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Abstract: A significant proportion of babies that are admitted to the neonatal intensive care unit
(NICU) suffer from late onset sepsis (LOS). In order to prevent mortality and morbidity, the early
detection of LOS is of the utmost importance. Recent works have found that the use of machine
learning techniques might help detect LOS at an early stage. Some works have shown that linear
methods (i.e., logistic regression) display a superior performance when predicting LOS. Nevertheless,
as research on this topic is still in an early phase, it has not been ruled out that non-linear machine
learning (ML) techniques can improve the predictive performance. Moreover, few studies have
assessed the effect of parameters other than heart rate variability (HRV). Therefore, the current study
investigates the effect of non-linear methods and assesses whether other vital parameters such as
respiratory rate, perfusion index, and oxygen saturation could be of added value when predicting
LOS. In contrast with the findings in the literature, it was found that non-linear methods showed a
superior performance compared with linear models. In particular, it was found that random forest
performed best (AUROC: 0.973), 24% better than logistic regression (AUROC: 0.782). Nevertheless,
logistic regression was found to perform similarly to some non-linear models when trained with
a short training window. Furthermore, when also taking training time into account, K-Nearest
Neighbors was found to be the most beneficial (AUROC: 0.950). In line with the literature, we found
that training the models on HRV features yielded the best results. Lastly, the results revealed that
non-linear methods demonstrated a superior performance compared with linear methods when
adding respiratory features to the HRV feature set, which ensured the greatest improvement in terms
of AUROC score.

Keywords: heart rate variability; respiratory frequency; perfusion index; late onset sepsis; premature
infants; neonates; predictive monitoring; machine learning

1. Introduction

Approximately 11% of all babies are born preterm, of which 15.6% are born before
32 weeks of gestation and are admitted to the neonatal intensive care unit (NICU). These
preterm infants are extremely vulnerable, with a high incidence of mortality and morbidity,
especially due to late onset sepsis (LOS), which mostly occurs beyond the third day of
life [1]. Prevention and early detection of this life-threatening bloodstream infection is of
the utmost importance, particularly because this condition is not only associated with long-
term morbidity and mortality, but it also results in increased costs resoling from prolonged
hospitalization [2]. Directly after birth, preterm infants are continuously monitored and
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often need intensive and prolonged treatment to support their vital functions. However,
early signs of infectious episodes are non-specific and lead to both over- and undertreatment
with antibiotics, which may disrupt normal microbiome development and can lead to
antibiotic resistance [2]. Moreover, even when there is a clear indication of LOS and
blood cultures are consequently taken, it can take up to 48 h before a result is available,
which means that valuable time is lost when treating sepsis. Lastly, the results of blood
cultures are prone to false positives due to contamination [3,4]. Therefore, a real-time
non-invasive continuous monitoring system using an algorithm detecting a decrease in
heart rate variability might be a useful early warning system for LOS in preterm infants.
Currently, some hospitals are using such systems as a non-invasive tool to identify several
threatening conditions at an early stage. One example of such a system is the heart
rate observation system (HeRO). Among other conditions (e.g., necrotizing enterocolitis,
meningitis, respiratory decomposition, brain pathology, and death), this system is capable
of identifying several LOS prior to patient deterioration [2]. According to studies on the
clinical effectiveness of this system, it has been shown that the HeRO monitor effectuated a
significant decrease in the amount of mortality (2%) [5] and length of stay (3.2 days) [6].
Although these monitors have been shown to be quite effective, the algorithm is based
on a linear model (i.e., logistic regression) [2], which might ignore possible non-linearities
that are present in the data. Because of the complexity of LOS, it has been hypothesized
that capturing these non-linearities with more advanced models might improve the LOS
detection performance of the algorithm. Moreover, these monitors only use features derived
from heart rate, and do not use other vital parameters such as perfusion index and oxygen
saturation. Interestingly, a recent study using various ML methods found that logistic
regression is quite robust and, in some cases, even superior with respect to some non-
linear methods when predicting LOS [7,8]. However, the current literature is very scarce
with respect to the assessment of non-linear methods when predicting LOS. For instance,
adaptive boosting has not been assessed yet in the context of early LOS prediction, only
in EOS (i.e., early onset sepsis) prediction [9]. Moreover, most studies have focused on
ML-based methods to predict sepsis in adults and not in neonates [10]. Thus, although
previous research has pointed out that mainly linear machine learning models are superior
when predicting LOS, we hypothesized that some non-linear models could be potentially
valuable when predicting non-linear dependencies in the data. Lastly, previous studies
have not used all of the parameters that are available in NICU monitoring, as features
derived from heart rate and respiratory variability are considered to be most valuable when
predicting LOS [7,11–14]. To the best of our knowledge, perfusion index (PFI) and oxygen
saturation (SpO2) have not yet been assessed in the context of LOS prediction. Thus, this
study aims to assess the effect of using several non-linear ML methods, using features
derived from vital parameters on the performance of LOS prediction in preterm infants. To
do so, the following research questions are assessed:

• To what extent is the predictive performance of non-linear supervised ML mod-
els superior compared with linear supervised ML models when predicting LOS in
preterm infants?

• What vital parameters, other than heart rate, are of added value when predicting LOS?

In the following sections, we first discuss the related works, where we describe the
models and features that are considered valuable in the literature. Second, we describe the
pre-processing of the data and the different variants of features and models that are used.
Finally, we present an evaluation of the models used on different variants of the feature set
and compare them with other results in the literature.

2. Literature Review
2.1. Models

The use of non-linear ML methods when predicting LOS in neonates is still a relatively
novel and undiscovered subject within the literature. One of the reasons for this is that
studies have focused on sepsis prediction in adults more than in neonates [10,15,16]. Inter-
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estingly, when both linear (e.g., logistic regression) and non-linear ML methods (e.g., ran-
dom forest and support vector machines) were assessed for a cohort of LOS and non-LOS
patients, it was found that logistic regression displayed a superior performance when
predicting LOS [8]. Furthermore, Cabrera et al. (2021) [7] also showed that logistic regres-
sion performed best compared with several other ML models (Naive Bayes and k-nearest
neighbors). This finding explains the success of the commercial HeRO tool, which also
uses the logistic regression model [2]. As mentioned, this system has been shown to reduce
the amount of neonatal mortality and has successfully been deployed in some hospitals
as a noninvasive tool monitoring tool. Nevertheless, the results of the above-mentioned
studies [7,8] should be interpreted with caution due to the small sample sizes used, which
negatively affect the overall generalizability. Moreover, a study that investigated the effect
of non-linear methods when predicting EOS (i.e., early onset sepsis) found evidence that
ensemble methods (i.e., adaptive boosting) were the mist successful predictors of EOS [9].
Thus, given the fact that EOS and LOS are similar phenomena, one could argue that the
use of ensemble methods (i.e., which are inherently non-linear) might also be promising
when predicting LOS.

Moreover, as LOS is related to many features derived from various parameters
(e.g., HRV and respiratory rate), it is highly likely that non-linearities in the data exist.
Within a binary classification problem, this means that the data points are not linearly sepa-
rable in the two categories (i.e., LOS and non-LOS). As a result, models that aim to classify
these data points in two categories require non-linear properties to sufficiently discriminate
between classes. For instance, one model that can capture non-linearities within data is the
random forest model, as it uses various trees to categorize the data, instead of using a linear
decision boundary such as logistic regression. In total, eight machine learning methods are
assessed: logistic regression (LogR), naive Bayes (NB), decision trees (DT), random forest
(RandF), K-nearest neighbors (KNN), support vector machine (SVM), adaptive boosting
(ADA), and gradient boosting (GB). As mentioned, LogR is considered as the baseline
model as it is generally considered to be the best performing model in the literature [7,8,17].
The models can be roughly categorized into three groups: linear ML methods (LogR and
NB), conventional ML methods (NB, DT, KNN, and SVM), and ensemble ML methods
(RandF, ADA, and GB). The last two groups, conventional and ensemble ML methods, are
both considered non-linear models.

