Current Limitations for Predicting Liquid Dispersion in Continuous Flow Bubble Columns Using CFD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Validation Experiments
2.2. CFD Simulations
3. Results
3.1. Velocity Profiles for Mono- and Biphasic Simulations
3.2. Liquid Phase Dispersion in Single-Phase Water Flow
3.3. Liquid-Phase Dispersion in Air-Water Two-Phase System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CFD | Computational fluid dynamics |
DES | Detached eddy simulation |
DNS | Direct numerical simulation |
EARSM | Explicit algebraic Reynolds stress model |
E-E | Euler-Euler schemes |
E-L | Euler-Lagrange approaches |
k | Turbulent kinetic energy (J kg−1) |
LES | Large eddy simulation |
l | Length scale (m) |
l0 | Length scale defined by Equation (1) (m) |
MSD | Modeled stress depletion |
ma | Mass flow rate (kg s−1) |
Qa | Volume flow rate (m3 h−1) |
RANS | Reynolds-averaged Navier-Stokes models |
Re | Reynolds number |
RNG | Renormalization group |
RSM | Reynolds stress model |
r | Radial position of sensor from central axis (m) |
SAS | Scale-adaptive simulation |
SST | Shear stress transport |
SST-SAS | Shear stress transport scale-adaptive simulation |
ti | Duration of tracer pulse (s) |
trm | Residence time (s) |
ua | Superficial velocity (m s−1) |
VL | Volume of water in the bubble column (m3) |
VOF | Volume-of-fluid model |
xi | Mole fraction of H+ in tracer (-) |
z | Axial location of a pH sensor above the column base (m) |
Δ | Size of the cell (m) |
ε | Rate of dissipation of turbulent kinetic energy (J kg−1 s−1) |
μ | Viscosity (Pa s) |
ρ | Density (kg m−3) |
σt2 | Variance of the residence time (s2) |
σθ2 | Variance of the relative residence time (-) |
ω | Specific energy dissipation rate (J kg−1 s−1) |
References
- Chisti, Y. Mass Transfer. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–70. [Google Scholar]
- Deckwer, W.D. Bubble Column Reactors; Wiley: Chichester, UK, 1992. [Google Scholar]
- Shah, Y.T.; Kelkar, B.G.; Godbole, S.P.; Deckwer, W.-D. Design Parameters Estimations for Bubble Column Reactors. AIChE J. 1982, 28, 353–379. [Google Scholar] [CrossRef]
- Ho, D.; Kim, K.; Earmme, T.; Kim, C. Enhancing Gas–Liquid Volumetric Mass Transfer Coefficient. J. Ind. Eng. Chem. 2020, 87, 1–17. [Google Scholar] [CrossRef]
- Kantarci, N.; Borak, F.; Ulgen, K.O. Bubble Column Reactors. Process Biochem. 2005, 40, 2263–2283. [Google Scholar] [CrossRef]
- Chen, P.; Duduković, M.P.; Sanyal, J. Three-Dimensional Simulation of Bubble Column Flows with Bubble Coalescence and Breakup. AIChE J. 2005, 51, 696–712. [Google Scholar] [CrossRef]
- Ebadi Amooghin, A.; Jafari, S.; Sanaeepur, H.; Kargari, A. Computational Fluid Dynamics Simulation of Bubble Coalescence and Breakup in an Internal Airlift Reactor: Analysis of Effects of a Draft Tube on Hydrodynamics and Mass Transfer. Appl. Math. Model. 2015, 39, 1616–1642. [Google Scholar] [CrossRef]
- Zahradnik, J.; Fialova, M.; Ruzicka, M.; Drahos, J.; Kastanek, F.; Thomas, N.H. Duality of the Gas-Liquid Flow Regimes in Bubble-Column Reactors. Chem. Eng. Sci. 1997, 52, 3811–3826. [Google Scholar] [CrossRef]
- Shu, S.; Vidal, D.; Bertrand, F.; Chaouki, J. Multiscale Multiphase Phenomena in Bubble Column Reactors: A Review. Renew. Energy 2019, 141, 613–631. [Google Scholar] [CrossRef]
