Enhancing Underwater Images via Color Correction and Multiscale Fusion
Abstract
:1. Introduction
- Color compensation is performed by combining the local and mean differences between the attenuation and non-attenuation channels of underwater degraded images. Based on this, a histogram correction technique based on histogram equalization is used to further correct the color of underwater images.
- Generate low-frequency components with different contrasts using dual-interval histograms and fuse the two versions of low-frequency components to enhance image contrast. Propose a function to highlight the high-frequency components of the V channel.
2. Related Works
3. Method of This Article
3.1. Color Correction
3.2. Contrast Enhancement
3.2.1. Local Contrast Enhancement of Sub-Images
3.2.2. Global Contrast Enhancement of Sub-Images
3.3. Fusion
3.4. Detail Enhancement
4. Results
4.1. Qualitative Evaluation
4.2. Quantitative Evaluation
4.3. Running Time
4.4. Detail Analysis
4.5. Application Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schettini, R.; Corchs, S. Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods. EURASIP J. Adv. Signal Process. 2010, 2010, 746052. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Chen, Y.-C. Underwater Image Enhancement by Wavelength Compensation and Dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, L.; Pan, X.; Zou, P.; Qin, L.; Xu, W. A survey of restoration and enhancement for underwater images. IEEE Access 2019, 7, 182259–182279. [Google Scholar] [CrossRef]
- Akkaynak, D.; Treibitz, T. A revised underwater image formation model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6723–6732. [Google Scholar]
- Kocak, D.M.; Dalgleish, F.R.; Caimi, F.M.; Schechner, Y.Y. A Focus on Recent Developments and Trends in Underwater Imaging. Mar. Technol. Soc. J. 2008, 42, 52–67. [Google Scholar] [CrossRef]
- Jaffe, J.S.; Moore, K.D.; McLean, J.; Strand, M.P. Underwater Optical Imaging: Status and Prospects. Oceanography 2001, 14, 64–75. [Google Scholar] [CrossRef]
- Jaffe, J.S. Underwater optical imaging: The past, the present, and the prospects. IEEE J. Ocean Eng. 2014, 40, 683–700. [Google Scholar] [CrossRef]
- Liu, F.; Wei, Y.; Han, P.; Yang, K.; Bai, L.; Shao, X. Polarization-based exploration for clear underwater vision in natural illumination. Opt. Express 2019, 27, 3629–3641. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Liu, T. Underwater Image Recovery Under the Nonuniform Optical Field Based on Polarimetric Imaging. IEEE Photon-J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [CrossRef]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic Red-Channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef]
- Li, C.-Y.; Guo, J.-C.; Cong, R.-M.; Pang, Y.-W.; Wang, B. Underwater Image Enhancement by Dehazing with Minimum Information Loss and Histogram Distribution Prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef]
- Drews, P.; Nascimento, E.R.; Botelho, S.S.C.; Campos, M.F.M. Underwater Depth Estimation and Image Restoration Based on Single Images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef]
- Peng, Y.-T.; Cosman, P.C. Underwater Image Restoration Based on Image Blurriness and Light Absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Q.; Yan, K.; Feng, L.; Xiang, W. Underwater Image Restoration Using Color-Line Model. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 907–911. [Google Scholar] [CrossRef]
- Peng, Y.-T.; Cao, K.; Cosman, P.C. Generalization of the Dark Channel Prior for Single Image Restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef]
- Iqbal, K.; Odetayo, M.; James, A.; Salam, R.A.; Talib, A.Z.H. Enhancing the low-quality images using unsupervised color correction method. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1703–1709. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef]
- Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; Volume 2014, pp. 4572–4576. [Google Scholar]
- Fu, X.; Fan, Z.; Ling, M.; Huang, Y.; Ding, X. Two-step approach for single underwater image enhancement. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Xiamen, China, 6–9 November 2017; pp. 789–794. [Google Scholar]
- Zhang, W.; Dong, L.; Zhang, T.; Xu, W. Enhancing underwater image via color correction and bi-interval contrast enhancement. Signal Process Image Commun. 2021, 90, 116030. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, P.; Sun, H.-H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, C. Underwater Image Enhancement by Attenuated Color Channel Correction and Detail Preserved Contrast Enhancement. IEEE J. Ocean. Eng. 2022, 47, 718–735. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Z.; Wang, Z.; Chen, C.; Yi, P.; Lu, T.; Lin, C.W. Degrade is upgrade: Learning degradation for low-light image enhancement. In Proceedings of the AAAI Conference on Artificial Intelligence 2022, Virtual, 22 February–1 March 2022; Volume 36, pp. 1078–1086. [Google Scholar]
- Liu, R.; Jiang, Z.; Yang, S.; Fan, X. Twin adversarial contrastive learning for underwater image enhancement and be-yond. IEEE Trans. Image Process. 2022, 31, 4922–4936. [Google Scholar] [CrossRef]
