Influences of Personal Driving Styles and Experienced System Characteristics on Driving Style Preferences in Automated Driving
Abstract
:1. Introduction
2. Literature Review
2.1. Driving Comfort
2.2. Driving Style
2.3. Trust
2.4. Research Gap
3. Method
3.1. Participants
3.2. Experimental Setup
- Compliance with traffic regulations such as strict adherence to speed limits.
- The AV’s maximum speed was set to 130 km/h and was based on the recommended speed for motorways of the German Road Traffic Act.
- The time gap to the lead vehicle was varied in four settings between one and two seconds to analyze user preferences. For each route quarter, one of the four time gaps was set randomly.
- The in-lane driving path in curves on motorway feeder roads, on- and off-ramps is varied between driving in the lane center and driving closer to the inside of the curve to analyze user preferences. Fifty percent of participants experience one variation in section A-B and the respective other variation in section B-C, whereas the other 50% of participants experience the reverse order of variations.
3.3. Material
3.4. Data Preprocessing
- Maximum longitudinal velocity;
- Median of time gap;
- Percentage of time in which the time gap is below 1 s;
- Percentage of time in which the longitudinal velocity is above the speed limit.
3.5. Statistical Analysis
4. Results
4.1. Comfort and Safety Perception of Experienced Automated Driving Style
4.2. Drivers’ Trust and Experienced Automated Driving Style
4.3. Experienced System Characteristics and Automated Driving Style Preference
4.4. Wizard-of-Oz Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SAE International. SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; SAE: Warrendale, PA, USA, 2021. [Google Scholar]
- Schramm, D.; Schweig, S. Fahrerassistenzsysteme—Ein Überblick. In Altersgerechte Fahrerassistenzsysteme: Technische, Psychologische und Betriebswirtschaftliche Aspekte; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; pp. 39–53. [Google Scholar] [CrossRef]
- Hartwich, F.; Beggiato, M.; Dettman, A.; Krems, J. Drive me comfortable—Customized automated driving styles for younger and older drivers. In Proceedings of the 8. VDI-Tagung “Der Fahrer im 21. Jahrhundert”, Braunschweig, Germany, 10–11 November 2015. [Google Scholar]
- Elbanhawi, M.; Simic, M.; Jazar, R. In the passenger seat: Investigating ride comfort measures in autonomous cars. IEEE Intell. Transp. Syst. Mag. 2015, 7, 4–17. [Google Scholar] [CrossRef]
- Peng, C.; Merat, N.; Romano, R.; Hajiseyedjavadi, F.; Paschalidis, E.; Wei, C.; Radhakrishnan, V.; Solernou, A.; Forster, D.; Boer, E. Drivers’ Evaluation of Different Automated Driving Styles: Is It both Comfortable and Natural? Hum. Factors, 2022; online first. [Google Scholar] [CrossRef]
- Yusof, N.M.; Karjanto, J.; Terken, J.; Delbressine, F.; Hassan, M.Z.; Rauterberg, M. The Exploration of Autonomous Vehicle Driving Styles. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA, 24–26 October 2016; Green, P., Boll, S., Gabbard, J., Osswald, S., Burnett, G., Borojeni, S.S., Löcken, A., Pradhan, A., Eds.; Association for Computing Machinery: New York, NY, USA, 2016; pp. 245–252. [Google Scholar]
- Ma, Z.; Zhang, Y. Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver’s driving styles. Accid. Anal. Prev. 2021, 159, 106238. [Google Scholar] [CrossRef]
- Griesche, S.; Nicolay, E.; Assmann, D.; Dotzauer, M.; Käthner, D. Should my car drive as I do? What kind of driving style do drivers prefer for the design of automated driving functions. In Proceedings of the 17th Braunschweiger Symposium AAET, Braunschweig, Germany, 10–11 February 2016. [Google Scholar]
- Basu, C.; Yang, Q.; Hungerman, D.; Singhal, M.; Dragan, A.D. Do You Want Your Autonomous Car To Drive Like You? In Proceedings of the 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, 6–9 March 2017; pp. 417–425. [Google Scholar]
- Bellem, H.; Thiel, B.; Schrauf, M.; Krems, J.F. Comfort in automated driving: An analysis of preferences for different automated driving styles and their dependence on personality traits. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 90–100. [Google Scholar] [CrossRef]
- Sourelli, A.M.; Welsh, R.; Thomas, P. User preferences, driving context or manoeuvre characteristics? Exploring parameters affecting the acceptability of automated overtaking. Appl. Ergon. 2023, 109, 103959. [Google Scholar] [CrossRef] [PubMed]
