Practical Approach to Designing and Implementing a Recommendation System for Healthy Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. User Profile
- Age group. In this section, users are required to enter their age range, categorizing them into specific age groups, following the WHO classification [15], such as: children and adolescents (5–17 years), adults (18–64 years), or older adults (65 years or more).
- Gender. Users need to select their gender, choosing either male or female.
- Weight. Users are asked to provide their weight to calculate their BMI and determine the appropriate BMI range.
- Height. Users are asked to provide their height to calculate their BMI and determine the appropriate BMI range.
- Special groups. Users must indicate if they belong to any special groups using the WHO’s categorization [48]. This includes groups such as those with skin diseases, pregnant or postpartum individuals, individuals with sleep or wakefulness disorders, individuals with endocrine diseases (e.g., diabetes), individuals with circulatory system diseases (e.g., hypertension), or individuals with musculoskeletal or connective tissue diseases (e.g., arthropathies, chondropathies).
- Injuries. Users should specify if they have any temporary injuries that are not covered in the “Special Groups” section. They need to indicate whether it is an upper body, lower body, or trunk injury.
- Daily time available. Users are asked to indicate the amount of time they have available each day for training.
- Material available. Users need to specify the materials they have access to for their training.
- Available spots. Users should indicate if they have the option to perform their training in different locations.
- Six evaluations from the SF-36 questionnaire, which assess the user’s physical and emotional well-being. These evaluations cover physical function (PF), bodily pain (BP), general health (GH), vitality (V), social function (SF), and mental health (MH).
- Six evaluations from the sHEI-15 questionnaire, focusing on the user’s eating habits. These evaluations encompass fruit consumption (FC), legume and vegetable consumption (LVC), green vegetable consumption (GVC), added sugar consumption (ASC), whole grain consumption (WGC), and dairy consumption (DC).
- Three evaluations from the OSC questionnaire, targeting sleep quality. These evaluations include subjective sleep satisfaction (SSS), insomnia (IS), and hypersomnia (HS).
2.2. Challenges Characterization
2.3. Recommendation Algorithm Design
- 1.
- Data gathering from the user.
- 2.
- Filtering
- Challenge 8: this challenge is not compatible with skin diseases and the ER is higher than the tester A’s AE. The AE of the tester A after the 10% increase goes up to 8.745.
- Challenge 13: the use of a jumping rope is necessary to perform that challenge.
- 3.
- Matching based on critical features
Algorithm 1. Pseudo-code for the evaluation of a certain challenge (referred to as currentChallenge) for a certain user (referred to as currentUser). |
1: n -> 1; totalScore -> 0; 2: repeat while n <= 5; { 3: //select the worst dimension of the user 4: SearchWeakestFeature(currentUser) -> worstDimension; 5: //evaluate the challenge under consideration regarding the previous dimension 6: EvaluateRelevance(currentChallenge, worstDimension) -> partialScore; 7: //update the total score adding the new partial 8: totalScore -> totalScore + partialScore * Coef2 ^ (adapt ^ (n − 1))} 9: //remove the current dimension from the user. So, on the next iteration, 10: this dimension will not be considered 11: RemoveDimension(currentUser, worstDimension); 12: n -> n +1 ; 13: } 14: return totalScore |
- 4.
