Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System
Abstract
:1. Introduction
- To what extent is the predictive performance of non-linear supervised ML models superior compared with linear supervised ML models when predicting LOS in preterm infants?
- What vital parameters, other than heart rate, are of added value when predicting LOS?
2. Literature Review
2.1. Models
2.2. Features
3. Methods
3.1. Patient Population
3.2. Signal Processing
3.3. Feature Generation
3.3.1. Time-Domain Measurements
3.3.2. Frequency-Domain Measurements
3.3.3. Non-Linear Measurements
3.4. Calibration Period
3.5. Data Analysis
3.6. Machine Learning
4. Results
4.1. Feature Significance and Co-Linearity
4.2. General Behavior of Each Parameter
4.3. Predictive Performance of the Machine Learning Models
4.4. Model Feature Importance
4.5. Results for Different Training Windows
4.6. Performance of Vital Parameters
5. Discussion
6. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Unit | Interpretation |
---|---|---|
HRV | ||
Time domain | ||
mean_nni | ms | Mean of nni |
sd_nn | ms | Standard deviation of nni |
sd_diff_nn | ms | Standard deviation of differences between adjacent nn-intervals |
rmssd | ms | The square root of the mean of the sum of the squares of differences between adjacent nni intervals |
max_nn | ms | Maximum of nni |
min_nn | ms | Minimum of nni |
nni_50 | ms | Number of interval differences of successive nn-intervals greater than 50 ms |
pnni_50 | % | The proportion derived by dividing nni-50 by the total number of nn-intervals |
nni_20 | ms | Number of interval differences of successive nn-intervals greater than 20 ms |
pnni_20 | % | The proportion derived by dividing nni20 by the total number of nni. |
range_nni | ms | Difference between the maximum and minimum nn-interval. |
cvsd | ms | Coefficient of variation of successive differences equal to the rmssd divided by mean_nni. |
cvnni | ms | Coefficient of variation equal to the ratio of sdnn divided by mean_nni |
Frequency domain | ||
total_power | ms^2 | Total power density spectral |
vlf | ms^2 | Variance in HRV in the Very low Frequency (0.003 to 0.04 Hz by default). Primarily modulated by sympathetic activity. |
LF | ms^2 | variance in HRV in the low Frequency (0.04 to 0.15 Hz). Reflects a mainly sympathetic activity |
HF | ms^2 | variance in HRV in the High Frequency (0.15 to 0.40 Hz by default). Reflects fast changes in HRV due to parasympathetic activity. |
LF_HF_ratio | ms^2 | Ratio lf/hf. This metric is as a quantitative mirror of the sympathetic/vagal balance. |
LF norm | nu | normalized lf power(LF/(total powerVLF) × 100) |
HF norm | nu | normalized hf power(hf/(total powerVLF) × 100) |
csi | Cardiac Sympathetic Index | |
cvi | Cardiac Vagal (Parasympathetic) Index. | |
Non-linear domain | ||
Entropy_RRi | A measure of the degreee of distortion compared to a Gaussian distribution | |
Skewness_RRi | A measure of the degreee of skeweness compared to a Gaussian distribution | |
triangular_index | The triangular interpolation of RR-interval histogram is the baseline width of the distribution measured as a base of a triangle | |