- Sun, B.; Mei, Y.; Yan, N.; Chen, Y. UMGAN: Underwater Image Enhancement Network for Unpaired Image-to-Image Translation. J. Mar. Sci. Eng. 2023, 11, 447. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Guo, C. Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef]
- Fu, X.; Cao, X. Underwater image enhancement with global–local networks and compressed-histogram equalization. Signal Process. Image Commun. 2020, 86, 115892. [Google Scholar] [CrossRef]
- Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Adaptive uncertainty distribution in deep learning for unsupervised underwater image enhancement. arXiv 2022, arXiv:2212.08983. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, X.; Xie, X.; Li, L.; Wang, Z.; Han, C. Color correction and adaptive contrast enhancement for underwater image enhancement. Comput. Electr. Eng. 2021, 91, 106981. [Google Scholar] [CrossRef]
- Li, C.; Tang, S.; Yan, J.; Zhou, T. Low-Light Image Enhancement via Pair of Complementary Gamma Functions by Fusion. IEEE Access 2020, 8, 169887–169896. [Google Scholar] [CrossRef]
- Xiao, Y.; Su, X.; Yuan, Q.; Liu, D.; Shen, H.; Zhang, L. Satellite video super-resolution via multiscale deformable convolution alignment and temporal grouping projection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–19. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Huang, B.; Luo, Y.; Ma, J.; Jiang, J. Multi-scale progressive fusion network for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020, Seattle, WA, USA, 13–19 June 2020; pp. 8346–8355. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Wang, S.; Ma, K.; Yeganeh, H.; Wang, Z.; Lin, W. A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images. IEEE Signal Process. Lett. 2015, 22, 2387–2390. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Parihar, A.S. Illumination estimation for nature preserving low-light image enhancement. Vis. Comput. 2023, 1–16. [Google Scholar] [CrossRef]
Method | Abbreviation |
---|---|
Automatic red-channel underwater image restoration [11] | ARC |
Underwater depth estimation and image restoration based on single images [13] | UDCP |
Underwater image restoration based on image blurriness and light absorption [14] | IBLA |
Generalization of the dark channel prior for single image restoration [16] | GDCP |
Color balance and fusion for underwater image enhancement [18] | Fusion |
Two-step approach for single underwater image enhancement [20] | TS |
Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement [22] | MLLE |
Underwater Image Enhancement by Attenuated Color Channel Correction and Detail Preserved Contrast Enhancement [23] | ACCDO |
UIEBR | ARC | Fusion | GDCP | IBLA | TS | UDCP | MLLE | ACCDO | OUR |
---|---|---|---|---|---|---|---|---|---|
AG | 4.835 | 6.319 | 7.221 | 5.989 | 7.194 | 5.207 | 12.913 | 9.522 | 12.663 |
IE | 7.187 | 7.413 | 7.316 | 7.267 | 7.253 | 6.557 | 7.580 | 7.662 | 7.727 |
PCQI | 1.013 | 1.066 | 1.045 | 1.074 | 1.148 | 0.814 | 1.221 | 1.191 | 1.044 |
UIQM | 3.214 | 3.516 | 2.568 | 2.560 | 3.245 | 2.405 | 2.607 | 3.520 | 3.745 |
UCIQE | 0.563 | 0.588 | 0.610 | 0.604 | 0.601 | 0.584 | 0.605 | 0.555 | 0.620 |
UIEBC | ARC | Fusion | GDCP | IBLA | TS | UDCP | MLLE | ACCDO | OUR |
---|---|---|---|---|---|---|---|---|---|
AG | 3.139 | 4.512 | 4.848 | 4.302 | 5.070 | 3.055 | 7.734 | 6.512 | 6.347 |
IE | 7.057 | 7.253 | 7.122 | 6.998 | 7.215 | 5.638 | 7.312 | 7.519 | 7.624 |
PCQI | 0.992 | 0.998 | 0.954 | 1.011 | 1.052 | 0.801 | 1.086 | 1.071 | 0.914 |
UIQM | 2.149 | 2.175 | 1.882 | 1.841 | 2.386 | 1.621 | 1.648 | 1.952 | 2.214 |
UCIQE | 0.536 | 0.572 | 0.565 | 0.591 | 0.574 | 0.520 | 0.579 | 0.549 | 0.596 |
Resolution | ARC | Fusion | GDCP | IBLA | TS | UDCP | MLLE | ACCDO | OUR |
---|---|---|---|---|---|---|---|---|---|
500 × 375 | 1.027 | 1.499 | 0.276 | 11.169 | 0.128 | 6.664 | 0.159 | 0.488 | 0.121 |
640 × 480 | 1.678 | 2.476 | 0.285 | 21.696 | 0.178 | 12.630 | 0.226 | 0.811 | 0.175 |
850 × 564 | 2.645 | 3.833 | 0.373 | 35.711 | 0.254 | 18.946 | 0.362 | 1.251 | 0.297 |
1280 × 720 | 5.060 | 7.576 | 0.551 | 62.228 | 0.474 | 40.256 | 0.823 | 2.195 | 0.558 |
Ave | 2.603 | 3.846 | 0.396 | 32.701 | 0.259 | 19.624 | 0.393 | 1.186 | 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, N.; Cheng, L.; Li, Y.; Li, X.; Xu, N. Enhancing Underwater Images via Color Correction and Multiscale Fusion. Appl. Sci. 2023, 13, 10176. https://doi.org/10.3390/app131810176
Tian N, Cheng L, Li Y, Li X, Xu N. Enhancing Underwater Images via Color Correction and Multiscale Fusion. Applied Sciences. 2023; 13(18):10176. https://doi.org/10.3390/app131810176
Chicago/Turabian StyleTian, Ning, Li Cheng, Yang Li, Xuan Li, and Nan Xu. 2023. "Enhancing Underwater Images via Color Correction and Multiscale Fusion" Applied Sciences 13, no. 18: 10176. https://doi.org/10.3390/app131810176
APA StyleTian, N., Cheng, L., Li, Y., Li, X., & Xu, N. (2023). Enhancing Underwater Images via Color Correction and Multiscale Fusion. Applied Sciences, 13(18), 10176. https://doi.org/10.3390/app131810176