Table 1 presents an overview of all of the ML methods that have been assessed in the
literature. KNN is the simplest model [18]. This model assumes that similar data points
are near to each other. Based on this assumption, the KNN model classifies the data based
on its k-nearest data points (i.e., neighbors). Furthermore, the SVM model classifies the
data by fitting a hyperplane to the data [19]. If the data are not separable in the given
feature space by the hyperplane, SVM performs a so-called “kernel trick”, where the data
are transformed to a feature space in which they are separable again. Both KNN and SVM
have been shown to perform relatively robustly in medical settings [20,21]. Lastly, the DT
model predicts the value of a target variable by learning simple decision rules inferred
from the data features. These rules are mostly decided on by the Gini Impurity metric. This
metric indicates the probability of misclassifying an observation given a certain split within
the tree. Subsequently, the DT model decides its splits (i.e., nodes) upon the split with the
lowest Gini value. The greatest advantage of the DT model is that it uses a “white box”
model: this allows the user to fully interpret the decisions of the model. As a result, the
DT model is considered to be very useful within a medical context [22]. However, a great
disadvantage of DT is that it typically strongly overfits the training data, which makes the
model less robust to unseen observations (i.e., the test data).
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Table 1. Overview of all ML models that have been assessed by recent literature.

LogR NB DT RandF KNN SVM ADA GB

Leon et al.
(2020) [8] X X X X X

Joshi et al.
(2020) [17] X

Cabrera et al.
(2021) [7] X X X

Gomez et al. *
(2019) [9] X X X X X X X

* this work assessed EOS instead of LOS.

The overview in Table 1 indicates that it is mainly the ensemble methods of ADA and
GB that have not yet been assessed. Ensemble methods use multiple models (i.e., “learn-
ers”), typically decision trees. These models base their predictions on the majority pre-
dictions of each individual model within the ensemble, so-called “voting”. For instance,
RandF is an ensemble method that is constructed by a multitude of decision trees at the
training time [23]. The predictive performance of the ensemble models is often better
than what would be obtained from a single model alone. However, the interpretability of
ensemble methods is often poor when compared with conventional methods, resulting in a
“black box” model. Furthermore, ensemble models are often less prone to overfit towards
the training data, as the multiple models within the ensemble (i.e., “learners”) make them
more robust towards unseen data.

Although RandF, ADA, and GB all rely on the principle of multiple learners, there are
some key differences. For instance, while RandF trains its learners on a randomly selected
subset of the data (i.e., “bagging”), ADA includes all features in each decision tree. As a
result, ADA is more affected by noise (e.g., unimportant features) [24]. Moreover, ADA
includes the principle of “boosting”. Boosting relies on the principle that during each
learning iteration, the learners (i.e., decision trees) that perform bad incrementally receive
less votes. This way, the learners that are performing well become more important with
respect to the predictions, which typically results in a higher accuracy. Another important
difference between the two models is that ADA only uses a depth of one (i.e., two leaves)
in each of its decision trees, while in RandF, the optimal number of leaves is decided by
the user (often using grid search cross validation). As a result, a disadvantage of RandF is
that there is more hyperparameter tuning necessary. Lastly, GB [25] can be considered as a
similar model to ADA; both these models rely strongly on the aforementioned boosting
principle. However, while ADA only uses a depth of one within its trees (i.e., learners), GB
uses a depth of more than one. Typically, the depth is set to a maximum of 8 to 32 leaves.

2.2. Features

According to the literature, the features derived from heart rate are most valuable
when predicting LOS [11–14]. This is, however, because heart rate is regulated by the
autonomic nervous system and is highly influenced by immunologic and cardiovascular
changes. Research in both adults and preterm infants indicates that low heart rate variability
is often succeeded by a sepsis episode and occurs often before obvious clinical signs are
recognized [26]. This abnormal pattern in heart rate serves as a potential marker or
indicator of impending sepsis in these infants. The study suggests that monitoring heart
rate characteristics could potentially aid in the early identification of sepsis, allowing for
prompt intervention and treatment. Moreover, it has been shown that preterm infants
present an overall transient deceleration in heart rate hours leading up to the diagnosis
of sepsis [26]. Other variables such as blood pressure, temperature, respiratory rate, and
oxygen saturation are considered to be less valuable when predicting sepsis. According to
Sullivan et al. (2015) [14], this is due to several reasons. First, blood pressure is monitored
by arterial catheters only at the beginning of the NICU stay and often not at the time during
which the infant can develop sepsis. Second, temperature is not a trustful measure as
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incubators automatically adjust environmental temperature to keep the infants temperate
within normal range. Third, respiratory rate is often confounded by inaccuracy of the chest
impedance signal. Lastly, acute changes in oxygen saturation have not yet been thoroughly
studied for their association with sepsis.

While the impact of acute changes in oxygen saturation on sepsis is an area of interest,
it has not yet been extensively investigated. Oxygen saturation levels can fluctuate rapidly
during critical illness, including sepsis. However, the specific relationship between acute
changes in oxygen saturation and the presence or progression of sepsis remains largely
unexplored. Further research is needed to elucidate this association and understand the
potential role of oxygen saturation as a clinical marker or predictor of sepsis, as studies
have shown that an increased heart rate deceleration increased respiratory instability [17].
Furthermore, a study by Fairchild et al. (2017) [3] showed that a cross-correlation index
between heart rate and oxygen saturation (SpO2) proved to be the best illness predictor
for the preclinical detection of sepsis. Next, Sullivan et al. (2015) [14] indicated that heart
rate is strongly modulated by respiration and blood pressure changes. This is in line with
the study of Cabrera et al. (2021) [7], who found both respiration and heart rate variability
features to be of the importance when predicting LOS using ML.

Lastly, the perfusion index (PFI) (i.e., the ratio of the pulsatile blood flow to the non-
pulsatile static blood flow) is considered a useful parameter when predicting late onset
sepsis [27]. Thus, although these features are less convincing according to the literature
compared with HRV features, we considered them to be promising and included them in
this study. Interestingly, to the best of our knowledge, no literature is available yet of the
use of PFI and SpO2 as predictors of LOS in preterm infants in a machine learning context.
In Table 2, we present an overview of the vital parameters used in the recent literature of
studies involving LOS prediction using ML.

Table 2. Overview of vital parameters used by recent studies involving LOS prediction using
ML. heart rate variability (HRV), respiratory frequency (RF), perfusion index (PFI), and oxygen
saturation (SpO2).

LogR NB DT RandF

Leon et al. (2020) [8] X X X
Joshi et al. (2020) [17] X

Cabrera et al. (2021) [7] X X
Gomez et al. * (2019) [9] X X X X

* this work assessed EOS instead of LOS.

3. Methods
3.1. Patient Population

In total, 46 NICU patients from the Emma Children’s Hospital Amsterdam UMC were
de-identified and made available for this project, among which 15 were LOS patients and
31 were control patients. The LOS patients were diagnosed as such when there was an
administration of antibiotics for that patient beyond the third day of life. Thus, this group
also included infants that were merely found to be clinically suspected of LOS without a
positive blood culture. Patients from which the blood samples were taken in the first 48 h
of recording were removed as LOS typically occurs beyond the first 72 h of life. Similarly,
control patients for whom the duration of antibiotic administration was less than 48 h were
also removed. In total, seven patients were found to meet these exclusion criteria, among
which were one LOS patient and six control patients. Therefore, a cohort of 39 patients
were considered suitable for the study.

The population characteristics are shown in Table 3. The categorical variables are
presented as the number of cases and the corresponding percentages. The continuous
variables are presented as the median and interquartile range. For categorical variables,
we performed a significance test using the Chi-squared test, and for continuous variables
we used the Mann−Whitney U test. Similar to the study of Leon et al. (2020) [8], the
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population characteristics showed that the LOS patients were significantly more premature
than the control group. Moreover, the LOS group weighed significantly less than the control
group. LOS occurred typically between the 8th and 22nd day of life, with a median value
of 15 days.

Table 3. Study population characteristics.

LOS Control Sign.

n 14 25
Birthweight (gram) 1140 (770–1700) 1695 (1142–3290) *

Apgar 1 min 6 (4–7) 7 (5–8) N.S.
Apgar 5 min 8 (7–9) 8 (7–9) N.S.