- Behkish, A.; Lemoine, R.; Sehabiague, L.; Oukaci, R.; Morsi, B.I. Gas Holdup and Bubble Size Behavior in a Large-Scale Slurry Bubble Column Reactor Operating with an Organic Liquid under Elevated Pressures and Temperatures. Chem. Eng. J. 2007, 128, 69–84. [Google Scholar] [CrossRef]
- Krishna, R.; Sie, S.T. Design and Scale-up of the Fischer–Tropsch Bubble Column Slurry Reactor. Fuel Process. Technol. 2000, 64, 73–105. [Google Scholar] [CrossRef]
- López-Rosales, L.; Sánchez-Mirón, A.; García-Camacho, F.; Place, A.R.; Chisti, Y.; Molina-Grima, E. Pilot-Scale Outdoor Photobioreactor Culture of the Marine Dinoflagellate Karlodinium Veneficum: Production of a Karlotoxins-Rich Extract. Bioresour. Technol. 2018, 253, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Chisti, Y. Shear Sensitivity. In Encyclopedia of Industrial Biotechnology; John Wiley & Sons, Inc.: New York, NY, USA, 2009; pp. 1–40. [Google Scholar]
- Kim, J.Y.; Kim, B.; Nho, N.-S.; Go, K.-S.; Kim, W.; Bae, J.W.; Jeong, S.W.; Epstein, N.; Lee, D.H. Gas Holdup and Hydrodynamic Flow Regime Transition in Bubble Columns. J. Ind. Eng. Chem. 2017, 56, 450–462. [Google Scholar] [CrossRef]
- Camacho Rubio, F.; Sánchez Mirón, A.; Cerón García, M.C.; García Camacho, F.; Molina Grima,, E.; Chisti, Y. Mixing in Bubble Columns: A New Approach for Characterizing Dispersion Coefficients. Chem. Eng. Sci. 2004, 59, 4369–4376. [Google Scholar] [CrossRef]
- Kawase, Y.; Moo-Young, M. Mixing Time in Bioreactors. J. Chem. Technol. Biotechnol. 1989, 44, 63–75. [Google Scholar] [CrossRef]
- Levenspiel, O.; Lai, B.W.; Chatlynne, C.Y. Tracer Curves and the Residence Time Distribution. Chem. Eng. Sci. 1970, 25, 1611–1613. [Google Scholar] [CrossRef]
- Liu, Y.; Hinrichsen, O. Study on CFD–PBM Turbulence Closures Based on k–ε and Reynolds Stress Models for Heterogeneous Bubble Column Flows. Comput. Fluids 2014, 105, 91–100. [Google Scholar] [CrossRef]
- Khan, Z.; Bhusare, V.H.; Joshi, J.B. Comparison of Turbulence Models for Bubble Column Reactors. Chem. Eng. Sci. 2017, 164, 34–52. [Google Scholar] [CrossRef]
- Dhotre, M.T.; Deen, N.G.; Niceno, B.; Khan, Z.; Joshi, J.B. Large Eddy Simulation for Dispersed Bubbly Flows: A Review. Int. J. Chem. Eng. 2013, 2013, 343276. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, C.; Yu, G.; Mao, Z.S. CFD Simulation of Hydrodynamics and Mass Transfer in an Internal Airlift Loop Reactor Using a Steady Two-Fluid Model. Chem. Eng. Sci. 2010, 65, 5527–5536. [Google Scholar] [CrossRef]
- Masood, R.M.A.; Rauh, C.; Delgado, A. CFD Simulation of Bubble Column Flows: An Explicit Algebraic Reynolds Stress Model Approach. Int. J. Multiph. Flow 2014, 66, 11–25. [Google Scholar] [CrossRef]
- López-Rosales, L.; Sánchez-Mirón, A.; Contreras-Gómez, A.; García-Camacho, F.; Battaglia, F.; Zhao, L.; Molina-Grima, E. Characterization of Bubble Column Photobioreactors for Shear-Sensitive Microalgae Culture. Bioresour. Technol. 2019, 275, 1–9. [Google Scholar] [CrossRef]
- Deen, N.G.; Solberg, T.; Hjertager, B.H. Large Eddy Simulation of the Gas–Liquid Flow in a Square Cross-Sectioned Bubble Column. Chem. Eng. Sci. 2001, 56, 6341–6349. [Google Scholar] [CrossRef]
- Laborde-Boutet, C.; Larachi, F.; Dromard, N.; Delsart, O.; Schweich, D. CFD Simulation of Bubble Column Flows: Investigations on Turbulence Models in RANS Approach. Chem. Eng. Sci. 2009, 64, 4399–4413. [Google Scholar] [CrossRef]