- Vasile, L.; Seitz, B.; Däsch, C.; Schramm, D. Untersuchung charakteristischer Parameter des Spurfolgeverhaltens zur Generierung einer Referenz für hochautomatisiertes Fahren. In Proceedings of the VDI Mechatronik 2021, Digitale Konferenz, Deutschland, online, 23–25 March 2021; pp. 152–157. [Google Scholar]
- Ivanco, A. Fleet analysis of headway distance for autonomous driving. J. Saf. Res. 2017, 63, 145–148. [Google Scholar] [CrossRef]
- Liu, T.; Selpi. Comparison of Car-Following Behavior in Terms of Safety Indicators Between China and Sweden. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3696–3705. [Google Scholar] [CrossRef] [Green Version]
- Kuderer, M.; Gulati, S.; Burgard, W. Learning driving styles for autonomous vehicles from demonstration. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, DC, USA, 26–30 May 2015; pp. 2641–2646. [Google Scholar] [CrossRef]
- Sama, K.; Morales, Y.; Liu, H.; Akai, N.; Carballo, A.; Takeuchi, E.; Takeda, K. Extracting Human-Like Driving Behaviors From Expert Driver Data Using Deep Learning. IEEE Trans. Veh. Technol. 2020, 69, 9315–9329. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning. Transp. Res. Part C Emerg. Technol. 2018, 97, 348–368. [Google Scholar] [CrossRef] [Green Version]
- Vasile, L.; Divakar, K.; Schramm, D. Deep-Learning basierte Verhaltensprädiktion rückwärtiger Verkehrsteilnehmer für hochautomatisierte Spurwechsel. In Transforming Mobility—What Next? Technische und betriebswirtschaftliche Aspekte; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2022; pp. 243–263. [Google Scholar] [CrossRef]
- Wirthmüller, F.; Schlechtriemen, J.; Hipp, J.; Reichert, M. Teaching Vehicles to Anticipate: A Systematic Study on Probabilistic Behavior Prediction Using Large Data Sets. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7129–7144. [Google Scholar] [CrossRef]
- Sun, R.; Hu, S.; Zhao, H.; Moze, M.; Aioun, F.; Guillemard, F. Human-like Highway Trajectory Modeling based on Inverse Reinforcement Learning. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1482–1489. [Google Scholar] [CrossRef]
- Oliveira, L.; Proctor, K.; Burns, C.G.; Birrell, S. Driving Style: How Should an Automated Vehicle Behave? Information 2019, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Waytz, A.; Heafner, J.; Epley, N. The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. J. Exp. Soc. Psychol. 2014, 52, 113–117. [Google Scholar] [CrossRef]
- Körber, M.; Baseler, E.; Bengler, K. Introduction matters: Manipulating trust in automation and reliance in automated driving. Appl. Ergon. 2018, 66, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Molnar, L.J.; Ryan, L.H.; Pradhan, A.K.; Eby, D.W.; St. Louis, R.M.; Zakrajsek, J.S. Understanding trust and acceptance of automated vehicles: An exploratory simulator study of transfer of control between automated and manual driving. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 319–328. [Google Scholar] [CrossRef]
- Natarajan, M.; Akash, K.; Misu, T. Toward Adaptive Driving Styles for Automated Driving with Users’ Trust and Preferences. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Hokkaido, Japan, 7–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 940–944. [Google Scholar]
- Lee, J.D.; Liu, S.Y.; Domeyer, J.; DinparastDjadid, A. Assessing Drivers’ Trust of Automated Vehicle Driving Styles With a Two-Part Mixed Model of Intervention Tendency and Magnitude. Hum. Factors 2021, 63, 197–209. [Google Scholar] [CrossRef]
- Siebert, F.W.; Oehl, M.; Höger, R.; Pfister, H.R. Discomfort in Automated Driving—The Disco-Scale. In Proceedings of the HCI International 2013—Posters’ Extended Abstracts, Las Vegas, NV, USA, 21–26 July 2013; Stephanidis, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 337–341. [Google Scholar]
- Engeln, A.; Vratil, B. Fahrkomfort und Fahrgenuss durch den Einsatz von Fahrerassistenzsystemen. In Fortschritte der Verkehrspsychologie: Beiträge vom 45. Kongress der Deutschen Gesellschaft für Psychologie; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2008; pp. 275–288. [Google Scholar] [CrossRef]
- Bubb, H.; Vollrath, M.; Reinprecht, K.; Mayer, E.; Körber, M. Der Mensch als Fahrer. In Automobilergonomie; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; pp. 67–162. [Google Scholar] [CrossRef]