- Ranking
3. Results
4. Discussion
4.1. Comparison with Prior Work
4.2. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mochizuki, L.; Brach, M.; Almeida, P.L.; Vega, R.D.L.; Garzon, M.; Greve, J.M.D.; Limon, M. Coronavirus Disease (COVID-19): Psychological and Behavioral Consequences of Confinement on Physical Activity, Sedentarism, and Rehabilitation. Front. Psychol. 2022, 13, 816368. [Google Scholar] [CrossRef]
- Sforza, C. COVID-19 Lockdown, Sedentarism, Metabolic Alterations, Obesity: Can We Reverse the Domino Effect in Children? Children 2022, 9, 851. [Google Scholar] [CrossRef]
- Narici, M.; Vito, G.D.; Franchi, M.; Paoli, A.; Moro, T.; Marcolin, G.; Grassi, B.; Baldassarre, G.; Zuccarelli, L.; Biolo, G. Impact of Sedentarism Due to the COVID-19 Home Confinement on Neuromuscular, Cardiovascular and Metabolic Health: Physiological and Pathophysiological Implications and Recommendations for Physical and Nutritional Countermeasures. Eur. J. Sport Sci. 2021, 21, 614–635. [Google Scholar] [CrossRef]
- Warburton, N.; The Health Risks Associated with Sedentarism. Health, 1 September 2022. Available online: https://www.ioshmagazine.com/2022/09/01/health-risks-associated-sedentarism (accessed on 15 August 2023).
- Bueno-Antequera, J.; Munguía-Izquierdo, D. Physical Inactivity, Sedentarism, and Low Fitness: A Worldwide Pandemic for Public Health. In Integrated Science of Global Epidemics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 429–447. [Google Scholar] [CrossRef]
- Mates, E.; Lelijveld, N.; Ali, Z.; Sadler, K.; Yarparvar, A.; Walters, T.; Brown, R.; Rodriques, B. Nutrition of School-Aged Children and Adolescents in Europe and Central Asia Region: A Literature and Survey Review. Food Nutr. Bull. 2023, 44, 51–61. [Google Scholar] [CrossRef]
- Moitra, P.; Madan, J. Impact of Screen Time during COVID-19 on Eating Habits, Physical Activity, Sleep, and Depression Symptoms: A Cross-Sectional Study in Indian Adolescents. PLoS ONE 2022, 17, e0264951. [Google Scholar] [CrossRef] [PubMed]
- Pourghazi, F.; Eslami, M.; Ehsani, A.; Ejtahed, H.-S.; Qorbani, M. Eating Habits of Children and Adolescents during the COVID-19 Era: A Systematic Review. Front. Nutr. 2022, 9, 1004953. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, E.; Ramírez-Vargas, G.; Avellaneda-López, Y.; Orellana-Pecino, J.I.; García-Marín, E.; Díaz-Jimenez, J. Eating Habits and Physical Activity of the Spanish Population during the COVID-19 Pandemic Period. Nutrients 2020, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Highlights High Cost of Physical Inactivity in First-Ever Global Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2023; ISBN 92-4-007432-5. [Google Scholar] [CrossRef]
- Caplan, G. Principles of Preventive Psychiatry; American Psychological Association: Washington, DC, USA, 1964. [Google Scholar]
- World Health Organization. A Healthy Lifestyle—WHO Recommendations; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour: Web Annex: Evidence Profiles; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and Vegetable Intake and the Risk of Cardiovascular Disease, Total Cancer and All-Cause Mortality—A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- World Health Organization. Food-Based Dietary Guidelines in the WHO European Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2003. [Google Scholar]
- World Health Organization. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- FAO. Frutas y Verduras–Esenciales en tu Dieta: Año Internacional de las Frutas y Verduras, 2021. Documento de Antecedentes; FAO: Rome, Italy, 2020; ISBN 978-92-5-133713-4. [Google Scholar] [CrossRef]
- US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; 2015. Available online: https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015 (accessed on 15 August 2023).