sd1 | sd1: The standard deviation of projection of the Poincare plot on the line perpendicular to the line of identity. | |
sd2 | sd2: sd2 is defined as the standard deviation of the projection of the Poincare plot on the line of identity. | |
ratio_sd2_sd1 | Ratio between SD2 and SD1. | |
RF | ||
Time domain | ||
Mean_RF | ms | Mean of the perfusion index |
Median_RF | ms | Median of the perfusion index |
SD_RF | ms | Standard deviation of the perfusion index |
Max_RF | ms | Maximum perfusion index |
Min_RF | ms | Minimum perfusion index |
Range_RF | ms | Difference between the maximum and minimum RF-interval. |
Non-linear domain | ||
Entropy_RF | A measure of the degree of distortion compared with a Gaussian distribution | |
Skewness_RF | A measure of the degree of skewness compared with a Gaussian distribution | |
PFI | ||
Time domain | ||
Mean_PFI | % | Mean of the respiratory rate |
Median_PFI | % | Median of the respiratory rate |
SD_PF | % | Standard deviation of the respiratory rate |
Max_PFI | % | Maximum respiratory rate |
Min_PFI | % | Minimum respiratory rate |
Range_PFI | ms | Difference between the maximum and minimum PFI interval. |
Non-linear domain | ||
Entropy_PFI | A measure of the degree of distortion compared with a Gaussian distribution | |
Skewness_PFI | A measure of the degree of skewness compared with a Gaussian distribution | |
SpO2 | ||
Time domain | ||
Mean_SpO2 | % | Mean of the saturation |
Median_SpO2 | % | Median of the saturation |
SD_SpO2 | % | Standard deviation of the saturation |
Max_SpO2 | % | Maximum saturation |
Min_SpO2 | % | Minimum saturation |
Range_SpO2 | ms | Difference between the maximum and minimum SpO2-interval. |
Non-linear domain | ||
Entropy_SpO2 | A measure of the degree of distortion compared to a Gaussian distribution | |
Skewness_SpO2 | A measure of the degree of skewness compared to a Gaussian distribution |
HRV | HRV + PFI | HRV + RF | HRV + SpO2 | |
---|---|---|---|---|
Adaptive Boosting | 0.852 [0.849, 0.856] | 0.870 [ 0.867, 0.873] | 0.904 [0.901, 0.906] | 0.888 [0.885, 0.891] |
Decision Tree | 0.805 [0.801, 0.809] | 0.801 [0.798, 0.805] | 0.825 [0.821, 0.828] | 0.803 [0.798, 0.807] |
Gradient Boosting | 0.919 [0.916, 0.922] | 0.926 [0.923, 0.928] | 0.937 [0.935, 0.939] | 0.952 [0.950, 0.953] |
K-Nearest Neighbors | 0.889 [0.886, 0.892] | 0.894 [0.892, 0.895] | 0.927 [0.925, 0.929] | 0.888 [0.885, 0.891] |
Logistic Regression | 0.702 [0.698, 0.705] | 0.723 [0.719, 0.727] | 0.731 [0.728, 0.734] | 0.727 [0.723, 0.731] |
Naive Bayes | 0.670 [0.665, 0.675] | 0.679 [0.675, 0.683] | 0.723 [0.720, 0.727] | 0.672 [0.667, 0.676] |
Random Forest | 0.961 [0.959, 0.962] | 0.960 [0.958, 0.961] | 0.967 [0.966, 0.968] | 0.969 [0.967, 0.970] |
Support Vector Machine | 0.864 [0.861, 0.867] | 0.894 [0.891, 0.896] | 0.921 [0.919, 0.923] | 0.885 [0.881, 0.888] |
Fit Time | Train Accuracy | Test Accuracy | Train Precision | Test Precision | Train Recall | Test Recall | Train AUROC | Test AUROC | |
