gossow, D. Strategies for human-in-the-loop robotic grasping. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (HRI ’12), Boston, MA, USA, 5–8 March 2012. [Google Scholar] [CrossRef]
- Nixon, G.A.; Wildenbeest, J.G.; Abbink, D.A. Effective Human-Machine Interfaces for Aerial Telemanipulation. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Young, S.N.; Peschel, J.M. Review of Human–Machine Interfaces for Small Unmanned Systems with Robotic Manipulators. IEEE Trans. Hum. Mach. Syst. 2020, 50, 131–143. [Google Scholar] [CrossRef]
- Clotet, E.; Martínez, D.; Moreno, J.; Tresanchez, M.; Palacín, J. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot. Sensors 2016, 16, 610. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes. Designs 2022, 6, 66. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Martínez, D.; Martínez, D.; Moreno, J. Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool. Robotics 2019, 8, 27. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E. Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Appl. Sci. 2022, 12, 2606. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Bitrià, R.; Clotet, E. Non-Parametric Calibration of the Inverse Kinematic Matrix of a Three-Wheeled Omnidirectional Mobile Robot Based on Genetic Algorithms. Appl. Sci. 2023, 13, 1053. [Google Scholar] [CrossRef]
- Rubies, E.; Palacín, J.; Clotet, E. Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen. Sensors 2022, 22, 4282. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Torres, G.; Castillo, P.; Reyes-Reyes, J. An Actuator Fault Tolerant Control for VTOL vehicles using Fault Estimation Observers: Practical validation. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 1054–1062. [Google Scholar] [CrossRef]
- Falcone, S.; Englebienne, G.; Van Erp, J.; Heylen, D. Toward Standard Guidelines to Design the Sense of Embodiment in Teleoperation Applications: A Review and Toolbox. Hum. Comput. Interact. 2023, 38, 322–351. [Google Scholar] [CrossRef]
- Opiyo, S.; Zhou, J.; Mwangi, E.; Kai, W.; Sunusi, I. A Review on Teleoperation of Mobile Ground Robots: Architecture and Situation Awareness. Int. J. Control Autom. Syst. 2021, 19, 1384–1407. [Google Scholar] [CrossRef]
- Lian, Y.; Zhang, W.; Jiang, J. The architecture of the remote control system oriented to 4G networks. In Proceedings of the International Conference on Consumer Electronics, Communications and Networks, Yichang, China, 21–23 April 2012; pp. 1386–1390. [Google Scholar] [CrossRef]
- Poncela, J.; Moreno, J.M.; Aamir, M. Analysis of M2M capabilities in 4G. In Proceedings of the International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems, Aalborg, Denmark, 11–14 May 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Shen, X. Device-to-device communication in 5G cellular networks. IEEE Netw. 2015, 29, 2–3. [Google Scholar] [CrossRef]
- Mehmood, Y.; Haider, N.; Imran, M.; Timm-Giel, A.; Guizani, M. M2M Communications in 5G: State-of-the-Art Architecture, Recent Advances, and Research Challenges. IEEE Commun. Mag. 2017, 55, 194–201. [Google Scholar] [CrossRef]
- MacKenzie, I.S.; Ware, C. Lag as a determinant of human performance in interactive systems. In Proceedings of the Conference on Human Factors in Computing Systems, INTERACT’93 and CHI’93, Amsterdam, The Netherlands, 24–29 April 1993; pp. 488–493. [Google Scholar] [CrossRef]
- Rubies, E.; Bitriá, R.; Clotet, E.; Palacín, J. Non-Contact and Non-Intrusive Add-on IoT Device for Wireless Remote Elevator Control. Appl. Sci. 2023, 13, 3971. [Google Scholar] [CrossRef]
- Neumeier, S.; Walelgne, E.A.; Bajpai, V.; Ott, J.; Facchi, C. Measuring the Feasibility of Teleoperated Driving in Mobile Networks. In Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA), Paris, France, 19–21 June 2019. [Google Scholar] [CrossRef]
- Watson, B.; Walker, N.; Ribarsky, W.; Spaulding, V. Effects of variation in system responsiveness on user performance in virtual environments. Hum. Factors 1998, 40, 403–414. [Google Scholar] [CrossRef]
- APR-02 Remote Gesture Control. Available online: https://youtu.be/EmjljtDh3YI (accessed on 27 June 2023).
