Real-Time Simulation of Wave Phenomena in Lung Ultrasound Imaging
Abstract
:1. Introduction
2. Simulation Method
2.1. Simulation Model
2.2. Ultrasound Simulation
- According to the virtual probe position and orientation, the 3D model of the patient and its internal structures are rendered using a virtual camera and custom shader program. Only the cross-section is visible and rendered as an image into the framebuffer. This is an approximation of an ultrasound image in which individual tissues are rendered using a custom shader (called Material) that, among others, encodes the required physical parameters (like absorption coefficient and acoustic impedance) as a color. Additionally, the cross-section is completed with a simulation of the tissue structure. This is achieved using a position-dependent pseudorandom values function [42].
- The same virtual camera renders a UV map of the moving tissues. UV value is a vertex attribute required to correctly map a texture on an object. However, in this case, this step is used to simulate pulmonary pleurae movement and related artifacts. The values rendered on the UV map correspond to the local position of the lung surface. The lung’s movement corresponds to the changes in these values.
- Another virtual camera is employed to render the ultrasound (US) sector. This camera utilizes a shader program that incorporates the modified ray-marching method to simulate wave propagation. This step was challenging because instead of a compute shader, better suited for this problem, a regular fragment shader had to be used. Compute shaders were not supported in the web browser environment at the time of writing. In the resulting image, each column corresponds to a ray, and each row is a ray marching step.
- A shader program that extends the results of previous steps with additional wave phenomena, including A-lines and noise.
- A shader program that transforms the results into a selected sector view.
2.3. Artifacts Simulation
- Shadows are dark areas that occur when ultrasound waves are blocked or absorbed by dense structures, such as ribs or air-filled spaces (Figure 2). To simulate shadows, first, the cross-section image is rendered with Material attributes defined for each tissue. Then, a ray marching technique utilizes these values to compute shadows for each ray.
- 2.
- A-lines are horizontal, parallel lines seen in normal lung tissue and are created by the multiple reflections of ultrasound waves between the pleural line and the transducer. This is achieved during the ray marching step without a time-consuming ray generation: the input frame buffer, which stores the image of the first render pass, is repeatedly sampled relative to the distance of a pleural line to the transducer. The results can be seen in Figure 3.
- 3.
- B-lines, on the other hand, are vertical lines that represent thickened or edematous lung interstitial spaces and are commonly associated with pulmonary edema or interstitial lung diseases. To simulate this artifact, the intensity of the response is randomly increased at the pleural line, leaving a bright trail interpreted as a B-line. A pseudorandom value is calculated from the UV map (rendered in the previous step) for each ray of the ray marching algorithm. Then, a strength parameter associated with the patient’s landmark determines the visibility of the B-lines. This parameter ranges from 0 (no B-lines) to 1 (multiple coalescent B-lines). Radial blur, added in the final step, increases visual similarity to real artifacts. An example of that artifact results is visible in Figure 4.
- 4.
- Pleural breaks, also known as pleural irregularities or pleural abnormalities, appear as disruptions in the smooth pleural line. It was achieved by changing the pleural reflectance parameter in the function of distance to the axis of the probe standard application point (landmark). Figure 5 shows this simulated artifact.
- 5.