Apgar 10 min 8 (8–8) 8 (8–9) N.S.
Gestational age (weeks) 28 (25–32) 31 (29–38) *

Female 11 (23.9%) 4 (8.7%) N.S.
Twins 4 (8.7%) 3 (6.5%) N.S.
Died 2 (14.3%) 3 (12%) N.S.

Age at start antibiotics (days) 15 (8–22)
* p < 0.05, N.S. Non-significant.

The sample size of the study population could also play a role in the differences
in p-values. If there is a relatively small number of infants with extreme birth weights
(e.g., extremely low birth weight or extremely high birth weight) in this study, the statistical
power to detect an association with sepsis may be reduced. This could result in a higher
p-value for birth weight compared with gestational age if the latter has a more evenly
distributed range within the sample. However, if there are differences in the distribution
between birth weight and gestational age groups, the p-values may differ accordingly,
as premature birth can have implications on the baby’s immune system development
and susceptibility to infections. As these factors are biologically distinct, they may have
different effects on the likelihood of developing sepsis. This could result in a higher p-value
for birth weight compared to gestational age if the latter has a more evenly distributed
range within the sample.

3.2. Signal Processing

For each infant, high resolution time series data of the continuous vital parameters
(e.g., heart rate, perfusion index, oxygen saturation, and respiratory rate) were recorded
using the Philips MPG90 monitor. After extraction from the monitor, all of the raw vital
parameter data were stored in a data warehouse. Within each segment, we discarded all
null (i.e., ‘0′) and missing values. To derive features, the data were segmented using a
30-min sliding window, with no overlap. From each of these resulting time segments, a
plethora of features were calculated for each vital parameter, as described in Table A1 in
the Appendix A. The HRV features were calculated using the AURA healthcare API [28].
The features from the other vital parameters were calculated using the SciPy API [29].

3.3. Feature Generation

For each vital parameter (i.e., Heart frequency, respiratory frequency, perfusion in-
dex, and oxygen saturation), a plethora of features were calculated (see Table A1 in the
Appendix A for an overview). In this section, each feature set is briefly described.

As mentioned, features derived from heart frequency are considered to have the most
predictive value. These features are known as heart rate variability (HRV) features. All HRV
features were derived from the interbeat intervals, also known as the normal-to-normal
(nn) intervals. To quantify heart rate variability, roughly three types of features can be
extracted from the nn-intervals.
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3.3.1. Time-Domain Measurements

These parameters were calculated by deriving several statistics from the inter heartbeat
intervals, known as the normal-to-normal intervals. These intervals are defined as the time
between each successive heartbeat. Metrics were derived using the mean (mean_nn), the
standard deviation, the root means square, the minimum (min_nn), maximum (max_nn),
and the differences between the minimum and maximum (range_nn).

3.3.2. Frequency-Domain Measurements

In the frequency domain, we calculated the features that were derived from the
frequency range bands of each segment, which reflected various ranges: very low frequency
(vLF), low frequency (LF), and high frequency (HF). For instance, LF is derived from the
spectral power density with a frequency range band of 0.04–0.15 Hz. The HF feature is
derived from the range band of 0.15–0.40 Hz. Interestingly, it has been shown that LF
is related to the sympathetic nervous system, whereas HF reflects the parasympathetic
nervous system [6]. As a result, the LF/HF ratio can be calculated, which provides insight
into the amount of sympathetic and parasympathetic activity.

3.3.3. Non-Linear Measurements

The non-linear parameters include sample skewness and entropy, which estimate
the level of regularity and predictability of the signal, respectively. Moreover, we can
calculate the measures from the Poincare plot. These measures reflect short- and long-
term variability. Similar to the HF feature within the frequency domain, the Poincare plot
reflects the parasympathetic nervous system in humans [30]. In addition, we considered
the factors of respiratory saturation, oxygen saturation, and perfusion index. The features
that were derived from the respiratory (RF), oxygen saturation (SpO2), and perfusion index
(PFI) time series data were processed similarly as the time-domain and non-linear domain
features previously mentioned. The features of the segments of these vital parameters were
calculated every 30 min. The first group of features was similar to the time-domain features
and included the standard deviation, mean, median, maximum, range, and maximum of
each segment. The second group of features was similar to the above-mentioned non-linear
measurements and included sample entropy and skewness.

3.4. Calibration Period

In order to assure the validity of our measurements, we calibrated each feature for each
patient. To do so, we subtracted each feature using the median of the first 48 h of recording
of the respective patient. We opted for this specific time window as Leon et al. (2020) [8]
found that this window yields the best predictive performance for both linear and non-
linear models. The use of such a period to calibrate the data is especially important as
gestational age (i.e., maturity) and birth weight were found to significantly differ in the
research population between the LOS and control group (see Table 3). It is important to
account for these factors, as they are found to significantly impact the behavior of the param-
eters. For instance, Lange et al. (2005) [31] found that heart rate is significantly influenced
by gestational age. By calibrating the data, we were able to control these differences.

3.5. Data Analysis

For the LOS group, all of the segments before t0 were selected. t0 is defined as the
moment the blood samples were taken. Subsequently, all the segments of the LOS patients
were labeled as infected. For the control group, we selected a moment at random beyond
the third day of life as t0 (i.e., corresponding to the definition of LOS), and labelled all the
hours before t0 as infected. For this study, we only considered the segments of 48 h before
t0; thus, all the segments that were present earlier than 48 h before t0 were discarded. After
data labelling and selection, we calibrated each feature with a calibration period of 48 h.
To do so, we subtracted each feature with the median of the first 48 h of recording the
respective patients. This resulted in a calibrated dataset (∆ Features). After the calibration
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period, we normalized each feature using min−max scaling. Next, for each feature, we
calculated the significance for time intervals starting from ti = −48 h until ti = −6 h, with
6 h increments using a Mann−Whitney U. We discarded a feature if the respective feature
had one or more increments that were non-significant. We performed two methods to
overcome co-linearity. In the first method, we dropped all the features with a significant
correlation of 0.90 or higher from the calibrated feature set. This resulted in a dataset with
only significant features (∆ Significant_Features), as an example shown in Figure 1. In the
second method, we created a feature set using principal component analysis (PCA) on the
calibrated features (∆ PCA_Significant_Features). We performed the PCA analysis in such
a way that 95% of the variance in the feature set was retained. Thus, in total, two types of
datasets were created: ∆ Significant_Features and ∆ PCA_Significant_Features.
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3.6. Machine Learning

In total, eight machine learning models were assessed: logistic regression (LogR),
naive Bayes (NB), decision trees (DT), random forest (RandF), K-nearest neighbors (KNN),
support vector machine (SVM), adaptive boosting (ADA), and gradient boosting (GB). As
mentioned, LogR was considered as the baseline model as, in literature, it is generally
considered to be the best performing model [7,8,17]. As the goal of the ML model was
to either predict sepsis or LOS (i.e., “infected”) for each 30 min segment starting from
ti = −48, all of the models could be considered binary classifiers. Similar to the approach
of Gomez et al. (2019) [9], we used repeated stratified K-fold cross-validation (CV) to train
and test the models. Repeated stratified K-fold is especially useful when dealing with
imbalanced datasets, as it makes sure that each fold contains the same percentage of
positive and negative labels as in the original study population. Thus, each fold contained
roughly 36% LOS segments and 64% control segments. To avoid data leakage from the
training set to the test set within the CV procedure, we ensured that no segments of the
same patient were present in both the training and test set. As we used a four-fold CV
procedure where each procedure was repeated 10 times, 40 test and train results were
collected for each learning window. In order to ensure the reliability of the results, all of
the results were presented using a 95% confidence interval. We considered the results of
each model to be significantly different if the corresponding confidence intervals were
non-overlapping. We assessed our models mainly on the predictive performance of the area
under the receiving operator characteristic (AUROC) score. The AUROC score is suitable
for imbalanced datasets, as it does not have any bias towards models that perform well on
the minority class at the expense of the majority class [32]. Furthermore, we trained the
models on a decreasing training window: each model was trained on data from a shorter
period, starting at ti = −48 and ending at ti = −6, with 6 h increments. Because no further
hyperparameter tuning was completed, all the data were used for the CV procedure.