- Tabib, M.V.; Roy, S.A.; Joshi, J.B. CFD Simulation of Bubble Column—An Analysis of Interphase Forces and Turbulence Models. Chem. Eng. J. 2008, 139, 589–614. [Google Scholar] [CrossRef]
- Ekambara, K.; Dhotre, M.T. CFD Simulation of Bubble Column. Nucl. Eng. Des. 2010, 240, 963–969. [Google Scholar] [CrossRef]
- Ansari, M.R.; Azadi, R.; Salimi, E. Capturing of Interface Topological Changes in Two-Phase Gas–Liquid Flows Using a Coupled Volume-of-Fluid and Level-Set Method (VOSET). Comput. Fluids 2016, 125, 82–100. [Google Scholar] [CrossRef]
- McClure, D.D.; Norris, H.; Kavanagh, J.M.; Fletcher, D.F.; Barton, G.W. Validation of a Computationally Efficient Computational Fluid Dynamics (CFD) Model for Industrial Bubble Column Bioreactors. Ind. Eng. Chem. Res. 2014, 53, 14526–14543. [Google Scholar] [CrossRef]
- McClure, D.D.; Aboudha, N.; Kavanagh, J.M.; Fletcher, D.F.; Barton, G.W. Mixing in Bubble Column Reactors: Experimental Study and CFD Modeling. Chem. Eng. J. 2015, 264, 291–301. [Google Scholar] [CrossRef]
- Wei, C.N.; Ochiai, S. Tracer-Response Techniques in Evaluation of Mixing in Reactors. The Mixing Characteristics of an Industrial Liquid-Phase Reactor Are Evaluated from the Transient Response of the Tracer Concentration at the Outlet. Plant/Oper. Prog. 1983, 2, 123–126. [Google Scholar] [CrossRef]
- Sánchez Mirón, A.; Cerón García, M.C.; García Camacho, F.; Molina Grima, E.; Chisti, Y. Mixing in Bubble Column and Airlift Reactors. Chem. Eng. Res. Des. 2004, 82, 1367–1374. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.-P.; Al-Dahhan, M.H. Verification and Validation of CFD Simulations for Local Flow Dynamics in a Draft Tube Airlift Bioreactor. Chem. Eng. Sci. 2011, 66, 907–923. [Google Scholar] [CrossRef]
- Wiora, J.; Wiora, A. Measurement Uncertainty Calculations for PH Value Obtained by an Ion-Selective Electrode. Sensors 2018, 18, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashton, N. Recalibrating Delayed Detached-Eddy Simulation to Eliminate Modelled-Stress Depletion. In Proceedings of the 23th AIAA Computational Fluid Dynamics Conference, Denver, CO, USA, 5–9 June 2017; AIAA AVIATION Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Sanchez-Forero, D.I.; Silva, J.L., Jr.; Silva, M.K.; Bastos, J.C.S.C.; Mori, M. Experimental and Numerical Investigation of Gas-Liquid Flow in a Rectangular Bubble Column with Centralized Aeration Flow Pattern. Chem. Eng. Trans. 2013, 32, 1561–1566. [Google Scholar] [CrossRef]
- Han, S.; Zhou, J.; Jin, Y.; Loh, K.C.; Wang, Z. Liquid Dispersion in Gas-Liquid-Solid Circulating Fluidized Beds. Chem. Eng. J. 1998, 70, 9–14. [Google Scholar] [CrossRef]
- Islam, M.T.; Ganesan, P.B.; Cheng, J.; Uddin, M.S. Single Bubble Rising Behaviors in Newtonian and Non-Newtonian Fluids with Validation of Empirical Correlations: A Computational Fluid Dynamics Study. Eng. Rep. 2020, 2, e12100. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.A.; Tadé, M.; Pareek, V. Simulations of Bubble Column Reactors Using a Volume of Fluid Approach: Effect of Air Distributor. Can. J. Chem. Eng. 2007, 85, 290–301. [Google Scholar] [CrossRef]