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015; ISBN 92-4-154902-5. [Google Scholar]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916, ISBN 92-4-120916-X. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L. National Sleep Foundation’s Sleep Time Duration Recommendations: Methodology and Results Summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Merino-Andreu, M.; Alvarez-Ruiz de Larrinaga, A.; Madrid-Perez, J.A.; Martinez-Martinez, M.A.; Puertas-Cuesta, F.J.; Asencio-Guerra, A.J.; Santo-Tomas, O.R.; Jurado-Luque, M.J.; Segarra-Isern, F.J.; Canet-Sanz, T.; et al. Healthy Sleep: Evidence and Guidelines for Action. Official Document of the Spanish Sleep Society. Rev. Neurol. 2016, 63, 1–27. [Google Scholar]
- Guzmán-Luna, J.; Pardo, I.D.T.; Vallejo, J.S. Un Sistema Recomendador Móvil de Rutinas de Ejercicio Basado en el Perfil del Usuario. Res. Comput. Sci. 2015, 94, 137–149. [Google Scholar] [CrossRef]
- Castellano-Tejedor, C.; Moreno, J.; Ciudin, A.; Parramón, G.; Lusilla-Palacios, P. PREventive Care Infrastructure Based on Ubiquitous Sensing (PRECIOUS): A Study Protocol. JMIR Res. Protoc. 2017, 6, e6973. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, B.A.; Taborda, A.P.; Agudelo, S.G.; Rodríguez, J.D.P. Aplicación Móvil Para Mejorar La Capacidad Cognitiva En Adultos Mayores Utilizando Juegos Mentales. Tek. Rev. Científica 2016, 16, 11–22. [Google Scholar] [CrossRef]
- Krauskopf, P. Sworkit and BitGym. J. Nurse Pract. 2017, 13, e47–e48. [Google Scholar] [CrossRef]
- Villa, S.; David, O. Diseño e Implementación de Un Sistema Recomendador de Actividades Lúdicas y Culturales Para Personas de La Tercera Edad. Bachelor’s Thesis, Repositorio Institucional de la Universidad Politécnica Salesiana, Santiago, Ecuador, 2017. [Google Scholar] [CrossRef]
- Ferretto, L.R.; Bellei, E.A.; Biduski, D.; Bin, L.C.P.; Moro, M.M.; Cervi, C.R.; De Marchi, A.C.B. A Physical Activity Recommender System for Patients with Arterial Hypertension. IEEE Access 2020, 8, 61656–61664. [Google Scholar] [CrossRef]
- Xinyuan Hu, I.; King, H.; Lynch, S.; Thomas, N. Mind Match: A Holistic App-Based Intervention for Post-Pandemic Adolescent Mental Health. Bachelor’s Thesis, Repositorio Institucional de la Universidad Politécnica Salesiana, Santiago, Ecuador, 2023. [Google Scholar]
- Kadirvelu, B.; Bellido Bel, T.; Wu, X.; Burmester, V.; Ananth, S.; Branco, B.C.C.C.; Girela-Serrano, B.; Gledhill, J.; Di Simplicio, M.; Nicholls, D. Mindcraft, a Mobile Mental Health Monitoring Platform for Children and Young People: Development and Acceptability Pilot Study. JMIR Form. Res. 2023, 7, e44877. [Google Scholar] [CrossRef]
- Bundasak, S.; Yoksuriyan, P.; Kuntawee, P.; Kotama, R. Food Recommendation System for the Elderly. Int. J. Sci. 2021, 18, 152–167. [Google Scholar]
- Namgung, K.; Kim, T.-H.; Hong, Y.-S. Menu Recommendation System Using Smart Plates for Well-Balanced Diet Habits of Young Children. Wirel. Commun. Mob. Comput. 2019, 2019, 7971381. [Google Scholar] [CrossRef]