We opted for no further hyperparameter tuning as this did not add much value
towards the objective of this study (i.e., assess whether non-linear methods performed
better than linear methods and on which types of features). All of the modelling was
completed using the SciKit-learn library [24] within Python. The hyper-parameters as
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advised by the documentation of this library were used. In Table A5 in the Appendix A,
an overview of the cost functions is presented. For SVM, we used a “RBF” (i.e., radial
basis function) kernel and for KNN the number of neighbors was set to 5 (i.e., the default
parameters in the SciKit-learn library). In Table A6 in the Appendix A, an overview of the
hyperparameters of the ensemble models is presented. Note that the “Max Estimators”
and “Max Depth” refer to the amount of decision trees (i.e., “learners”) and depth of
the corresponding tree used in the ensemble models. However, if the ensemble reached
a perfect fit with an amount less than specified within these parameters, the learning
stopped early.

4. Results

In this section, we first present the general characteristics of each parameter before
t0 = (i.e., the moment when the blood samples were taken), by visually and statistically
inspecting the features from each vital parameter. Second, we report the prediction results
of the various ML models on the different feature sets of each vital parameter.

4.1. Feature Significance and Co-Linearity

We calculated the significance for each feature for time intervals starting from ti = −48 h
until ti = −6 h, at 6 h increments, using a Mann−Whitney U. In Figure 2, a heatmap of the
significance of each HRV feature is highlighted and Figure A6 in the Appendix A presents
a complete overview of the significance of the features from all of the vital parameters.
Interestingly, the results indicate that the significance of each feature differed over time. For
instance, Figure 2 shows that the median (median_nni) of the periods ti = −48 till ti = −30
are non-significant. Moreover, the plot shows that the entropy (entropy_nn) feature was
not significant around ti = −42 and ti = −36. For the other vital parameters, see Figure A6,
we also saw that some features were non-significant. In both PFI and SpO2, it was shown
that the mean and median of these parameters were non-significant. Moreover, we saw
that in respiratory rate (RF), the skewness (RF_skew) was non-significant. We opted to
discard all features with segments that were entirely or partly non-significant.
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After we selected the significant features, we performed a correlation analysis between
the selected features for the entire time window (i.e., t = −48 h; see Figure 3). Interestingly,
except for the PFI_mean and PFI_median features, only the HRV features were strongly
correlated (i.e., correlation higher than 0.9). In order to avoid co-linearity, which would
have inhibited us from drawing conclusions about the feature importance of the model,
the co-linearity was removed. This is achieved by randomly selecting either one of each
co-linear feature pair.
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4.2. General Behavior of Each Parameter

In, Figures 1 and A1–A5, the mean of some significant features is shown over time for
both the LOS and control patients.

The green line indicates the moment when the blood samples were taken. Interestingly,
the figures clearly indicate that not all features are linearly separable and thus are of a non-
linear nature. For instance, it was observed that the ∆ nn_20 feature (see Figure A1) scored
significantly higher for the infected patients than for the control patients for periods around
t0 =−48, but around t0 =−12 this effect was reversed. Furthermore, for the ∆ SpO2_median
feature (Figure A4), it was observed that the infected group was significantly more volatile
than the control group. Lastly, for both the ∆ RF_median and ∆ PFI_median (Figure A5), it
was observed that the infected group had much more seasonality than the control group.

4.3. Predictive Performance of the Machine Learning Models

For each model, the area under the receiving operator characteristic (AUROC) was
calculated. Moreover, we calculated the training time, accuracy ((TP + TN)/n), recall
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(TP/(TP + FN)), and precision (TP/(TP + FP)), where TP = true positive, FN = false negative,
FP = false positive. In Table 4, the results for each ML model for the entire training window
are shown ti = −48). In addition, Figure 4 shows the corresponding ROC curves for each
model. Using the entire training window (ti = −48), we found that all non-linear models
performed superior compared with the linear models. In particular, for each metric within
this training window, we found that RandF performed the best (AUROC score: 0.973) and
NB (AUROC score: 0.734) performed the worst (except for training time). Furthermore,
all models performed best on the normal dataset without any dimension reduction (i.e., ∆
Significant_Features), Figure A9.

Table 4. Predictive performance of each model for the entire training window ti = −48. The results
are presented with a 95% Confidence Interval.

Fit Time Train
Accuracy

Test
Accuracy

Train
Precision

Test
Precision

Train
Recall

Test
Recall

Train
AUROC

Test
AUROC

ADA 0.519
[0.516, 0.521]

0.899
[0.897, 0.9]

0.865
[0.861, 0.868]

0.899
[0.897, 0.9]

0.864
[0.86, 0.868]

0.899
[0.897, 0.9]

0.865
[0.861, 0.868]

0.966
[0.966, 0.967]

0.936
[0.933, 0.939]

DT 0.109
[0.107, 0.11] 1.0 [1.0, 1.0] 0.842

[0.839, 0.846] 1.0 [1.0, 1.0] 0.843
[0.839, 0.847] 1.0 [1.0, 1.0] 0.842

[0.839,0.846] 1.0 [1.0, 1.0] 0.831
[0.827, 0.836]

GB 2.249 [2.236,
2.262]

0.942
[0.941, 0.943]

0.899
[0.896, 0.902]

0.944
[0.943, 0.945]

0.902
[0.899, 0.905]

0.942
[0.941, 0.943]

0.899
[0.896, 0.902]

0.988
[0.988, 0.989]

0.963
[0.961, 0.965]

KNN 0.023
[0.023, 0.023]

0.937
[0.935, 0.938]

0.898
[0.895, 0.9]

0.937
[0.936, 0.938]

0.898
[0.896, 0.9]

0.937
[0.935, 0.938]

0.898
[0.895, 0.9]

0.985
[0.984, 0.985]

0.95
[0.948, 0.952]

LogR 0.021
[0.019, 0.022]

0.748
[0.747, 0.749]

0.743
[0.74, 0.746]

0.744
[0.743, 0.745]

0.739
[0.735, 0.742]

0.748
[0.747, 0.749]

0.743
[0.74, 0.746]

0.794
[0.793, 0.795]

0.782
[0.779, 0.786]

NB 0.005
[0.005, 0.005]

0.702
[0.699, 0.704]

0.7
[0.694, 0.705]

0.702
[0.7, 0.705]

0.699
[0.693, 0.705]

0.702
[0.699, 0.704]

0.7
[0.694, 0.705]

0.742
[0.74, 0.744]

0.734
[0.729, 0.74]

RandF 1.145
[1.139, 1.152] 1.0 [1.0, 1.0] 0.919

[0.916, 0.922] 1.0 [1.0, 1.0] 0.922
[0.919, 0.924] 1.0 [1.0, 1.0] 0.919

[0.916, 0.922] 1.0 [1.0, 1.0] 0.973
[0.972, 0.975]

SVM 1.220
[1.216, 1.225]

0.921
[0.92, 0.922]

0.891
[0.888, 0.894]

0.924
[0.923, 0.925]

0.894
[0.891, 0.897]

0.921
[0.92, 0.922]

0.891
[0.888, 0.894]

0.974
[0.974, 0.975]

0.951
[0.949, 0.954]

Bold is best performance.
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The results also show that relatively adequate results were achieved using the conven-
tional ML models, KNN and SVM, with both yielding an AUROC score of 0.950 and 0.951,
respectively, which was comparable to the best performing ensemble models (i.e., GB and
RandF). Interestingly, these models even outperformed ADA when trained on a longer
time window (ti = −48 to ti = −24; see Figure 5 and Table 5). The strongest overfitting
model was found to be the DT model, yielding a 17% lower AUROC score for the test
than the training set. The least overfitting models were found to be LogR and NB, yielding
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an AUROC score of 1% lower on the test set than on the training set. Except for DT, the
non-linear models all scored an AUROC score between 2% and 3% lower for the test.
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−48 −42 −36 −30 −24 −18 −12 −6

ADA 0.936
[0.933, 0.939]

0.939
[0.936, 0.941]

0.940
[0.938, 0.943]

0.938
[0.936, 0.941]

0.935
[0.932, 0.938]

0.931
[0.926, 0.935]

0.931
[0.925, 0.936]

0.934
[0.926, 0.943]

DT 0.831
[0.827, 0.836]

0.827
[0.823, 0.831]

