Materials Development and Potential Applications of Ceramics: New Opportunities and Challenges
1. Introduction
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Tong, B.; Lin, J.; Gao, X.; Cheng, J.; Zhang, S. Tailoring the chemical heterogeneity of Mn-modified 0.75BiFeO3-0.25BaTiO3 ceramics for piezoelectric sensor applications. J. Eur. Ceram. Soc. 2022, 42, 3857–3864. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Liang, R.; Zhou, Z. The positive effect of A-site nonstoichiometry on the electrical properties of Sr2Nb2O7 ceramics for high temperature piezoelectric sensor application. Ceram. Int. 2022, 48, 22500–22508. [Google Scholar] [CrossRef]
- Liu, K.; Liu, F.; Zhang, W.; Dou, Z.; Ma, W.; Samart, C.; Takesue, N.; Tan, H.; Fan, P.; Ye, Z.; et al. Design and development of outstanding strain properties in NBT-based lead-free piezoelectric multilayer actuators by grain-orientation engineering. Acta Mater. 2023, 246, 118696. [Google Scholar] [CrossRef]
- Fan, P.; Liu, K.; Ma, W.; Tan, H.; Zhang, Q.; Zhang, L.; Zhou, C.; Salamon, D.; Zhang, S.; Zhang, Y.; et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Mater. 2020, 7, 508–544. [Google Scholar] [CrossRef]
- Kabakov, P.; Kim, T.; Cheng, Z.; Jiang, X.; Zhang, S. The Versatility of Piezoelectric Composites. Annu. Rev. Mater. Res. 2023, 53, 165–193. [Google Scholar] [CrossRef]
- Lu, H.; Cui, H.; Lu, G.; Jiang, L.; Hensleigh, R.; Zeng, Y.; Rayes, A.; Panduranga, M.K.; Acharya, M.; Wang, Z.; et al. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat. Commun. 2023, 14, 2418. [Google Scholar] [CrossRef]
- Sait, S.; Abbas, Y.; Boubenider, F. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound. Appl. Acoust. 2015, 99, 85–91. [Google Scholar] [CrossRef]
- Jia, W.; Hou, Y.; Zheng, M.; Xu, Y.; Yu, X.; Zhu, M.; Yang, K.; Cheng, H.; Sun, S.; Xing, J. Superior temperature-stable dielectrics for MLCC s based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc. 2018, 101, 3468–3479. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Wang, F.; Chen, X.; Mao, H. Enhanced dielectric properties of La-doped 0.75 BaTiO3-0.25Bi(Mg0.5Ti0.5)O3 ceramics for X9R-MLCC application. Ceram. Int. 2012, 47, 4486–4492. [Google Scholar] [CrossRef]
- Shehbaz, M.; Du, C.; Zhou, D.; Xia, S.; Xu, Z. Recent progress in dielectric resonator antenna: Materials, designs, fabrications, and their performance. Appl. Phys. Rev. 2023, 10, 021303. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Xiu, Z.; Wu, G.; Mao, M.; Luo, X.; Liu, B.; Lu, Z.; Qi, Z.; Sun, D.; et al. Temperature-stable Y2.95Dy0.05MgAl3SiO12 garnet-type 5G millimeter-wave dielectric ceramic resonator antenna. Ceram. Int. 2022, 48, 35085–35091. [Google Scholar] [CrossRef]
- Mukherjee, B.; Patel, P.; Mukherjee, J. A review of the recent advances in dielectric resonator antennas. J. Electromagn. Waves Appl. 2020, 34, 1095–1158. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Zhang, Z.; Cheng, L.; Ma, H.; Yang, W. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review. J. Eur. Ceram. Soc. 2021, 41, 4671–4688. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Silva, A.P. Review of Ceramic Composites in Aeronautics and Aerospace: A Multifunctional Approach for TPS, TBC and DBD Applications. Ceramics 2023, 6, 195–230. [Google Scholar] [CrossRef]
- Siengchin, S. A review on lightweight materials for defence applications: A present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Ni, D.; Cheng, Y.; Zhang, J.; Liu, J.-X.; Zou, J.; Chen, B.; Wu, H.; Li, H.; Dong, S.; Han, J.; et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 2022, 11, 1–56. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, X.; Wu, J.; Zhang, X.; Su, R.; Ma, L.; Sun, Q.; He, R. Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomater. Sci. Eng. 2023, 9, 1164–1189. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Moschovas, D.; Agathopoulos, S. Microstructure and mechanical properties of zirconia stabilized with increasing Y2O3, for use in dental restorations. Int. J. Appl. Ceram. Technol. 2023, 20, 350–359. [Google Scholar] [CrossRef]