---|---|---|---|---|---|---|---|---|---|
ADA | 0.431 [0.426, 0.436] | 0.804 [0.802, 0.806] | 0.759 [0.755, 0.763] | 0.803 [0.801, 0.805] | 0.755 [0.750, 0.76] | 0.804 [0.802, 0.806] | 0.759 [0.755, 0.763] | 0.872 [0.870, 0.873] | 0.806 [0.801, 0.811] |
DT | 0.073 [0.07, 0.076] | 1.0 [1.0, 1.0] | 0.754 [0.750, 0.759] | 1.0 [1.0, 1.0] | 0.754 [0.750, 0.758] | 1.0 [1.0, 1.0] | 0.754 [0.750, 0.759] | 1.0 [1.0, 1.0] | 0.737 [0.733, 0.742] |
GB | 1.732 [1.717, 1.748] | 0.891 [0.89, 0.892] | 0.823 [0.820, 0.826] | 0.897 [0.896, 0.898] | 0.826 [0.823, 0.829] | 0.891 [0.890, 0.892] | 0.823 [0.820, 0.826] | 0.960 [0.960, 0.961] | 0.884 [0.881, 0.887] |
KNN | 0.019 [0.017, 0.021] | 0.925 [0.923, 0.926] | 0.880 [0.878, 0.882] | 0.925 [0.924, 0.927] | 0.881 [0.878, 0.883] | 0.925 [0.923, 0.926] | 0.880 [0.878, 0.882] | 0.980 [0.979, 0.980] | 0.935 [0.933, 0.938] |
LogR | 0.015 [0.014, 0.016] | 0.705 [0.703, 0.706] | 0.700 [0.697, 0.703] | 0.700 [0.699, 0.702] | 0.695 [0.691, 0.699] | 0.705 [0.703, 0.706] | 0.700 [0.697, 0.703] | 0.741 [0.740, 0.743] | 0.733 [0.729, 0.737] |
NB | 0.005 [0.003, 0.008] | 0.701 [0.700, 0.702] | 0.698 [0.694, 0.703] | 0.695 [0.694, 0.697] | 0.692 [0.687, 0.697] | 0.701 [0.700, 0.702] | 0.698 [0.694, 0.703] | 0.751 [0.749, 0.753] | 0.747 [0.741, 0.752] |
RandF | 1.092 [1.081, 1.102] | 1.0 [1.0, 1.0] | 0.859 [0.856, 0.862] | 1.0 [1.0, 1.0] | 0.863 [0.860, 0.866] | 1.0 [1.0,1.0] | 0.859 [0.856, 0.862] | 1.0 [1.0, 1.0] | 0.921 [0.918, 0.923] |
SVM | 0.226 [0.223, 0.230] | 0.898 [0.897, 0.899] | 0.863 [0.860, 0.866] | 0.903 [0.902, 0.904] | 0.867 [0.864, 0.87] | 0.898 [0.897, 0.899] | 0.863 [0.860, 0.866] | 0.960 [0.959, 0.960] | 0.929 [0.926, 0.931] |
−48 | −42 | −36 | −30 | −24 | −18 | −12 | −6 | |
---|---|---|---|---|---|---|---|---|
ADA | 0.806 [0.801, 0.811] | 0.816 [0.811, 0.82] | 0.819 [0.815, 0.824] | 0.824 [0.819, 0.83] | 0.823 [0.817, 0.829] | 0.826 [0.82, 0.831] | 0.857 [0.849, 0.865] | 0.868 [0.857, 0.879] |
DT | 0.737 [0.733, 0.742] | 0.736 [0.730, 0.742] | 0.749 [0.743, 0.755] | 0.737 [0.731, 0.742] | 0.723 [0.715, 0.731] | 0.733 [0.727, 0.740] | 0.716 [0.706, 0.726] | 0.723 [0.709, 0.738] |
GB | 0.884 [0.881, 0.887] | 0.891 [0.888, 0.894] | 0.894 [0.891, 0.898] | 0.894 [0.890, 0.899] | 0.891 [0.886, 0.896] | 0.889 [0.884, 0.894] | 0.896 [0.889, 0.904] | 0.914 [0.904, 0.923] |
KNN | 0.935 [0.933, 0.938] | 0.934 [0.931, 0.936] | 0.938 [0.935, 0.941] | 0.932 [0.93, 0.935] | 0.931 [0.927, 0.935] | 0.928 [0.923, 0.933] | 0.918 [0.911, 0.925] | 0.921 [0.911, 0.931] |
LogR | 0.733 [0.729, 0.737] | 0.74 [0.735, 0.744] | 0.749 [0.744, 0.754] | 0.753 [0.746, 0.759] | 0.761 [0.755, 0.768] | 0.781 [0.773, 0.788] | 0.799 [0.788, 0.809] | 0.826 [0.813, 0.839] |
NB | 0.747 [0.741, 0.752] | 0.758 [0.754, 0.763] | 0.767 [0.761, 0.773] | 0.767 [0.760, 0.774] | 0.765 [0.757, 0.773] | 0.774 [0.767, 0.782] | 0.813 [0.803, 0.823] | 0.854 [0.839, 0.87] |
RandF | 0.921 [0.918, 0.923] | 0.923 [0.921, 0.926] | 0.925 [0.922, 0.928] | 0.924 [0.921, 0.928] | 0.920 [0.915, 0.924] | 0.918 [0.914, 0.923] | 0.918 [0.911, 0.924] | 0.934 [0.924, 0.943] |