0.817
[0.813, 0.822]

0.808
[0.802, 0.813]

0.805
[0.798, 0.813]

0.796
[0.786, 0.805]

0.784
[0.775, 0.793]

0.792
[0.778, 0.806]

GB 0.963
[0.961, 0.965]

0.963
[0.962, 0.965]

0.963
[0.961, 0.965]

0.960
[0.958, 0.962]

0.959
[0.956, 0.962]

0.953
[0.949, 0.956]

0.948
[0.943, 0.952]

0.957
[0.950, 0.965]

KNN 0.950
[0.948, 0.952]

0.947
[0.945, 0.949]

0.948
[0.946, 0.951]

0.942
[0.939, 0.945]

0.939
[0.935, 0.943]

0.926
[0.921, 0.931]

0.918
[0.912, 0.924]

0.928
[0.921, 0.935]

LogR 0.782
[0.779, 0.786]

0.793
[0.788, 0.797]

0.810
[0.806, 0.814]

0.818
[0.813, 0.823]

0.821
[0.816, 0.827]

0.822
[0.813, 0.830]

0.858
[0.850, 0.865]

0.915
[0.908, 0.922]

NB 0.734
[0.729, 0.740]

0.737
[0.731, 0.742]

0.742
[0.737, 0.747]

0.746
[0.737, 0.754]

0.750
[0.743, 0.758]

0.764
[0.757, 0.771]

0.792
[0.784, 0.801]

0.810
[0.796, 0.824]

RandF 0.973
[0.972, 0.975]

0.971
[0.970, 0.973]

0.970
[0.968, 0.972]

0.966
[0.964, 0.968]

0.964
[0.961, 0.966]

0.955
[0.952, 0.959]

0.947
[0.943, 0.952]

0.956
[0.948, 0.963]

SVM 0.951
[0.949, 0.954]

0.948
[0.947, 0.95]

0.951
[0.949, 0.954]

0.948
[0.945, 0.951]

0.951
[0.948, 0.954]

0.943
[0.939, 0.947]

0.944
[0.939, 0.949]

0.962
[0.955, 0.969]

Bold is best performance.

With respect to the training times of the models, RandF turned out to be a less beneficial
model. As indicated in Table 4 and Figure 5, we observed that RandF (1.145 ms) turned
out to need roughly two times more training time than ADA (0.519 ms). GB turned out
to need the most training time (2.249 ms). Moreover, we found that the SVM model
also took a relatively long time to be trained (1.220 ms). If we take both training and
predictive performance into account, KNN was shown to be the best overall performing
model (training time: 0.023 ms; AUROC: 0.950). In Table A3 in the Appendix A, we present
the predictive performance of the PCA variant of the dataset. As observed, all models
performed worse using this type of dataset. Interestingly, however, when inspecting the
relative scores of the models using this dataset, KNN (AUROC: 0.938) and SVM (AUROC:
0.929) performed best compared with the ensemble models RandF (AUROC: 0.921), ADA
(AUROC: 0.806), and GB (AUROC: 0.884).

Lastly, as we were dealing with an imbalanced dataset (i.e., 36% LOS and 64% control),
we expected that the number of false positives would be bigger than the number of false
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negatives. Nevertheless, the results show that the precision and recall scores for each model
performed equally well.

4.4. Model Feature Importance

In Figure 6, we present the feature importance of the RandF model. Interestingly and in
line with the literature [9], we observed that the HRV features were found to be significantly
important. However, we found that the most important feature did not originate from the
HRV feature set, but from the RF feature set (i.e., RF_mean). Furthermore, it was observed
that perfusion index (PFI) and oxygen saturation (SpO2) were the least valued features.
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4.5. Results for Different Training Windows

Figure 7 and Table 5 present the AUROC scores for the test set for a decreasing training
window at 6 h increments. Overall, it was shown that RandF performed best for the training
time t0 = −48 to t0 = −36. As a result of overlapping confidence intervals, it was observed
that after this period, both GB and RandF performed equally well. Interestingly, due to
overlapping confidence intervals, it was observed that for the training window t0 = −6,
besides RandF and GB, SVM performed similarly well.
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Moreover, it was shown that the linear models (i.e., NB and LogR) performed best
for the shortest training window (i.e., ti = −6). In particular, it was shown that LogR
performed similarly well when compared with the non-linear methods when trained
using ti = −6 (AUROC: 0.915). In contrast, except for DT, the non-linear models were
relatively stable for each training window increment (i.e., ti = −48 to ti = −6), with gen-
erally slightly better performances for the longest training window (i.e., ti = −48). Lastly,
for all of the training windows, we found that all models performed better on the reg-
ular dataset (i.e., ∆ Significant_Features) compared with the PCA variant of the dataset
(i.e., ∆ PCA_Significant_Features), see Figure A1 in the Appendix A.

4.6. Performance of Vital Parameters

In order to assess the value of each distinct vital parameter (i.e., HRV, RF, SpO2, and
PFI) for predicting LOS, we trained each model on each vital parameter separately. In
Figure 8, we present the AUROC test scores for all of the training windows (i.e., ti = −48 to
ti = −6) for each feature set. As expected, and in line with the literature, the HRV features
performed best. However, we also found that the ensemble models (i.e., RandF, ADA,
and GB) yielded acceptable results for the feature sets of the parameters SpO2 and RF. In
particular, using a training interval from around ti = −48, we found that the models using
features from SpO2 outperformed the RF features. On the other hand, we found that while
all separate feature sets performed worst around ti = −6, RF performed best around this
time interval. Thus, this is an indication that the vital parameters of respiratory (RF) are
best used shortly before t0.
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All in all, when training the model with HRV features and adding the feature sets
from RF or SpO2, it was observed that most models improved most when adding RF (see
Table A2 and Figure A7 in the Appendix A). Interestingly, however, it was also observed
that the GB model was most improved by adding features from SpO2. Thus, except for
the GB model, we found that the models improved most when adding features from RF.
Nevertheless, it is also important to mention that our best performing model (RandF)
performed very well with the HRV feature alone. Lastly, it was observed that features from
PFI added the least value to the model (see Table A2).

5. Discussion

In this study, the aim was to assess the added value of nonlinear methods and various
vital parameters when predicting LOS in preterm infants. Ultimately, this study aimed to
contribute to a new monitor that can be used as a non-invasive early warning system to alert
medical professionals for an upcoming LOS episode. The main finding was that, in contrast
with the findings of some works in the literature (e.g., [7,8]), non-linear models performed
overall superior compared with linear models. The best performance was achieved by the
RandF model using the largest training window (i.e., ti = −48), achieving an AUROC score
of 0.973, 24% better than the LogR model. In particular, the AUROC score of the RandF
model was a 3% improvement compared with the best performing model of Gomez et al.
(2021) [9]. Interestingly, the work of Gomez et al. (2021) [9] found that ADA performed
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best compared with RandF. One reason for the underperformance of the ADA model might
be the fact that ADA is typically more affected by noise (i.e., unimportant features) as
it takes all features into account. In contrast, RandF only randomly selects a subset of
the data during each training iteration. Generally, it was found that for most training
windows, RandF performed best. However, when models were trained using the window
ti = −6, we found that GB and SVM were not performing significantly worse than the best
performing model, RandF, due to overlapping confidence intervals. Furthermore, we found
that the conventional machine learning models, SVM and KNN, were not significantly
worse performing than the ensemble models—these models even outperformed ADA
when trained on a longer time window (i.e., ti = −48 to ti = −24). Furthermore, we found
that the linear models performed best when trained on a training window shortly before t0,
while the non-linear models were trained best on a longer training window. In particular,
we found that, for a short training window, LogR performed similarly compared with
some non-linear methods (e.g., KNN). Arguably, one reason for this behavior might be that
linear methods performed better when trained shortly before t0 because the data are less
non-linear during this period. Moreover, we found that LogR was also the least overfitting
model. Thus, considering these two findings, we still consider LogR as a promising model
when trained shortly before t0. The finding that non-linear models displayed a superior
performance to linear models was in line with the observations regarding the non-linearity
of several features. For instance, by inspecting the time series, we found that not all features
were linearly separable; in Figure A1, it is observed that LOS patients did not score either
higher or lower than the infected patients.