- Oliveira, V.M.; Morais, P.; Oliveira, B.; Vilaca, J.L.; Moreira, A.H.J. Exploring current communication frameworks for medical teleoperation. In Proceedings of the SeGAH 2021—2021 IEEE 9th International Conference on Serious Games and Applications for Health, Dubai, United Arab Emirates, 4–6 August 2021. [Google Scholar] [CrossRef]
- Sanjuan De Caro, J.D.; Sunny, M.S.H.; Muñoz, E.; Hernandez, J.; Torres, A.; Brahmi, B.; Wang, I.; Ghommam, J.; Rahman, M.H. Evaluation of Objective Functions for the Optimal Design of an Assistive Robot. Micromachines 2022, 13, 2206. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-B.; Kim, J.; Kang, T.; Song, D.; Park, J.; Yi, S.-J. Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation Learning. Appl. Sci. 2022, 12, 12861. [Google Scholar] [CrossRef]
- Spano, L.D. Teleoperating Humanoids Robots using Standard VR Headsets: A Systematic Review. In Proceedings of the International Conference on Computer-Human Interaction Research and Applications, CHIRA, Virtual, 28–29 October 2021. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Zhou, T.; Pretty, C.; Chase, G. Mixed reality-integrated 3D/2D vision mapping for intuitive teleoperation of mobile manipulator. Robot. Comput. Integr. Manuf. 2022, 77, 102332. [Google Scholar] [CrossRef]
Sensor | Sampling Frequency | Submission Rate |
---|---|---|
Joint potentiometers | 50 Hz | 50 Hz |
Gamepad buttons | 10 Hz | In case of changes |
Gamepad joystick (for motion control) | 10 Hz | 10 Hz |
Gamepad joystick (for eye-gaze control) | 50 Hz | 50 Hz |
(a) t = 0.00 s | (b) t = 0.42 s | (c) t = 0.83 s | (d) t = 1.25 s | (e) t = 1.67 s | (f) t = 2.08 s | (g) t = 2.50 s |
---|---|---|---|---|---|---|
(a) t = 0.00 s | (b) t = 0.42 s | (c) t = 0.83 s | (d) t = 1.25 s | (e) t = 1.67 s | (f) t = 2.08 s | (g) t = 2.50 s |
---|---|---|---|---|---|---|
Gesture | Movement | Structural Delay | Total Telecontrol Delay |
---|---|---|---|
Upwards | Neutral (Table 2, (a))—Up (Table 2, (g)) | 0.274 s | 0.68 s |
Upwards and lateral | Neutral (Table 3, (a))—Diagonal left (Table 3, (d)) | 0.274 s | 0.45 s |
Left (Table 3, (d))—Right (Table 3, (g)) | 0.274 s | 0.44 s | |
Right (Table 3, (g))—Left | 0.274 s | 0.50 s | |
Downwards | Up (Table 2, (g))—Neutral | 0.274 s | 0.50 s |
Circular (inwards) | Neutral—Neutral (both arms inwards, 4 turns) | 0.274 s | 0.90 s |
Circular (clockwise) | Neutral—Neutral (both arms clockwise, 4 turns) | 0.274 s | 0.34 s |
Wave | Neutral—up—wave (right arm, 4 waves) | 0.274 s | 0.60 s |
Clap | Neutral—clap (4 claps) | 0.274 s | 0.53 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubies, E.; Bitriá, R.; Clotet, E.; Palacín, J. Remote Control Device to Drive the Arm Gestures of an Assistant Humanoid Robot. Appl. Sci. 2023, 13, 11115. https://doi.org/10.3390/app131911115
Rubies E, Bitriá R, Clotet E, Palacín J. Remote Control Device to Drive the Arm Gestures of an Assistant Humanoid Robot. Applied Sciences. 2023; 13(19):11115. https://doi.org/10.3390/app131911115
Chicago/Turabian StyleRubies, Elena, Ricard Bitriá, Eduard Clotet, and Jordi Palacín. 2023. "Remote Control Device to Drive the Arm Gestures of an Assistant Humanoid Robot" Applied Sciences 13, no. 19: 11115. https://doi.org/10.3390/app131911115