- Lastly, pleural sliding refers to the dynamic movement of the visceral and parietal pleura during respiration. As mentioned before, it was created using the UV maps of the animated lungs model and calculating pseudorandom values on that basis. The sliding is then achieved by modifying the intensity of the outer part of the pleural line according to the random values.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavez, M.A.; Shams, N.; Ellington, L.E.; Naithani, N.; Gilman, R.H.; Steinhoff, M.C.; Santosham, M.; Black, R.E.; Price, C.; Gross, M.; et al. Lung Ultrasound for the Diagnosis of Pneumonia in Adults: A Systematic Review and Meta-Analysis. Respir. Res. 2014, 15, 50. [Google Scholar] [CrossRef]
- Hansell, L.; Milross, M.; Delaney, A.; Tian, D.H.; Ntoumenopoulos, G. Lung Ultrasound Has Greater Accuracy than Conventional Respiratory Assessment Tools for the Diagnosis of Pleural Effusion, Lung Consolidation and Collapse: A Systematic Review. J. Physiother. 2021, 67, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Alrajab, S.; Youssef, A.M.; Akkus, N.I.; Caldito, G. Pleural Ultrasonography versus Chest Radiography for the Diagnosis of Pneumothorax: Review of the Literature and Meta-Analysis. Crit. Care 2013, 17, R208. [Google Scholar] [CrossRef] [PubMed]
- Demi, L.; Wolfram, F.; Klersy, C.; De Silvestri, A.; Ferretti, V.V.; Muller, M.; Miller, D.; Feletti, F.; Wełnicki, M.; Buda, N.; et al. New International Guidelines and Consensus on the Use of Lung Ultrasound. J. Ultrasound Med. 2023, 42, 309–344. [Google Scholar] [CrossRef] [PubMed]
- European Society of Radiology (ESR); Clevert, D.-A.; Sidhu, P.S.; Lim, A.; Ewertsen, C.; Mitkov, V.; Piskunowicz, M.; Ricci, P.; Bargallo, N.; Brady, A.P. The Role of Lung Ultrasound in COVID-19 Disease. Insights Imaging 2021, 12, 81. [Google Scholar] [CrossRef]
- Lê, M.P.; Jozwiak, M.; Laghlam, D. Current Advances in Lung Ultrasound in COVID-19 Critically Ill Patients: A Narrative Review. J. Clin. Med. 2022, 11, 5001. [Google Scholar] [CrossRef]
- La Salvia, M.; Torti, E.; Secco, G.; Bellazzi, C.; Salinaro, F.; Lago, P.; Danese, G.; Perlini, S.; Leporati, F. Machine-Learning-Based COVID-19 and Dyspnoea Prediction Systems for the Emergency Department. Appl. Sci. 2022, 12, 10869. [Google Scholar] [CrossRef]
- Raheja, R.; Brahmavar, M.; Joshi, D.; Raman, D. Application of Lung Ultrasound in Critical Care Setting: A Review. Cureus 2019, 11, e5233. [Google Scholar] [CrossRef]
- Tsou, P.; Chen, K.P.; Wang, Y.; Fishe, J.; Gillon, J.; Lee, C.; Deanehan, J.K.; Kuo, P.; Yu, D.T.Y. Diagnostic Accuracy of Lung Ultrasound Performed by Novice Versus Advanced Sonographers for Pneumonia in Children: A Systematic Review and Meta-analysis. Acad. Emerg. Med. 2019, 26, 1074–1088. [Google Scholar] [CrossRef]
- Russell, F.M.; Ferre, R.; Ehrman, R.R.; Noble, V.; Gargani, L.; Collins, S.P.; Levy, P.D.; Fabre, K.L.; Eckert, G.J.; Pang, P.S. What Are the Minimum Requirements to Establish Proficiency in Lung Ultrasound Training for Quantifying B-lines? ESC Heart Fail. 2020, 7, 2941–2947. [Google Scholar] [CrossRef]
- Chiem, A.T.; Chan, C.H.; Ander, D.S.; Kobylivker, A.N.; Manson, W.C. Comparison of Expert and Novice Sonographers’ Performance in Focused Lung Ultrasonography in Dyspnea (FLUID) to Diagnose Patients with Acute Heart Failure Syndrome. Acad. Emerg. Med. 2015, 22, 564–573. [Google Scholar] [CrossRef] [PubMed]