SVM | 0.929 [0.926, 0.931] | 0.928 [0.926, 0.931] | 0.931 [0.928, 0.934] | 0.929 [0.926, 0.932] | 0.931 [0.927, 0.936] | 0.931 [0.927, 0.935] | 0.935 [0.930, 0.941] | 0.950 [0.941, 0.958] |
Model | Cost Function | Estimators |
---|---|---|
ADA | Exponential loss | 50 |
DT | Gini impurity | - |
GB | Log likelihood | 100 |
KNN * | - | - |
LogR | Cross entropy | - |
NB | Negative point log-likelihood | - |
RandF | Gini impurity | 100 |
SVM | Hinge loss | - |
Model | Split Criterion | Learner | Max Estimators | Max Depth |
---|---|---|---|---|
ADA | Exponential loss | Decision Tree | 50 | 1 |
GB | MSE | Decision Tree | 100 | 3 |
RandF | Gini impurity | Decision Tree | 100 | 1000 |
References
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-Onset Sepsis in Very Low Birth Weight Neonates: The Experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.F.; Fairchild, K. HeRO monitoring in the NICU: Sepsis detection and beyond. Infant 2013, 9, 187–191. [Google Scholar]
- Fairchild, K.D.; Lake, D.E.; Kattwinkel, J.; Moorman, J.R.; Bateman, D.A.; Grieve, P.G.; Isler, J.R.; Sahni, R. Vital signs and their cross-correlation in sepsis and NEC: A study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr. Res. 2017, 81, 315. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Moorman, J.R.; Carlo, W.A.; Kattwinkel, J.; Schelonka, R.L.; Porcelli, P.J.; Navarrete, C.T.; Bancalari, E.; Aschner, J.L.; Walker, M.W.; Perez, J.A.; et al. Mortality reduction by heart rate char-acteristic monitoring in very low birth weight neonates: A randomized trial. J. Pediatr. 2011, 159, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.R.; King, W.E.; Sinkin, R.A.; Lake, D.E.; Carlo, W.A.; Schelonka, R.L.; Porcelli, P.J.; Navarrete, C.T.; Bancalari, E.; Aschner, J.L.; et al. Neonatal Intensive Care Unit Length of Stay Reduction by Heart Rate Characteristics Monitoring. J. Pediatr. 2018, 198, 162–167. [Google Scholar] [CrossRef]
- Cabrera-Quiros, L.; Kommers, D.M.; Wolvers, M.K.M.; Oosterwijk, L.M.; Arents, N.; van der Sluijs-Bens, J.; Cottaar, E.J.E.; Andriessen, P.M.; van Pul, C. Prediction of Late-Onset Sepsis in Preterm Infants Using Monitoring Signals and Machine Learning. Crit. Care Explor. 2021, 3, e0302. [Google Scholar] [CrossRef]
- Leon, C.; Carrault, G.; Pladys, P.; Beuchee, A. Early Detection of Late Onset Sepsis in Premature Infants Using Visibility Graph Analysis of Heart Rate Variability. IEEE J. Biomed. Health Inform. 2020, 25, 1006–1017. [Google Scholar] [CrossRef]
- Gomez, R.; Garcia, N.; Collantes, G.; Ponce, F.; Redon, P. Development of a Non-Invasive Procedure to Early Detect Neonatal Sepsis using HRV Monitoring and Machine Learning Algorithms. In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; pp. 132–137. [Google Scholar] [CrossRef]
- Fleuren, L.M.; Klausch, T.L.T.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.J.; Thoral, P.; Ercole, A.; et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. Intensiv. Care Med. 2020, 46, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.P.; Moorman, J.R. Toward the Early Diagnosis of Neonatal Sepsis and Sepsis-Like Illness Using Novel Heart Rate Analysis. Pediatrics 2001, 107, 97–104. [Google Scholar] [CrossRef]