- Xu, L.; Shi, H.; Shen, M.; Ni, Y.; Zhang, X.; Pang, Y.; Yu, T.; Lian, X.; Yu, T.; Yang, X. The Effects of MHealth-Based Gamification Interventions on Participation in Physical Activity: Systematic Review. JMIR mHealth uHealth 2022, 10, e27794. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, J.; Hamari, J. Gamification of Physical Activity: A Systematic Literature Review of Comparison Studies. In Proceedings of the GamiFIN Conference 2019, Levi, Finland, 8–10 April 2019. [Google Scholar]
- Cheng, V.W.S.; Davenport, T.; Johnson, D.; Vella, K.; Hickie, I.B. Gamification in Apps and Technologies for Improving Mental Health and Well-Being: Systematic Review. JMIR Ment. Health 2019, 6, e13717. [Google Scholar] [CrossRef] [PubMed]
- Six, S.G.; Byrne, K.A.; Tibbett, T.P.; Pericot-Valverde, I. Examining the Effectiveness of Gamification in Mental Health Apps for Depression: Systematic Review and Meta-Analysis. JMIR Ment. Health 2021, 8, e32199. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.S.; Bitar, H.H. The Positive Impact of Gamification in Imparting Nutritional Knowledge and Combating Childhood Obesity: A Systematic Review on the Recent Solutions. Digit. Health 2023, 9, 20552076231154380. [Google Scholar] [CrossRef]
- Ilhan, E.; Sener, B.; Hacihabiboğlu, H. Creating Awareness of Sleep-Wake Hours by Gamification; Springer: Berlin/Heidelberg, Germany, 2016; pp. 122–133. [Google Scholar] [CrossRef]
- Guillodo, E.; Lemey, C.; Simonnet, M.; Walter, M.; Baca-García, E.; Masetti, V.; Moga, S.; Larsen, M.; HUGOPSY Network; Ropars, J. Clinical Applications of Mobile Health Wearable–Based Sleep Monitoring: Systematic Review. JMIR mHealth uHealth 2020, 8, e10733. [Google Scholar] [CrossRef]
- Lopez-Barreiro, J.; Alvarez-Sabucedo, L.; Garcia-Soidan, J.-L.; Santos-Gago, J.M. Creation of a Holistic Platform for Health Boosting Using a Blockchain-Based Approach: Development Study. Interact. J. Med. Res. 2023, 12, e44135. [Google Scholar] [CrossRef] [PubMed]
- Vilagut, G.; Ferrer, M.; Rajmil, L.; Rebollo, P.; Permanyer-Miralda, G.; Quintana, J.M.; Santed, R.; Valderas, J.M.; Domingo-Salvany, A.; Alonso, J. El Cuestionario de Salud SF-36 Español: Una Década de Experiencia y Nuevos Desarrollos. Gac. Sanit. 2005, 19, 135–150. [Google Scholar] [CrossRef]
- Colby, S.; Zhou, W.; Allison, C.; Mathews, A.E.; Olfert, M.D.; Morrell, J.S.; Byrd-Bredbenner, C.; Greene, G.; Brown, O.; Kattelmann, K.; et al. Development and Validation of the Short Healthy Eating Index Survey with a College Population to Assess Dietary Quality and Intake. Nutrients 2020, 12, 2611. [Google Scholar] [CrossRef]
- Bobes, J.; González, M.; Vallejo, J.; Sáiz, J.; Gibert, J.; Ayuso, J.; Rico, F. Oviedo Sleep Questionnaire (OSQ): A New Semistructured Interview for Sleep Disorders. Eur. Neuropsychopharmacol. 1998, 8, S162. [Google Scholar] [CrossRef]
- García, J.B.; G-Portilla, M.P.G.; Martínez, P.A.S.; Fernández, M.T.B.; Alvarez, C.I.; Domínguez, J.M.F. Propiedades Psicométricas Del Cuestionario Oviedo de Sueño. Psicothema 2000, 12, 107–112. [Google Scholar]
- World Health Organization. CIE-11 Para Estadísticas de Mortalidad y Morbilidad. Versión 2020, 9, 2020. [Google Scholar]
- Española, R.A.; Madrid, E. Diccionario de la Lengua Española. Available online: https://dle.rae.es/esfuerzo (accessed on 25 May 2023).