- International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS); Volpicelli, G.; Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; et al. International Evidence-Based Recommendations for Point-of-Care Lung Ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Noble, V.E.; Lamhaut, L.; Capp, R.; Bosson, N.; Liteplo, A.; Marx, J.-S.; Carli, P. Evaluation of a Thoracic Ultrasound Training Module for the Detection of Pneumothorax and Pulmonary Edema by Prehospital Physician Care Providers. BMC Med. Educ. 2009, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Cuca, C.; Scheiermann, P.; Hempel, D.; Via, G.; Seibel, A.; Barth, M.; Hirche, T.O.; Walcher, F.; Breitkreutz, R. Assessment of a New E-Learning System on Thorax, Trachea, and Lung Ultrasound. Emerg. Med. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Edrich, T.; Stopfkuchen-Evans, M.; Scheiermann, P.; Heim, M.; Chan, W.; Stone, M.B.; Dankl, D.; Aichner, J.; Hinzmann, D.; Song, P.; et al. A Comparison of Web-Based with Traditional Classroom-Based Training of Lung Ultrasound for the Exclusion of Pneumothorax. Anesth. Analg. 2016, 123, 123–128. [Google Scholar] [CrossRef]
- Heiberg, J.; Hansen, L.; Wemmelund, K.; Sørensen, A.; Ilkjaer, C.; Cloete, E.; Nolte, D.; Roodt, F.; Dyer, R.; Swanevelder, J.; et al. Point-of-Care Clinical Ultrasound for Medical Students. Ultrasound Int. Open 2015, 1, E58–E66. [Google Scholar] [CrossRef]
- Breitkreutz, R.; Dutiné, M.; Scheiermann, P.; Hempel, D.; Kujumdshiev, S.; Ackermann, H.; Seeger, F.H.; Seibel, A.; Walcher, F.; Hirche, T.O. Thorax, Trachea, and Lung Ultrasonography in Emergency and Critical Care Medicine: Assessment of an Objective Structured Training Concept. Emerg. Med. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Rojas-García, A.; Moreno-Blanco, D.; Otero-Arteseros, M.; Rubio-Bolívar, F.J.; Peinado, H.; Elorza-Fernández, D.; Gómez, E.J.; Quintana-Díaz, M.; Sánchez-Gonzalez, P. SIMUNEO: Control and Monitoring System for Lung Ultrasound Examination and Treatment of Neonatal Pneumothorax and Thoracic Effusion. Sensors 2023, 23, 5966. [Google Scholar] [CrossRef]
- Pietersen, P.I.; Madsen, K.R.; Graumann, O.; Konge, L.; Nielsen, B.U.; Laursen, C.B. Lung Ultrasound Training: A Systematic Review of Published Literature in Clinical Lung Ultrasound Training. Crit. Ultrasound J. 2018, 10, 23. [Google Scholar] [CrossRef]
- Marini, T.J.; Rubens, D.J.; Zhao, Y.T.; Weis, J.; O’Connor, T.P.; Novak, W.H.; Kaproth-Joslin, K.A. Lung Ultrasound: The Essentials. Radiol. Cardiothorac. Imaging 2021, 3, e200564. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Mezière, G.A.; Lagoueyte, J.-F.; Biderman, P.; Goldstein, I.; Gepner, A. A-Lines and B-Lines. Chest 2009, 136, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Bhoil, R.; Ahluwalia, A.; Chopra, R.; Surya, M.; Bhoil, S. Signs and Lines in Lung Ultrasound. J. Ultrason. 2021, 21, e225–e233. [Google Scholar] [CrossRef] [PubMed]
- Demi, M.; Soldati, G.; Ramalli, A. Lung Ultrasound Artifacts Interpreted as Pathology Footprints. Diagnostics 2023, 13, 1139. [Google Scholar] [CrossRef] [PubMed]
- WebGL Overview—The Khronos Group Inc. Available online: https://www.khronos.org/webgl/ (accessed on 28 June 2023).
- Soldati, E.; Roseren, F.; Guenoun, D.; Mancini, L.; Catelli, E.; Prati, S.; Sciutto, G.; Vicente, J.; Iotti, S.; Bendahan, D.; et al. Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample. Mater. Basel Switz. 2022, 15, 8048. [Google Scholar] [CrossRef]
- Borzęcki, M.; Skurski, A.; Kamiński, M.; Napieralski, A.; Kasprzak, J.; Lipiec, P. Applications of Ray-Casting in Medical Imaging. In Information Technologies in Biomedicine, Volume 3; Piętka, E., Kawa, J., Wieclawek, W., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2014; Volume 283, pp. 3–14. ISBN 978-3-319-06592-2. [Google Scholar]
- Piórkowski, A.; Kempny, A. The Transesophageal Echocardiography Simulator Based on Computed Tomography Images. IEEE Trans. Biomed. Eng. 2013, 60, 292–299. [Google Scholar] [CrossRef]
- Zhu, M.; Salcudean, S.E. Real-Time Image-Based B-Mode Ultrasound Image Simulation of Needles Using Tensor-Product Interpolation. IEEE Trans. Med. Imaging 2011, 30, 1391–1400. [Google Scholar] [CrossRef]