- Griffin, M.P.; O’Shea, T.M.; Bissonette, E.A.; Harrell, F.E.; Lake, D.E.; Moorman, J.R. Ab-normal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr. Res. 2003, 53, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Moorman, J.; Lake, D.; Griffin, M. Heart Rate Characteristics Monitoring for Neonatal Sepsis. IEEE Trans. Biomed. Eng. 2005, 53, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.A.; Fairchild, K.D. Predictive monitoring for sepsis and necrotizing enterocolitis to prevent shock. Semin. Fetal Neonatal Med. 2015, 20, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Honoré, A.; Forsberg, D.; Adolphson, K.; Chatterjee, S.; Jost, K.; Herlenius, E. Vital sign-based detection of sepsis in neonates using machine learning. Acta Paediatr. 2023, 112, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Masino, A.J.; Harris, M.C.; Forsyth, D.; Ostapenko, S.; Srinivasan, L.; Bonafide, C.; Balamuth, F.; Schmatz, M.; Grundmeier, R.W. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE 2019, 14, e0212665. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Kommers, D.; Oosterwijk, L.; Feijs, L.; van Pul, C.; Andriessen, P. Predicting Neonatal Sepsis Using Features of Heart Rate Variability, Respiratory Characteristics, and ECG-Derived Estimates of Infant Motion. IEEE J. Biomed. Health Inform. 2019, 24, 681–692. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Janardhanan, P.; Heena, L.; Sabika, F. Effectiveness of Support Vector Machines in Medical Data mining. J. Commun. Softw. Syst. 2015, 11, 25–30. [Google Scholar] [CrossRef]
- Khamis, H.S.; Cheruiyot, K.W.; Kimani, S. Application of k-nearest neighbour classification in medical data mining. Int. J. Inf. Commun. Technol. Res. 2014, 4, 121–128. [Google Scholar]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Stone, M.L.; Tatum, P.M.; Weitkamp, J.-H.; Mukherjee, A.B.; Attridge, J.; McGahren, E.D.; Rodgers, B.M.; Lake, D.E.; Moorman, J.R.; Fairchild, K.D. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis. J. Perinatol. 2013, 33, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perri, A.; Barone, G.; Iannotta, R.; Bottoni, A.; Tiberi, E.; Zecca, E. Perfusion Index: A Noninvasive Tool for Clinical Decision in Neonates with Suspected Sepsis? J. Pediatr. Infect. Dis. 2018, 13, 247–251. [Google Scholar] [CrossRef]
- Available online: https://github.com/Aura-healthcare/hrv-analysis (accessed on 1 April 2021).
- Available online: https://docs.scipy.org/doc/scipy/reference/stats.html (accessed on 1 April 2021).