- Xiao, F.; Dianat, M.; McGuirk, J.J. LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow. Int. J. Multiph. Flow 2014, 60, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, Q. Prediction of Particle Deposition onto Indoor Surfaces by CFD with a Modified Lagrangian Method. Atmos. Environ. 2009, 43, 319–328. [Google Scholar] [CrossRef] [Green Version]
Parameter | Setting |
---|---|
Pressure-velocity coupling | SIMPLE |
Spatial discretization | Least squares cell based |
Pressure | Standard |
Momentum | 2nd Order upwind |
Turbulent kinetic energy | 2nd Order upwind |
Turbulent dissipation rate | 2nd Order upwind |
Specific dissipation rate | 2nd Order upwind |
Intermittency | 2nd Order upwind |
Momentum thickness Re | 1st Order upwind |
Tracer concentration | 2nd Order upwind |
Transient state formulation | 1st Order implicit |
Fluid | Water | Tracer (HCl, 37% w/w) | Air |
---|---|---|---|
Molar mass (kg kmol−1) | 18.152 | 36.460 | 28.996 |
Density, ρ (kg m−3) | 998.2 | 1190.0 | 122.5 × 10−2 |
Viscosity, μ (Pa s) | 10.03 × 10−4 | 2.0 × 10−5 | 178.94 × 10−7 |
Surface tension (N m−1) | 72.75 × 10−3 | - | - |
Flow | Low | High |
---|---|---|
ti (s) | 2.5 | 2.5 |
xi | 0.2246 | 0.2246 |
Qw (m3 h−1) | 1.98 | 3.2 |
uw (m s−1) | 0.0128 | 0.0207 |
mw (kg s−1) | 0.549 | 0.887 |
Qa (m3 h−1) | 0.954 | 4.5 |
ua (m s−1) | 0.0612 | 0.0291 |
Qa/VL (vvm) | 0.185 | 0.872 |
ma (kg s−1) | 32.46 × 10−5 | 153.13 × 10−5 |
Flow Settings | z (m) | r (m) | Experiments | Simulations (SAS + VOF) | ||||
---|---|---|---|---|---|---|---|---|
trm (s) | σt2 (s2) | σθ2 (-) | trm (s) | σt2 (s2) | σθ2 (-) | |||
Qw = 1.98 m3 h−1; Qa = 0.954 m3 h−1 | 1.05 | 0 | 221.8 | 36,843 | 0.75 | 59.2 | 1210 | 0.35 |
1.05 | 0.1 | 218.1 | 35,530 | 0.75 | 60.7 | 1209 | 0.33 | |
1.84 | 0 | 227.9 | 34,679 | 0.67 | 82.9 | 1603 | 0.23 | |
1.84 | 0.1 | 244.4 | 37,890 | 0.63 | 80.6 | 1600 | 0.25 | |
Qw = 3.2 m3 h−1; Qa = 4.5 m3 h−1 | 1.05 | 0 | 77.0 | 4409 | 0.74 | 34.8 | 514 | 0.43 |
1.05 | 0.1 | 76.1 | 4193 | 0.72 | 35.8 | 523 | 0.41 | |
1.84 | 0 | 83.5 | 4078 | 0.59 | 44.6 | 540 | 0.28 | |
1.84 | 0.1 | 90.7 | 4444 | 0.54 | 44.0 | 538 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Rodríguez, J.J.; Velasco-Amate, J.; Lorenzo-Horcajo, E.; López-Rosales, L.; Chisti, Y.; Battaglia, F.; Sánchez-Mirón, A.; García-Camacho, F. Current Limitations for Predicting Liquid Dispersion in Continuous Flow Bubble Columns Using CFD. Appl. Sci. 2023, 13, 9250. https://doi.org/10.3390/app13169250
Gallardo-Rodríguez JJ, Velasco-Amate J, Lorenzo-Horcajo E, López-Rosales L, Chisti Y, Battaglia F, Sánchez-Mirón A, García-Camacho F. Current Limitations for Predicting Liquid Dispersion in Continuous Flow Bubble Columns Using CFD. Applied Sciences. 2023; 13(16):9250. https://doi.org/10.3390/app13169250
Chicago/Turabian StyleGallardo-Rodríguez, Juan José, Javier Velasco-Amate, Erika Lorenzo-Horcajo, Lorenzo López-Rosales, Yusuf Chisti, Francine Battaglia, Asterio Sánchez-Mirón, and Francisco García-Camacho. 2023. "Current Limitations for Predicting Liquid Dispersion in Continuous Flow Bubble Columns Using CFD" Applied Sciences 13, no. 16: 9250. https://doi.org/10.3390/app13169250
APA StyleGallardo-Rodríguez, J. J., Velasco-Amate, J., Lorenzo-Horcajo, E., López-Rosales, L., Chisti, Y., Battaglia, F., Sánchez-Mirón, A., & García-Camacho, F. (2023). Current Limitations for Predicting Liquid Dispersion in Continuous Flow Bubble Columns Using CFD. Applied Sciences, 13(16), 9250. https://doi.org/10.3390/app13169250