- Shams, R.; Hartley, R.; Navab, N. Real-Time Simulation of Medical Ultrasound from CT Images. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008; Lecture Notes in Computer Science; Metaxas, D., Axel, L., Fichtinger, G., Székely, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5242, pp. 734–741. ISBN 978-3-540-85989-5. [Google Scholar]
- Kutter, O.; Shams, R.; Navab, N. Visualization and GPU-Accelerated Simulation of Medical Ultrasound from CT Images. Comput. Methods Programs Biomed. 2009, 94, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Reichl, T.; Passenger, J.; Acosta, O.; Salvado, O. Ultrasound Goes GPU: Real-Time Simulation Using CUDA; Miga, M.I., Wong, K.H., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Lake Buena Vista, FL, USA, 2009; p. 726116. [Google Scholar]
- Dillenseger, J.-L.; Laguitton, S.; Delabrousse, É. Fast Simulation of Ultrasound Images from a CT Volume. Comput. Biol. Med. 2009, 39, 180–186. [Google Scholar] [CrossRef]
- Bamber, J.C.; Dickinson, R.J. Ultrasonic B-Scanning: A Computer Simulation. Phys. Med. Biol. 1980, 25, 463–479. [Google Scholar] [CrossRef]
- Gjerald, S.U.; Brekken, R.; Hergum, T.; D’hooge, J. Real-Time Ultrasound Simulation Using the GPU. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 885–892. [Google Scholar] [CrossRef]
- Burger, B.; Bettinghausen, S.; Radle, M.; Hesser, J. Real-Time GPU-Based Ultrasound Simulation Using Deformable Mesh Models. IEEE Trans. Med. Imaging 2013, 32, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Daz 3D—3D Models and 3D Software. Available online: https://www.daz3d.com/ (accessed on 28 June 2023).
- Anatomy 4 Pro Bundle. Available online: https://www.daz3d.com/anatomy-4-pro-bundle (accessed on 28 June 2023).
- Unity Real-Time Development Platform. Available online: https://www.unity.com (accessed on 28 June 2023).
- Von Haxthausen, F.; Rüger, C.; Sieren, M.M.; Kloeckner, R.; Ernst, F. Augmenting Image-Guided Procedures through In Situ Visualization of 3D Ultrasound via a Head-Mounted Display. Sensors 2023, 23, 2168. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, P.; Plotka, S.; Brawura-Biskupski-Samaha, R.; Sitek, A. Virtual Reality Simulator for Fetoscopic Spina Bifida Repair Surgery. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–7 October 2022; IEEE: Kyoto, Japan, 2022; pp. 401–406. [Google Scholar]
- Korzeniowski, P.; Chacon, C.S.; Russell, V.R.; Clarke, S.A.; Bello, F. Virtual Reality Simulator for Pediatric Laparoscopic Inguinal Hernia Repair. J. Laparoendosc. Adv. Surg. Tech. A 2021, 31, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Gustavson, S. Simplex Noise Demystified; Linköping University: Linköping, Sweden, 2005. [Google Scholar]
- Huijssen, J.; Verweij, M.D. An Iterative Method for the Computation of Nonlinear, Wide-Angle, Pulsed Acoustic Fields of Medical Diagnostic Transducers. J. Acoust. Soc. Am. 2010, 127, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Soulioti, D.E. Ultrasound in Reverberating and Aberrating Environments: Applications to Human Transcranial, Transabdominal, and Super-Resolution Imaging. Doctoral Dissertation, Department of Biomedical Engineering of the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA, 2022. [Google Scholar]
Framebuffers Size | Max FPS | Min FPS |
---|---|---|
4096 × 4096 | 2.6 | 1.4 |
2048 × 2048 | 78.3 | 74.3 |
1024 × 1024 | 215 | 181 |
512 × 512 | 261 | 239 |
256 × 256 | 271 | 241 |
128 × 128 | 274 | 247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostek, K.; Lasek, J.; Piórkowski, A. Real-Time Simulation of Wave Phenomena in Lung Ultrasound Imaging. Appl. Sci. 2023, 13, 9805. https://doi.org/10.3390/app13179805
Szostek K, Lasek J, Piórkowski A. Real-Time Simulation of Wave Phenomena in Lung Ultrasound Imaging. Applied Sciences. 2023; 13(17):9805. https://doi.org/10.3390/app13179805
Chicago/Turabian StyleSzostek, Kamil, Julia Lasek, and Adam Piórkowski. 2023. "Real-Time Simulation of Wave Phenomena in Lung Ultrasound Imaging" Applied Sciences 13, no. 17: 9805. https://doi.org/10.3390/app13179805