Furthermore, some features contained a strong seasonality (i.e., as observed in
Figures A3 and A5). Hence, our finding that non-linear models performed better is ex-
plained by the non-linear behavior of the features. Although the GB model and RandF
performed best with respect to the AUROC scores, the training times of this model were
found to be less beneficial: these algorithms took 2.249 ms and 1.145 ms to run, respectively.
Interestingly, KNN took significantly less time to train (i.e., 0.023 ms), but yielded a similar
predictive performance (AUROC: 0.950). These training times are very important to take
into consideration, as our models are expected to be deployed in a real-time setting, where
models should be able to be trained in a timely manner. Therefore, it is important to take
this trade-off between training time and predictive performance into consideration. As
a result, we consider KNN to be a promising model. Interestingly, this is the first study
that has reported such favorable results for the KNN model within the context of LOS
prediction of neonates. Both Leon et al. (2020) [8] and Gomez et al. (2019) [9] reported that
KNN was among the worst performing models in terms of AUROC score. Furthermore, it
is worthwhile mentioning that this is the first study that reports the training times of the
models within the context of LOS prediction using ML.

As expected, and in line with the literature, we found that all models performed
best when using features derived from HRV. In contrast, the models performed worse
than those trained on PFI features. For a training interval around ti = −48, we found
that ensemble models trained on SpO2 features also performed relatively well. However,
when looking at the feature importance (i.e., Figure 6), we found that features derived
from SpO2 were considered least important. Therefore, to overcome this ambiguity, future
research is needed to discover the true effectiveness of the usage of features derived from
SpO2 when predicting LOS. Interestingly, no papers have investigated the added value
of features derived from SpO2 yet in the context of LOS prediction using ML. In addition,
we found that while all separate vital parameter feature sets performed the worst around
ti = −6, RF (respiratory frequency) performed best around this time interval. This suggests
that just before a sepsis event, RF might be a promising parameter to implement when
predicting the risk of LOS shortly before the episode. In line with this finding, we found
that adding features from RF to the HRV feature set added the largest increase in AUROC
score for most models as in Table 4 and Figure A8. In contrast, adding PFI to the dataset
effectuated the smallest increase in AUROC. Lastly, contradictory to the findings of Leon
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et al. (2020) [8], we found that all models performed best on the feature set without any
dimension reduction techniques applied (i.e., using PCA analysis). One reason for this
finding might be that PCA, although it does remove noise from the dataset, does not
necessarily lead to the selection of the most informative features [33].

6. Limitations and Future Work

During this study, several limitations were encountered. First, a small sample size was
used to train the algorithms. Despite an imbalance in the number of patients per groups
in our study, the incidence of LOS in this high risk population (14/39 patients = 36%) has
been reported in number of other papers; thus, we feel that it is not likely to influence the
current results as the current analysis does not predict whether an infant has a high risk of
getting a LOS, but if vital parameters can predict LOS at an early stage and which technique
(linear or non-linear) is superior to detect a LOS. For instance, Leon et al. (2020) used a
sample size of 49 patients and Gomez et al. (2019) [9] used a sample size of 79 patients.
Second, in the same vein as the study of Leon et al. (2020) [8], we found significant
differences for gestational age and birthweight. Although we attempted to correct for
these significant features using a calibration period of 48 h, it was not ruled out that these
significant characteristics still influenced the predictive performance on the models. Third,
although we aimed to overcome the class imbalance using the stratified version of K-fold
cross-validation, it might still be the case that our algorithm was slightly biased towards
the majority class (i.e., the control group). Nevertheless, Gomez et al. (2019) [9,11] also
dealt with a similar class imbalance, so, from that perspective, our findings are externally
validated. Fourth and related to the previous, it must be noted that our findings are best
compared with the work of Gomez et al. (2019) [9], who used a similar cross-validation
method (i.e., repeated stratified cross-validation).

On the contrary, Leon et al. (2020) [8] and Cabrera et al. (2021) [7] used leaving-one-out
cross validation, which is known to yield more conservative results. Lastly, not all vital
parameters and other LOS related factors that are available were assessed in this study;
for instance, blood pressure, motion, clinical signs, and laboratory tests. Therefore, we
encourage future scholars to also investigate the effect of other factors when predicting LOS
using ML. A future direction is to explore the mean diagnosis of all AI algorithms includ-
ing hybrid classifier-based particle swarm optimization (PSO) and neural network while
keeping and preserving interpretability [34–36] for the early diagnosis of late onset sepsis.

7. Conclusions

In this study, we aimed to assess various linear and non-linear ML methods when
predicting LOS. In addition, we assessed the added value of various vital parameters. In
contrast with the findings in the literature, the results indicate that non-linear methods dis-
played a superior compared with the linear methods. Interestingly, we found that random
forest performed best (AUROC: 0.973), without any dimension reduction (i.e., PCA) applied.
However, when taking the trade-off between training time and predictive performance
into account, we found that the K-nearest neighbors model was preferred when compared
with the random forest. In line with the literature [37], we found that training the models
on HRV features yielded the best results and adding RF (respiratory) features to the HRV
features ensured the greatest improvement in terms of AUROC score for most models.

Author Contributions: Conceptualization, A.G.G.; methodology, A.G.G. and C.R.R.; software,
A.G.G.; validation, A.G.G., C.R.R. and W.O.; formal analysis, A.G.G. and C.R.R.; investigation,
A.G.G.; resources, A.G.G. and W.O.; data curation, A.G.G. and C.R.R.; writing—original draft prepa-
ration, A.G.G.; writing—review and editing, A.G.G. and C.R.R.; visualization, A.G.G.; supervision,
C.R.R. and W.O.; project administration, C.R.R. and W.O.; funding acquisition, W.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the University of Amsterdam.



Appl. Sci. 2023, 13, 9049 17 of 24

Institutional Review Board Statement: Written informed consent for participant and publication of
the study results was obtained from all parents.

Informed Consent Statement: Written informed consent has been obtained from both parents of the
patients to reuse the data for retrospective studies.

Data Availability Statement: Upon a reasonable request, the corresponding author can offer a partial
code for the study upon completion of all projects.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

Appendix A 

 
Figure A1. Δ nni. The green line is the onset of the sepsis. 

 
Figure A2. Δ lf. The green line is the onset of the sepsis. 

 
Figure A3. Δ RF_median. The green line is the onset of the sepsis. 

 
Figure A4. Δ SpO2_median. The green line is the onset of the sepsis. 

Figure A1. ∆ nni. The green line is the onset of the sepsis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

Appendix A 

 
Figure A1. Δ nni. The green line is the onset of the sepsis. 

 
Figure A2. Δ lf. The green line is the onset of the sepsis. 

 
Figure A3. Δ RF_median. The green line is the onset of the sepsis. 

 
Figure A4. Δ SpO2_median. The green line is the onset of the sepsis. 

Figure A2. ∆ lf. The green line is the onset of the sepsis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

Appendix A 

 
Figure A1. Δ nni. The green line is the onset of the sepsis. 

 
Figure A2. Δ lf. The green line is the onset of the sepsis. 

 
Figure A3. Δ RF_median. The green line is the onset of the sepsis. 

 
Figure A4. Δ SpO2_median. The green line is the onset of the sepsis. 

Figure A3. ∆ RF_median. The green line is the onset of the sepsis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

Appendix A 

 
Figure A1. Δ nni. The green line is the onset of the sepsis. 

 
Figure A2. Δ lf. The green line is the onset of the sepsis. 

 
Figure A3. Δ RF_median. The green line is the onset of the sepsis. 

 
Figure A4. Δ SpO2_median. The green line is the onset of the sepsis. Figure A4. ∆ SpO2_median. The green line is the onset of the sepsis.



Appl. Sci. 2023, 13, 9049 18 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
 

 
Figure A5. Δ PFI_median. The green line is the onset of the sepsis. 

 
(a) 

 
(b) 

Figure A5. ∆ PFI_median. The green line is the onset of the sepsis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
 

 
Figure A5. Δ PFI_median. The green line is the onset of the sepsis. 

 
(a) 

 
(b) 

Figure A6. Cont.