- Nicholls, J.G. The Development of the Concepts of Effort and Ability, Perception of Academic Attainment, and the Understanding That Difficult Tasks Require More Ability. Child Dev. 1978, 49, 800–814. [Google Scholar] [CrossRef]
- Hooper, L.; Abdelhamid, A.; Bunn, D.; Brown, T.; Summerbell, C.D.; Skeaff, C.M. Effects of Total Fat Intake on Body Weight. Cochrane Database Syst. Rev. 2015, 2016, CD011834. [Google Scholar] [CrossRef] [PubMed]
- Nishida, C.; Uauy, R. WHO Scientific Update on Health Consequences of Trans Fatty Acids: Introduction. Eur. J. Clin. Nutr. 2009, 63, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Klika, B.; Jordan, C. High-Intensity Circuit Training Using Body Weight: Maximum Results with Minimal Investment. ACSMs Health Fit. J. 2013, 17, 8–13. [Google Scholar] [CrossRef]
- Lopez-Barreiro, J.; Hernandez-Lucas, P.; Garcia-Soidan, J.L.; Romo-Perez, V. Effects of an Eccentric Training Protocol Using Gliding Discs on Balance and Lower Body Strength in Healthy Adults. J. Clin. Med. 2021, 10, 5965. [Google Scholar] [CrossRef]
Source of Information | Item | Set of Possible Values |
---|---|---|
User-entered | Age group | 5–17 years. 18–64 years. 65 years or more. |
Gender | Male. Female. | |
BMI | By means of the weight and height of the users, the BMI is calculated to classify them in the corresponding group. BMI < 18.5 = underweight. 18.5–24.9 = normal weight. 25–29.9 = preobesity. 30–34.9 = class I obesity. 35–39.9 = class II obesity. >40 = class III obesity. | |
Special groups | Skin diseases. Pregnancy, childbirth, or puerperium. Sleep or wakefulness disorders. Endocrine diseases (e.g., diabetes). Diseases of the circulatory system (e.g., hypertension). Diseases of the musculoskeletal system or connective tissue (e.g., arthropathies, chondropathies). None. | |
Injuries | Upper body. Lower body. Trunk. None. | |
Daily time available | <15′. Between 15′ and 30′. >30′. | |
Available spots | Pool. Sea. Country or city. Indoor house. Gym. | |
Required material | Bicycle. Barbells. Sliding discs. Jumping rope. No material. Others. | |
SF-36 | PF | Rating for the physical function dimension (0–10) |
BP | Rating for the bodily pain dimension (0–10) | |
GH | Rating for the general health dimension (0–10) | |
V | Rating for the vitality dimension (0–10) | |
SF | Rating for the social function dimension (0–10) | |
MH | Rating for the mental health dimension (0–10) | |
sHEI-15 | FC | Rating for the fruit consumption dimension (0–10) |
LVC | Rating for the legume and vegetable consumption dimension (0–10) | |
GVC | Rating for the green vegetable consumption dimension (0–10) | |
ASC | Rating for the dimension of consumption of added sugars (0–10) | |
WGC | Rating for the whole grains consumption dimension (0–10) | |
DC | Rating for the dairy consumption dimension (0–10) | |
OSC | SSS | Rating for the subjective sleep satisfaction dimension (0–10) |
IS | Rating for the insomnia dimension (0–10) | |
HS | Rating for the hypersomnia dimension (0–10) | |
Acceptable Effort | AE | Obtained through the arithmetic mean of the PF and MH components. |
Feature/Dimension | Set of Possible Values |
---|---|
Age group | 5–17 years. 18–64 years. 65 years or more. |
BMI excluded | BMI < 18.5 = underweight. 18.5–24.9 = normal weight. 25–29.9 = preobesity. 30–34.9 = class I obesity. 35–39.9 = class II obesity. >40 = class III obesity (World Health Organization, 2010). |
