Machine Unlearning by Reversing the Continual Learning
Abstract
:1. Introduction
- We propose an oblivious learning method using EWC, which allows for further training of the model. EWC is able to constrain model parameters that are important for the remaining data and can be applied with only one or two epochs.
- We propose a unlearning learning method using DMM, which approximates the model parameters as a Gaussian distribution and achieves unlearning by closed updating of the model parameters.
- We have conducted experiments on realistic and commonly used standard datasets, and the results support our theoretical research.
2. Related Work
2.1. Machine Unlearning
2.2. Continual Learning
3. Preliminaries
3.1. Machine Unlearning
3.2. Continual Learning
4. Machine Unlearning by Reversing the Continual Learning
4.1. Overview
4.2. Unlearning with EWC
4.3. Unlearning with DMM
5. Evaluation
5.1. Experimental Setup
5.1.1. Test Bench
5.1.2. Datasets
5.1.3. Metrics
5.2. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sari, W.; Samosir, B.; Sahara, N.; Agustina, L.; Anita, Y. Learning mathematics “Asyik” with Youtube educative media. J. Phys. Conf. Ser. 2020, 1477, 022012. [Google Scholar] [CrossRef]
- Gheisari, M.; Ebrahimzadeh, F.; Rahimi, M.; Moazzamigodarzi, M.; Liu, Y.; Dutta Pramanik, P.K.; Heravi, M.A.; Mehbodniya, A.; Ghaderzadeh, M.; Feylizadeh, M.R.; et al. Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey. CAAI Trans. Intell. Technol. 2023; Early View. [Google Scholar]
- Ghaderzadeh, M.; Asadi, F.; Hosseini, A.; Bashash, D.; Abolghasemi, H.; Roshanpour, A. Machine learning in detection and classification of leukemia using smear blood images: A systematic review. Sci. Program. 2021, 2021, 9933481. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Aria, M. Management of COVID-19 detection using artificial intelligence in 2020 pandemic. In Proceedings of the 5th International Conference on Medical and Health Informatics, Kyoto, Japan, 14–16 May 2021; pp. 32–38. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Carlini, N.; Liu, C.; Erlingsson, Ú.; Kos, J.; Song, D. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks. In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 11–13 August 2019; Volume 267. [Google Scholar]
- Lu, Z.; Liang, H.; Zhao, M.; Lv, Q.; Liang, T.; Wang, Y. Label-only membership inference attacks on machine unlearning without dependence of posteriors. Int. J. Intell. Syst. 2022, 37, 9424–9441. [Google Scholar] [CrossRef]
- Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 3–18. [Google Scholar]
- Chen, M.; Zhang, Z.; Wang, T.; Backes, M.; Humbert, M.; Zhang, Y. When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, 15–19 November 2021; pp. 896–911. [Google Scholar]
- Magdziarczyk, M. Right to be forgotten in light of regulation (eu) 2016/679 of the european parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec. In Proceedings of the 6th International Multidisciplinary Scientific Conference on Social Sciences and Art SGEM 2019, Balchik, Bulgaria, 24 August–2 September 2019; pp. 177–184. [Google Scholar]
- Cao, Y.; Yang, J. Towards making systems forget with machine unlearning. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–20 May 2015; pp. 463–480. [Google Scholar]
- Bourtoule, L.; Chandrasekaran, V.; Choquette-Choo, C.A.; Jia, H.; Travers, A.; Zhang, B.; Lie, D.; Papernot, N. Machine unlearning. In Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 141–159. [Google Scholar]
- Baumhauer, T.; Schöttle, P.; Zeppelzauer, M. Machine unlearning: Linear filtration for logit-based classifiers. Mach. Learn. 2022, 111, 3203–3226. [Google Scholar] [CrossRef] [PubMed]
- Izzo, Z.; Smart, M.A.; Chaudhuri, K.; Zou, J. Approximate data deletion from machine learning models. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Virtual, 13–15 April 2021; pp. 2008–2016. [Google Scholar]
- Guo, C.; Goldstein, T.; Hannun, A.; Van Der Maaten, L. Certified data removal from machine learning models. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 3832–3842. [Google Scholar]
- McCloskey, M.; Cohen, N.J. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1989; Volume 24, pp. 109–165. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, J.H.; Jun, J.; Ha, J.W.; Zhang, B.T. Overcoming catastrophic forgetting by incremental moment matching. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Golatkar, A.; Achille, A.; Soatto, S. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9304–9312. [Google Scholar]
- Sussmann, H.J. Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Netw. 1992, 5, 589–593. [Google Scholar] [CrossRef]
- Kim, J.; Woo, S.S. Efficient two-stage model retraining for machine unlearning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4361–4369. [Google Scholar]
- Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 21 April 2023).
- Available online: https://www.cs.toronto.edu/~kriz/cifar.html/ (accessed on 21 April 2023).
- Gu, T.; Dolan-Gavitt, B.; Garg, S. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017, arXiv:1708.06733. [Google Scholar]
- Halimi, A.; Kadhe, S.R.; Rawat, A.; Angel, N.B. Federated Unlearning: How to Efficiently Erase a Client in FL? In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022. [Google Scholar]
- Wang, J.; Guo, S.; Xie, X.; Qi, H. Federated unlearning via class-discriminative pruning. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 622–632. [Google Scholar]
- Wu, C.; Zhu, S.; Mitra, P. Federated unlearning with knowledge distillation. arXiv 2022, arXiv:2201.09441. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Thudi, A.; Deza, G.; Chandrasekaran, V.; Papernot, N. Unrolling sgd: Understanding factors influencing machine unlearning. In Proceedings of the 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 6–10 June 2022; pp. 303–319. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, Z.; Zhang, F.; Wang, H.; Li, S. Machine Unlearning by Reversing the Continual Learning. Appl. Sci. 2023, 13, 9341. https://doi.org/10.3390/app13169341
Zhang Y, Lu Z, Zhang F, Wang H, Li S. Machine Unlearning by Reversing the Continual Learning. Applied Sciences. 2023; 13(16):9341. https://doi.org/10.3390/app13169341
Chicago/Turabian StyleZhang, Yongjing, Zhaobo Lu, Feng Zhang, Hao Wang, and Shaojing Li. 2023. "Machine Unlearning by Reversing the Continual Learning" Applied Sciences 13, no. 16: 9341. https://doi.org/10.3390/app13169341
APA StyleZhang, Y., Lu, Z., Zhang, F., Wang, H., & Li, S. (2023). Machine Unlearning by Reversing the Continual Learning. Applied Sciences, 13(16), 9341. https://doi.org/10.3390/app13169341