Appl. Sci. 2023, 13, 9049 19 of 24
Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 26 
 

 
(c) 

 
(d) 

Figure A6. Significance of each set of features over time, starting from 𝑡𝑖 = −48 to 𝑡𝑖 = −6 with 6 h 
increments: (a) HRV, (b) RF, (c) PFI, and (d) SpO2. 

 
Figure A7. AUROC score for each combination of feature sets using a decreasing training window. 

Figure A6. Significance of each set of features over time, starting from ti = −48 to ti = −6 with 6 h
increments: (a) HRV, (b) RF, (c) PFI, and (d) SpO2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 26 
 

 
(c) 

 
(d) 

Figure A6. Significance of each set of features over time, starting from 𝑡𝑖 = −48 to 𝑡𝑖 = −6 with 6 h 
increments: (a) HRV, (b) RF, (c) PFI, and (d) SpO2. 

 
Figure A7. AUROC score for each combination of feature sets using a decreasing training window. Figure A7. AUROC score for each combination of feature sets using a decreasing training window.



Appl. Sci. 2023, 13, 9049 20 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 26 
 

 
Figure A8. AUROC score for each combination of feature sets using a decreasing training window, 
trained on the PCA dataset (Δ PCA_Significant_Features). 

 
Figure A9. ROC plot of the models trained on the entire learning window, trained on the PCA da-
taset (Δ PCA_Significant_Features) (i.e., 𝑡𝑖 = −48). Dashed line: Curve of a random classifier (the 
diagonal line). 

Table A1. Overview of features that are extracted from the vital parameters. HRV: heart rate varia-
bility; RF: respiratory frequency, PFI: perfusion index, SpO2: oxygen saturation. 

Abbreviation Unit Interpretation 
HRV   

Time domain   
mean_nni ms Mean of nni 

sd_nn ms Standard deviation of nni 
sd_diff_nn ms Standard deviation of differences between adjacent nn-intervals 

rmssd ms 
The square root of the mean of the sum of the squares of differences between adjacent nni 

intervals 
max_nn ms Maximum of nni 
min_nn ms Minimum of nni 
nni_50 ms Number of interval differences of successive nn-intervals greater than 50 ms 

pnni_50 % The proportion derived by dividing nni-50 by the total number of nn-intervals 
nni_20 ms Number of interval differences of successive nn-intervals greater than 20 ms 

pnni_20 % The proportion derived by dividing nni20 by the total number of nni. 
range_nni ms Difference between the maximum and minimum nn-interval. 

cvsd ms Coefficient of variation of successive differences equal to the rmssd divided by mean_nni. 
cvnni ms Coefficient of variation equal to the ratio of sdnn divided by mean_nni 

Figure A8. AUROC score for each combination of feature sets using a decreasing training window,
trained on the PCA dataset (∆ PCA_Significant_Features).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 26 
 

 
Figure A8. AUROC score for each combination of feature sets using a decreasing training window, 
trained on the PCA dataset (Δ PCA_Significant_Features). 

 
Figure A9. ROC plot of the models trained on the entire learning window, trained on the PCA da-
taset (Δ PCA_Significant_Features) (i.e., 𝑡𝑖 = −48). Dashed line: Curve of a random classifier (the 
diagonal line). 

Table A1. Overview of features that are extracted from the vital parameters. HRV: heart rate varia-
bility; RF: respiratory frequency, PFI: perfusion index, SpO2: oxygen saturation. 

Abbreviation Unit Interpretation 
HRV   

Time domain   
mean_nni ms Mean of nni 

sd_nn ms Standard deviation of nni 
sd_diff_nn ms Standard deviation of differences between adjacent nn-intervals 

rmssd ms 
The square root of the mean of the sum of the squares of differences between adjacent nni 

intervals 
max_nn ms Maximum of nni 
min_nn ms Minimum of nni 
nni_50 ms Number of interval differences of successive nn-intervals greater than 50 ms 

pnni_50 % The proportion derived by dividing nni-50 by the total number of nn-intervals 
nni_20 ms Number of interval differences of successive nn-intervals greater than 20 ms 

pnni_20 % The proportion derived by dividing nni20 by the total number of nni. 
range_nni ms Difference between the maximum and minimum nn-interval. 

cvsd ms Coefficient of variation of successive differences equal to the rmssd divided by mean_nni. 
cvnni ms Coefficient of variation equal to the ratio of sdnn divided by mean_nni 
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Table A1. Overview of features that are extracted from the vital parameters. HRV: heart rate
variability; RF: respiratory frequency, PFI: perfusion index, SpO2: oxygen saturation.

Abbreviation Unit Interpretation

HRV

Time domain
mean_nni ms Mean of nni

sd_nn ms Standard deviation of nni
sd_diff_nn ms Standard deviation of differences between adjacent nn-intervals

rmssd ms The square root of the mean of the sum of the squares of differences between adjacent nni
intervals

max_nn ms Maximum of nni
min_nn ms Minimum of nni
nni_50 ms Number of interval differences of successive nn-intervals greater than 50 ms

pnni_50 % The proportion derived by dividing nni-50 by the total number of nn-intervals
nni_20 ms Number of interval differences of successive nn-intervals greater than 20 ms

pnni_20 % The proportion derived by dividing nni20 by the total number of nni.
range_nni ms Difference between the maximum and minimum nn-interval.

cvsd ms Coefficient of variation of successive differences equal to the rmssd divided by mean_nni.
cvnni ms Coefficient of variation equal to the ratio of sdnn divided by mean_nni

Frequency domain
total_power msˆ2 Total power density spectral
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Table A1. Cont.

Abbreviation Unit Interpretation

vlf msˆ2 Variance in HRV in the Very low Frequency (0.003 to 0.04 Hz by default). Primarily modulated by
sympathetic activity.

LF msˆ2 variance in HRV in the low Frequency (0.04 to 0.15 Hz). Reflects a mainly sympathetic activity

HF msˆ2 variance in HRV in the High Frequency (0.15 to 0.40 Hz by default). Reflects fast changes in HRV
due to parasympathetic activity.

LF_HF_ratio msˆ2 Ratio lf/hf. This metric is as a quantitative mirror of the sympathetic/vagal balance.
LF norm nu normalized lf power(LF/(total powerVLF) × 100)
HF norm nu normalized hf power(hf/(total powerVLF) × 100)

csi Cardiac Sympathetic Index
cvi Cardiac Vagal (Parasympathetic) Index.

Non-linear domain
Entropy_RRi A measure of the degreee of distortion compared to a Gaussian distribution

Skewness_RRi A measure of the degreee of skeweness compared to a Gaussian distribution

triangular_index The triangular interpolation of RR-interval histogram is the baseline width of the distribution
measured as a base of a triangle

sd1 sd1: The standard deviation of projection of the Poincare plot on the line perpendicular to the line
of identity.

sd2 sd2: sd2 is defined as the standard deviation of the projection of the Poincare plot on the line of
identity.

ratio_sd2_sd1 Ratio between SD2 and SD1.

RF

Time domain
Mean_RF ms Mean of the perfusion index

Median_RF ms Median of the perfusion index
SD_RF ms Standard deviation of the perfusion index

Max_RF ms Maximum perfusion index
Min_RF ms Minimum perfusion index

Range_RF ms Difference between the maximum and minimum RF-interval.
Non-linear domain

Entropy_RF A measure of the degree of distortion compared with a Gaussian distribution
Skewness_RF A measure of the degree of skewness compared with a Gaussian distribution

PFI

Time domain
Mean_PFI % Mean of the respiratory rate

Median_PFI % Median of the respiratory rate
SD_PF % Standard deviation of the respiratory rate

Max_PFI % Maximum respiratory rate
Min_PFI % Minimum respiratory rate

Range_PFI ms Difference between the maximum and minimum PFI interval.
Non-linear domain

Entropy_PFI A measure of the degree of distortion compared with a Gaussian distribution
Skewness_PFI A measure of the degree of skewness compared with a Gaussian distribution

SpO2
Time domain
Mean_SpO2 % Mean of the saturation

Median_SpO2 % Median of the saturation
SD_SpO2 % Standard deviation of the saturation

Max_SpO2 % Maximum saturation
Min_SpO2 % Minimum saturation

Range_SpO2 ms Difference between the maximum and minimum SpO2-interval.
Non-linear domain

Entropy_SpO2 A measure of the degree of distortion compared to a Gaussian distribution
Skewness_SpO2 A measure of the degree of skewness compared to a Gaussian distribution
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Table A2. Models trained on the entire length (i.e, ti = −48), but with separate combinations
of features.