- Kamen, P.W.; Krum, H.; Tonkin, A.M. Poincare plot of heart rate variability allows quanti-tative display of parasympathetic nervous activity in humans. Clin. Sci. 1996, 91, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Van Leeuwen, P.; Geue, D.; Hatzmann, W.; Grönemeyer, D. Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Med. Biol. Eng. Comput. 2005, 43, 481–486. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jolliffe, I.T. A note on the use of principal components in regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1982, 31, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Garavand, A.; Salehnasab, C.; Behmanesh, A.; Aslani, N.; Zadeh, A.H.; Ghaderzadeh, M. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms. J. Healthc. Eng. 2022, 2022, 5359540. [Google Scholar] [CrossRef]
- Sadoughi, F.; Ghaderzadeh, M. A hybrid particle swarm and neural network approach for detection of prostate cancer from benign hyperplasia of prostate. Stud. Health Technol. Inform. 2014, 205, 481–485. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Aria, M. Management of COVID-19 Detection Using Artificial Intelligence in 2020 Pandemic. In Proceedings of the 5th International Conference on Medical and Health Informatics (ICMHI ’21), Kyoto, Japan, 14–16 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Koppens, H.J.; Onland, W.; Visser, D.H.; Denswil, N.P.; van Kaam, A.H.; Lutterman, C.A. Heart Rate Characteristics Monitoring for Late-Onset Sepsis in Preterm Infants: A Systematic Review. Neonatology 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
LogR | NB | DT | RandF | KNN | SVM | ADA | GB | |
---|---|---|---|---|---|---|---|---|
Leon et al. (2020) [8] | X | X | X | X | X | |||
Joshi et al. (2020) [17] | X | |||||||
Cabrera et al. (2021) [7] | X | X | X | |||||
Gomez et al. * (2019) [9] | X | X | X | X | X | X | X |
LogR | NB | DT | RandF | |
---|---|---|---|---|
Leon et al. (2020) [8] | X | X | X | |
Joshi et al. (2020) [17] | X | |||
Cabrera et al. (2021) [7] | X | X | ||
Gomez et al. * (2019) [9] | X | X | X | X |
LOS | Control | Sign. | |
---|---|---|---|
n | 14 | 25 | |
Birthweight (gram) | 1140 (770–1700) | 1695 (1142–3290) | * |
Apgar 1 min | 6 (4–7) | 7 (5–8) | N.S. |
Apgar 5 min | 8 (7–9) | 8 (7–9) | N.S. |
Apgar 10 min | 8 (8–8) | 8 (8–9) | N.S. |
Gestational age (weeks) | 28 (25–32) | 31 (29–38) | * |
Female | 11 (23.9%) | 4 (8.7%) | N.S. |
Twins | 4 (8.7%) | 3 (6.5%) | N.S. |
Died | 2 (14.3%) | 3 (12%) | N.S. |
Age at start antibiotics (days) | 15 (8–22) |
Fit Time | Train Accuracy | Test Accuracy | Train Precision | Test Precision | Train Recall | Test Recall | Train AUROC | Test AUROC | |
---|---|---|---|---|---|---|---|---|---|
ADA | 0.519 [0.516, 0.521] | 0.899 [0.897, 0.9] | 0.865 [0.861, 0.868] | 0.899 [0.897, 0.9] | 0.864 [0.86, 0.868] | 0.899 [0.897, 0.9] | 0.865 [0.861, 0.868] | 0.966 [0.966, 0.967] | 0.936 [0.933, 0.939] |
DT | 0.109 [0.107, 0.11] | 1.0 [1.0, 1.0] | 0.842 [0.839, 0.846] | 1.0 [1.0, 1.0] | 0.843 [0.839, 0.847] | 1.0 [1.0, 1.0] | 0.842 [0.839,0.846] | 1.0 [1.0, 1.0] | 0.831 [0.827, 0.836] |
GB | 2.249 [2.236, 2.262] | 0.942 [0.941, 0.943] | 0.899 [0.896, 0.902] | 0.944 [0.943, 0.945] | 0.902 [0.899, 0.905] | 0.942 [0.941, 0.943] | 0.899 [0.896, 0.902] | 0.988 [0.988, 0.989] | 0.963 [0.961, 0.965] |
KNN | 0.023 [0.023, 0.023] | 0.937 [0.935, 0.938] | 0.898 [0.895, 0.9] | 0.937 [0.936, 0.938] | 0.898 [0.896, 0.9] | 0.937 [0.935, 0.938] | 0.898 [0.895, 0.9] | 0.985 [0.984, 0.985] | 0.95 [0.948, 0.952] |