Special groups excluded | Skin diseases. Pregnancy, childbirth, or puerperium. Sleep or wakefulness disorders. Endocrine diseases (e.g., diabetes). Diseases of the circulatory system (e.g., hypertension). Diseases of the musculoskeletal system or connective tissue (e.g., arthropathies, chondropathies). None. |
Incompatible Injuries | Upper body. Lower body. Trunk. None. |
Daily time required | <15′. Between 15′ and 30′. >30′. Any. |
Development place | Pool. Sea. Country or city. House. Gym. Any. |
Required material | Bicycle. Barbells. Sliding discs. Jumping rope. No material. |
PF | Rating for the physical function dimension (0–10) |
BP | Rating for the bodily pain dimension (0–10) |
GH | Rating for the general health dimension (0–10) |
V | Rating for the vitality dimension (0–10) |
SF | Rating for the social function dimension (0–10) |
MH | Rating for the mental health dimension (0–10) |
FC | Rating for the fruit consumption dimension (0–10) |
LVC | Rating for the legume and vegetable consumption dimension (0–10) |
WGC | Rating for the green vegetable consumption dimension (0–10) |
ASC | Rating for the dimension of consumption of added sugars (0–10) |
WGC | Rating for the whole grains consumption dimension (0–10) |
DC | Rating for the dairy consumption dimension (0–10) |
SSS | Rating for the subjective sleep satisfaction dimension (0–10) |
IS | Rating for the challenge in the insomnia dimension (0–10) |
HS | Rating for the challenge in the hypersomnia dimension (0–10) |
ER | Rating for the effort required to carry out the challenge (0–10) |
Feature/Dimension | Provided Data |
---|---|
Age group | 18–64 years. |
Gender | Male. |
BMI | 18.5–24.9 = normal weight. |
Special groups | Skin diseases. |
Injuries | None. |
Daily time available | >30′. |
Possible spots | Pool. Sea. Country or city. Indoor house. Gym. |
Material available | Bicycle. Barbells. |
PF | 9.5 |
BP | 4.8 |
GH | 8.7 |
V | 8.0 |
SF | 10.0 |
MH | 6.4 |
FC | 6.5 |
LVC | 10.0 |
GVC | 6.2 |
ASC | 10.0 |
WGC | 2.5 |
DC | 4.2 |
SSS | 5.0 |
IS | 6.1 |
HS | 8.3 |
AE | 7.95 |
Challenge | Score |
---|---|
21 | 23.71 |
19 | 22.14 |
16 | 20.68 |
12 | 19.72 |
9 | 18.85 |
10 | 17.80 |
11 | 16.77 |
5 | 16.53 |
18 | 16.17 |
17 | 16.01 |
22 | 15.72 |
20 | 14.46 |
2 | 14.16 |
24 | 14.14 |
14 | 13.90 |
6 | 13.80 |
23 | 13.52 |
3 | 13.45 |
7 | 13.44 |
15 | 13.26 |
29 | 13.22 |
27 | 12.78 |
4 | 11.57 |
1 | 11.55 |
26 | 9.44 |
25 | 9.06 |
28 | 6.75 |
30 | 5.68 |
13 | Excluded |
8 | Excluded |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Barreiro, J.; Garcia-Soidan, J.L.; Alvarez-Sabucedo, L.; Santos-Gago, J.M. Practical Approach to Designing and Implementing a Recommendation System for Healthy Challenges. Appl. Sci. 2023, 13, 9782. https://doi.org/10.3390/app13179782
Lopez-Barreiro J, Garcia-Soidan JL, Alvarez-Sabucedo L, Santos-Gago JM. Practical Approach to Designing and Implementing a Recommendation System for Healthy Challenges. Applied Sciences. 2023; 13(17):9782. https://doi.org/10.3390/app13179782
Chicago/Turabian StyleLopez-Barreiro, Juan, Jose Luis Garcia-Soidan, Luis Alvarez-Sabucedo, and Juan M. Santos-Gago. 2023. "Practical Approach to Designing and Implementing a Recommendation System for Healthy Challenges" Applied Sciences 13, no. 17: 9782. https://doi.org/10.3390/app13179782
APA StyleLopez-Barreiro, J., Garcia-Soidan, J. L., Alvarez-Sabucedo, L., & Santos-Gago, J. M. (2023). Practical Approach to Designing and Implementing a Recommendation System for Healthy Challenges. Applied Sciences, 13(17), 9782. https://doi.org/10.3390/app13179782