- Raza, T.; Yang, J.; Wang, R.; Xia, C.; Raza, R.; Zhu, B.; Yun, S. Recent advance in physical description and material development for single component SOFC: A mini-review. Chem. Eng. J. 2022, 444, 136533. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Huang, Y.; Zhang, M.; Li, Z.; Wang, Y. Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries. Ceram. Int. 2023, 49, 29375–29390. [Google Scholar] [CrossRef]
- Obada, D.O.; Salami, K.A.; Alabi, A.A.; Oyedeji, A.N.; Csaki, S.; Hulan, T.; Meher, A.K. Mechanical behaviour of porous kaolin-based ceramics for potential catalysts support applications. J. Korean Ceram. Soc. 2023, 60, 99–112. [Google Scholar] [CrossRef]
- Stein, Z.; Naraparaju, R.; Schulz, U.; Tetard, L.; Raghavan, S. Residual stress effects of CMAS infiltration in high temperature jet engine ceramic coatings captured non-destructively with confocal Raman-based 3D rendering. J. Eur. Ceram. Soc. 2023, 43, 1579–1589. [Google Scholar] [CrossRef]
- Omerašević, M.; Kocjan, A.; Bučevac, D. Novel cordierite-acicular mullite composite for diesel particulate filters. Ceram. Int. 2022, 48, 2273–2280. [Google Scholar] [CrossRef]
- Rani, S.L.S.; Kumar, R.V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Y.; Wang, Z.; Shao, G. First principle material genome approach for all solid-state batteries. Energy Environ. Mater. 2019, 2, 234–250. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, X.; Xu, B.; Huang, S.; Xiong, Y.; Ma, S.; Fu, H.; Ma, Y.; Chen, H.; Wu, Z.; et al. Rational design of high-entropy ceramics based on machine learning—A critical review. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101057. [Google Scholar] [CrossRef]
- Boubchir, M.; Aourag, H. Materials genome project: The application of principal component analysis to the formability of perovskites and inverse perovskites. Comput. Condens. Matter. 2020, 24, e00495. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, J.; Liu, Y.; Xi, J.; Li, Q.; Xiang, H.; Zhou, Y. Application of high-throughput first-principles calculations in ceramic innovation. J. Mater. Sci. Technol. 2021, 88, 143–157. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Z.; Ma, M.; Li, Y. Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics. J. Mater. 2021, 7, 1284–1293. [Google Scholar] [CrossRef]
- Nakayama, M. Materials informatics for discovery of ion conductive ceramics for batteries. J Ceram. Soc. Jpn. 2021, 129, 286–291. [Google Scholar] [CrossRef]
- Yi, M.; Wang, W.; Xue, M.; Gong, Q.; Xu, B.-X. Modeling and Simulation of Sintering Process Across Scales. Arch. Computat. Methods Eng. 2023, 30, 3325–3358. [Google Scholar] [CrossRef]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Correlations between microstructures and electrochemical performances. Energy Convers. Manag. 2019, 190, 1–13. [Google Scholar] [CrossRef]
- Gu, W.; Yang, B.; Lia, D.; Shang, X.; Zhou, Z.; Guo, J. Accelerated design of lead-free high-performance piezoelectric ceramics with high accuracy via machine learning. J. Adv. Ceram. 2023, 12, 1389–1405. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, S.; Yan, Z.; Zhong, Z.; Shikazono, N.; Hara, S. Correlation between microstructures and macroscopic properties of nickel/yttria-stabilized zirconia (Ni-YSZ) anodes: Meso-scale modeling and deep learning with convolutional neural networks. Energy AI 2022, 7, 100122. [Google Scholar] [CrossRef]
- Asheri, A.; Fathidoost, M.; Glavas, V.; Rezaei, S.; Xu, B.X. Data-driven multiscale simulation of solid-state batteries via machine learning. Comput. Mater. Sci. 2023, 226, 112186. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, B.; Jiao, X.; Li, Y.; Chen, L.; Wang, Y.; Dai, F.-Z. The highest melting point material: Searched by Bayesian global optimization with deep potential molecular dynamics. J. Adv. Ceram. 2023, 12, 803–814. [Google Scholar] [CrossRef]