LogR | 0.021 [0.019, 0.022] | 0.748 [0.747, 0.749] | 0.743 [0.74, 0.746] | 0.744 [0.743, 0.745] | 0.739 [0.735, 0.742] | 0.748 [0.747, 0.749] | 0.743 [0.74, 0.746] | 0.794 [0.793, 0.795] | 0.782 [0.779, 0.786] |
NB | 0.005 [0.005, 0.005] | 0.702 [0.699, 0.704] | 0.7 [0.694, 0.705] | 0.702 [0.7, 0.705] | 0.699 [0.693, 0.705] | 0.702 [0.699, 0.704] | 0.7 [0.694, 0.705] | 0.742 [0.74, 0.744] | 0.734 [0.729, 0.74] |
RandF | 1.145 [1.139, 1.152] | 1.0 [1.0, 1.0] | 0.919 [0.916, 0.922] | 1.0 [1.0, 1.0] | 0.922 [0.919, 0.924] | 1.0 [1.0, 1.0] | 0.919 [0.916, 0.922] | 1.0 [1.0, 1.0] | 0.973 [0.972, 0.975] |
SVM | 1.220 [1.216, 1.225] | 0.921 [0.92, 0.922] | 0.891 [0.888, 0.894] | 0.924 [0.923, 0.925] | 0.894 [0.891, 0.897] | 0.921 [0.92, 0.922] | 0.891 [0.888, 0.894] | 0.974 [0.974, 0.975] | 0.951 [0.949, 0.954] |
−48 | −42 | −36 | −30 | −24 | −18 | −12 | −6 | |
---|---|---|---|---|---|---|---|---|
ADA | 0.936 [0.933, 0.939] | 0.939 [0.936, 0.941] | 0.940 [0.938, 0.943] | 0.938 [0.936, 0.941] | 0.935 [0.932, 0.938] | 0.931 [0.926, 0.935] | 0.931 [0.925, 0.936] | 0.934 [0.926, 0.943] |
DT | 0.831 [0.827, 0.836] | 0.827 [0.823, 0.831] | 0.817 [0.813, 0.822] | 0.808 [0.802, 0.813] | 0.805 [0.798, 0.813] | 0.796 [0.786, 0.805] | 0.784 [0.775, 0.793] | 0.792 [0.778, 0.806] |
GB | 0.963 [0.961, 0.965] | 0.963 [0.962, 0.965] | 0.963 [0.961, 0.965] | 0.960 [0.958, 0.962] | 0.959 [0.956, 0.962] | 0.953 [0.949, 0.956] | 0.948 [0.943, 0.952] | 0.957 [0.950, 0.965] |
KNN | 0.950 [0.948, 0.952] | 0.947 [0.945, 0.949] | 0.948 [0.946, 0.951] | 0.942 [0.939, 0.945] | 0.939 [0.935, 0.943] | 0.926 [0.921, 0.931] | 0.918 [0.912, 0.924] | 0.928 [0.921, 0.935] |
LogR | 0.782 [0.779, 0.786] | 0.793 [0.788, 0.797] | 0.810 [0.806, 0.814] | 0.818 [0.813, 0.823] | 0.821 [0.816, 0.827] | 0.822 [0.813, 0.830] | 0.858 [0.850, 0.865] | 0.915 [0.908, 0.922] |
NB | 0.734 [0.729, 0.740] | 0.737 [0.731, 0.742] | 0.742 [0.737, 0.747] | 0.746 [0.737, 0.754] | 0.750 [0.743, 0.758] | 0.764 [0.757, 0.771] | 0.792 [0.784, 0.801] | 0.810 [0.796, 0.824] |
RandF | 0.973 [0.972, 0.975] | 0.971 [0.970, 0.973] | 0.970 [0.968, 0.972] | 0.966 [0.964, 0.968] | 0.964 [0.961, 0.966] | 0.955 [0.952, 0.959] | 0.947 [0.943, 0.952] | 0.956 [0.948, 0.963] |
SVM | 0.951 [0.949, 0.954] | 0.948 [0.947, 0.95] | 0.951 [0.949, 0.954] | 0.948 [0.945, 0.951] | 0.951 [0.948, 0.954] | 0.943 [0.939, 0.947] | 0.944 [0.939, 0.949] | 0.962 [0.955, 0.969] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garstman, A.G.; Rodriguez Rivero, C.; Onland, W. Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System. Appl. Sci. 2023, 13, 9049. https://doi.org/10.3390/app13169049
Garstman AG, Rodriguez Rivero C, Onland W. Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System. Applied Sciences. 2023; 13(16):9049. https://doi.org/10.3390/app13169049
Chicago/Turabian StyleGarstman, Arno G., Cristian Rodriguez Rivero, and Wes Onland. 2023. "Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System" Applied Sciences 13, no. 16: 9049. https://doi.org/10.3390/app13169049