HRV HRV + PFI HRV + RF HRV + SpO2

Adaptive Boosting 0.852 [0.849, 0.856] 0.870 [ 0.867, 0.873] 0.904 [0.901, 0.906] 0.888 [0.885, 0.891]
Decision Tree 0.805 [0.801, 0.809] 0.801 [0.798, 0.805] 0.825 [0.821, 0.828] 0.803 [0.798, 0.807]

Gradient Boosting 0.919 [0.916, 0.922] 0.926 [0.923, 0.928] 0.937 [0.935, 0.939] 0.952 [0.950, 0.953]
K-Nearest
Neighbors 0.889 [0.886, 0.892] 0.894 [0.892, 0.895] 0.927 [0.925, 0.929] 0.888 [0.885, 0.891]

Logistic
Regression 0.702 [0.698, 0.705] 0.723 [0.719, 0.727] 0.731 [0.728, 0.734] 0.727 [0.723, 0.731]

Naive Bayes 0.670 [0.665, 0.675] 0.679 [0.675, 0.683] 0.723 [0.720, 0.727] 0.672 [0.667, 0.676]
Random Forest 0.961 [0.959, 0.962] 0.960 [0.958, 0.961] 0.967 [0.966, 0.968] 0.969 [0.967, 0.970]
Support Vector

Machine 0.864 [0.861, 0.867] 0.894 [0.891, 0.896] 0.921 [0.919, 0.923] 0.885 [0.881, 0.888]

Bold is best performance.

Table A3. Predictive performance of each model for the entire training window ti = −48 on the PCA
dataset (∆ PCA_Significant_Features). The results are shown with a 95% confidence interval.

Fit Time Train
Accuracy

Test
Accuracy

Train
Precision

Test
Precision

Train
Recall

Test
Recall

Train
AUROC

Test
AUROC

ADA 0.431
[0.426, 0.436]

0.804
[0.802, 0.806]

0.759
[0.755, 0.763]

0.803
[0.801, 0.805]

0.755
[0.750, 0.76]

0.804
[0.802, 0.806]

0.759
[0.755, 0.763]

0.872
[0.870, 0.873]

0.806
[0.801, 0.811]

DT 0.073
[0.07, 0.076] 1.0 [1.0, 1.0] 0.754

[0.750, 0.759] 1.0 [1.0, 1.0] 0.754
[0.750, 0.758] 1.0 [1.0, 1.0] 0.754

[0.750, 0.759] 1.0 [1.0, 1.0] 0.737
[0.733, 0.742]

GB 1.732
[1.717, 1.748]

0.891
[0.89, 0.892]

0.823
[0.820, 0.826]

0.897
[0.896, 0.898]

0.826
[0.823, 0.829]

0.891
[0.890, 0.892]

0.823
[0.820, 0.826]

0.960
[0.960, 0.961]

0.884
[0.881, 0.887]

KNN 0.019
[0.017, 0.021]

0.925
[0.923, 0.926]

0.880
[0.878, 0.882]

0.925
[0.924, 0.927]

0.881
[0.878, 0.883]

0.925
[0.923, 0.926]

0.880
[0.878, 0.882]

0.980
[0.979, 0.980]

0.935
[0.933, 0.938]

LogR 0.015
[0.014, 0.016]

0.705
[0.703, 0.706]

0.700
[0.697, 0.703]

0.700
[0.699, 0.702]

0.695
[0.691, 0.699]

0.705
[0.703, 0.706]

0.700
[0.697, 0.703]

0.741
[0.740, 0.743]

0.733
[0.729, 0.737]

NB 0.005
[0.003, 0.008]

0.701
[0.700, 0.702]

0.698
[0.694, 0.703]

0.695
[0.694, 0.697]

0.692
[0.687, 0.697]

0.701
[0.700, 0.702]

0.698
[0.694, 0.703]

0.751
[0.749, 0.753]

0.747
[0.741, 0.752]

RandF 1.092
[1.081, 1.102] 1.0 [1.0, 1.0] 0.859

[0.856, 0.862] 1.0 [1.0, 1.0] 0.863
[0.860, 0.866] 1.0 [1.0,1.0] 0.859

[0.856, 0.862] 1.0 [1.0, 1.0] 0.921
[0.918, 0.923]

SVM 0.226
[0.223, 0.230]

0.898
[0.897, 0.899]

0.863
[0.860, 0.866]

0.903
[0.902, 0.904]

0.867
[0.864, 0.87]

0.898
[0.897, 0.899]

0.863
[0.860, 0.866]

0.960
[0.959, 0.960]

0.929
[0.926, 0.931]

Table A4. AUROC test scores per training window on the PCA dataset (∆ PCA_Significant_Features).
The results are shown with a 95% confidence interval.

−48 −42 −36 −30 −24 −18 −12 −6

ADA 0.806
[0.801, 0.811]

0.816
[0.811, 0.82]

0.819
[0.815, 0.824]

0.824
[0.819, 0.83]

0.823
[0.817, 0.829]

0.826
[0.82, 0.831]

0.857
[0.849, 0.865]

0.868
[0.857, 0.879]

DT 0.737
[0.733, 0.742]

0.736
[0.730, 0.742]

0.749
[0.743, 0.755]

0.737
[0.731, 0.742]

0.723
[0.715, 0.731]

0.733
[0.727, 0.740]

0.716
[0.706, 0.726]

0.723
[0.709, 0.738]

GB 0.884
[0.881, 0.887]

0.891
[0.888, 0.894]

0.894
[0.891, 0.898]

0.894
[0.890, 0.899]

0.891
[0.886, 0.896]

0.889
[0.884, 0.894]

0.896
[0.889, 0.904]

0.914
[0.904, 0.923]

KNN 0.935
[0.933, 0.938]

0.934
[0.931, 0.936]

0.938
[0.935, 0.941]

0.932
[0.93, 0.935]

0.931
[0.927, 0.935]

0.928
[0.923, 0.933]

0.918
[0.911, 0.925]

0.921
[0.911, 0.931]

LogR 0.733
[0.729, 0.737]

0.74
[0.735, 0.744]

0.749
[0.744, 0.754]

0.753
[0.746, 0.759]

0.761
[0.755, 0.768]

0.781
[0.773, 0.788]

0.799
[0.788, 0.809]

0.826
[0.813, 0.839]

NB 0.747
[0.741, 0.752]

0.758
[0.754, 0.763]

0.767
[0.761, 0.773]

0.767
[0.760, 0.774]

0.765
[0.757, 0.773]

0.774
[0.767, 0.782]

0.813
[0.803, 0.823]

0.854
[0.839, 0.87]

RandF 0.921
[0.918, 0.923]

0.923
[0.921, 0.926]

0.925
[0.922, 0.928]

0.924
[0.921, 0.928]

0.920
[0.915, 0.924]

0.918
[0.914, 0.923]

0.918
[0.911, 0.924]

0.934
[0.924, 0.943]

SVM 0.929
[0.926, 0.931]

0.928
[0.926, 0.931]

0.931
[0.928, 0.934]

0.929
[0.926, 0.932]

0.931
[0.927, 0.936]

0.931
[0.927, 0.935]

0.935
[0.930, 0.941]

0.950
[0.941, 0.958]
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Table A5. Overview of the cost function and number of estimators used in the models.

Model Cost Function Estimators

ADA Exponential loss 50
DT Gini impurity -
GB Log likelihood 100

KNN * - -
LogR Cross entropy -
NB Negative point log-likelihood -

RandF Gini impurity 100
SVM Hinge loss -

* K-Nearest Neighbor (KNN).

Table A6. Overview of the characteristics of the ensemble models.

Model Split Criterion Learner Max Estimators Max Depth

ADA Exponential loss Decision Tree 50 1
GB MSE Decision Tree 100 3

RandF Gini impurity Decision Tree 100 1000
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