- Niu, Z.; Zhao, W.; Wu, B.; Wang, H.; Lin, W.F.; Pinfield, V.J.; Xuan, J. π Learning: A Performance-Informed Framework for Microstructural Electrode Design. Adv. Energy Mater. 2023, 13, 2300244. [Google Scholar] [CrossRef]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms. Energy Convers. Manag. 2019, 198, 111916. [Google Scholar] [CrossRef]
- Song, G.; Liu, Z.; Zhang, F.; Liu, F.; Gu, Y.; Liu, Z.; Li, Y. High-throughput synthesis and electrical properties of BNT-BT-KNN lead-free piezoelectric ceramics. J. Mater. Chem. C 2020, 8, 3655–3662. [Google Scholar] [CrossRef]
- Geng, X.; Tang, J.; Sheridan, B.; Sarkar, S.; Tong, J.; Xiao, H.; Li, D.; Bordia, R.K.; Peng, F. Ultra-Fast Laser Fabrication of Alumina Micro-Sample Array and High-Throughput Characterization of Microstructure and Hardness. Crystals 2021, 11, 890. [Google Scholar] [CrossRef]
- Shuang, S.; Li, H.; He, G.; Li, Y.; Li, J.; Meng, X. High-throughput automatic batching equipment for solid state ceramic powders. Rev. Sci. Instrum. 2019, 90, 083904. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar] [CrossRef]
- Chen, H.Z.; Pan, Y.; Chen, B.; Li, J.; Gui, Z.; Chen, J.; Yan, H.; Zeng, Y.; Chen, J. Fabrication of porous aluminum ceramics beyond device resolution via stereolithography 3D printing. Ceram. Int. 2023, 49, 18463–18469. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic binder jetting additive manufacturing: A literature review on density. J. Manuf. Sci. Eng. 2020, 142, 040801. [Google Scholar] [CrossRef]
- Shahzad, A.; Lazoglu, I. Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges. Compos. B Eng. 2021, 225, 109249. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2020, 119, 100707. [Google Scholar] [CrossRef]
- Dadkhah, M.; Tulliani, J.M.; Saboori, A.; Iuliano, L. Additive Manufacturing of Ceramics: Advances, Challenges, and Outlook. J. Eur. Ceram. Soc. 2023, 43, 6635–6664. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Yang, L.; Wang, P.; Yi, H. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Randall, C.A.; Mustapha, K.B.; Guo, J.; Walker, J.; Berbano, S.S.; Koh, S.C.; Wang, D.; Sinclair, D.C.; Reaney, I.M. Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 2019, 39, 5213–5235. [Google Scholar] [CrossRef]
- Guillon, O.; Rheinheimer, W.; Bram, M. A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials. Adv. Eng. Mater. 2023, 25, 2201870. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 2014, 6, 830–849. [Google Scholar] [CrossRef]
- Cologna, M.; Rashkova, B.; Raj, R. Flash Sintering of Nanograin Zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 2010, 93, 3556–3559. [Google Scholar]
- Wang, C.; Ping, W.; Bai, Q.; Cui, H.; Hensleigh, R.; Wang, R.; Brozena, A.H.; Xu, Z.; Dai, J.; Pei, Y.; et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020, 368, 521–526. [Google Scholar] [CrossRef]
- Guo, J.; Floyd, R.; Lowum, S.; Maria, J.P.; Herisson de Beauvoir, T.; Seo, J.H.; Randall, C.A. Cold sintering: Progress, challenges, and future opportunities. Annu. Rev. Mater. Res. 2019, 49, 275–295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Gao, Y.; Zhang, H. Materials Development and Potential Applications of Ceramics: New Opportunities and Challenges. Appl. Sci. 2023, 13, 10957. https://doi.org/10.3390/app131910957
Yan Z, Gao Y, Zhang H. Materials Development and Potential Applications of Ceramics: New Opportunities and Challenges. Applied Sciences. 2023; 13(19):10957. https://doi.org/10.3390/app131910957
Chicago/Turabian StyleYan, Zilin, Yan Gao, and Haibo Zhang. 2023. "Materials Development and Potential Applications of Ceramics: New Opportunities and Challenges" Applied Sciences 13, no. 19: 10957. https://doi.org/10.3390/app131910957