- Vergara, M.; Page, A. System to measure the use of the backrest in sitting-posture office tasks. Appl. Ergon. 2000, 31, 247–254. [Google Scholar] [CrossRef]
- Hertzberg, H.T.E. The Human Buttocks in Sitting: Pressures, Patterns, and Palliatives. In Proceedings of the 1972 Automotive Engineering Congress and Exposition, Feb 1972; SAE International: Warrendale, PA, USA, 1972. [Google Scholar] [CrossRef]
- Zhang, L.; Helander, M.G.; Drury, C.G. Identifying Factors of Comfort and Discomfort in Sitting. Hum. Factors 1996, 38, 377–389. [Google Scholar] [CrossRef]
- De Looze, M.P.; Kuijt-Evers, L.F.M.; Van Dieën, J. Sitting comfort and discomfort and the relationships with objective measures. Ergonomics 2003, 46, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Dillen, N.; Ilievski, M.; Law, E.; Nacke, L.E.; Czarnecki, K.; Schneider, O. Keep Calm and Ride Along: Passenger Comfort and Anxiety as Physiological Responses to Autonomous Driving Styles. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20), Honolulu, HI, USA, 25–30 April 2020; ACM: New York, NY, USA, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Beggiato, M.; Hartwich, F.; Krems, J. Physiological correlates of discomfort in automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 445–458. [Google Scholar] [CrossRef]
- Festner, M. Objektivierte Bewertung des Fahrstils auf Basis der Komfortwahrnehmung bei hochautomatisiertem Fahren in Abhängigkeit fahrfremder Tätigkeiten. Ph.D. Thesis, Universität Duisburg-Essen—University of Duisburg-Essen, North Rhine-Westphalia, Germany, 2019. [Google Scholar]
- Telpaz, A.; Baltaxe, M.; Hecht, R.M.; Cohen-Lazry, G.; Degani, A.; Kamhi, G. An Approach for Measurement of Passenger Comfort: Real-Time Classification based on In-Cabin and Exterior Data. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 223–229. [Google Scholar] [CrossRef]
- Schockenhoff, F.; Nehse, H.; Lienkamp, M. Maneuver-Based Objectification of User Comfort Affecting Aspects of Driving Style of Autonomous Vehicle Concepts. Appl. Sci. 2020, 10, 3946. [Google Scholar] [CrossRef]
- Nagahama, A.; Saito, T.; Wada, T.; Sonoda, K. Comfort and Usability of Automated Driving Systems for Collision Avoidance by Learning Drivers’ Preference at an Opportune Time. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 4269–4274. [Google Scholar] [CrossRef]
- Golding, J.F.; Gresty, M.A. Motion sickness. Curr. Opin. Neurol. 2005, 18, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Sagberg, F.; Selpi; Piccinini, G.F.B.; Engström, J. A Review of Research on Driving Styles and Road Safety. Hum. Factors 2015, 57, 1248–1275. [Google Scholar] [CrossRef] [PubMed]
- Moser, U.; Harmening, N.; Schramm, D. A new method for the objective assessment of ADAS based on multivariate time series classification. In Proceedings of the 19. Internationales Stuttgarter Symposium; Bargende, M., Reuss, H.C., Wagner, A., Wiedemann, J., Eds.; Springer: Wiesbaden, Germany, 2019; pp. 636–651. [Google Scholar] [CrossRef]
- Roßner, P.; Bullinger, A.C. How Do You Want to be Driven? Investigation of Different Highly-Automated Driving Styles on a Highway Scenario. In Advances in Human Factors of Transportation; Stanton, N., Ed.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerlands, 2020; Volume 964, pp. 36–43. [Google Scholar]
- Otto, H.; Schönenberg, T.; Krems, J.F.; Schrauf, M. Objective metrics of comfort: Developing a driving style for highly automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 45–54. [Google Scholar]
- Griesche, S.; Krähling, M.; Käthner, D. CONFORM—A visualization tool and method to classify driving styles in context of highly automated driving. In Proceedings of the 30. VDI/VW Gemeinschatstagung Fahrerassistens und Integrierte Sicherheit, Wolsburg, Germany, 12–13 October 2014. [Google Scholar]
- Tejada, A.; Manders, J.; Snijders, R.; Paardekooper, J.P.; de Hair-Buijssen, S. Towards a Characterization of Safe Driving Behavior for Automated Vehicles Based on Models of “Typical” Human Driving Behavior. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Zhao, C.; Li, L.; Pei, X.; Li, Z.; Wang, F.Y.; Wu, X. A comparative study of state-of-the-art driving strategies for autonomous vehicles. Accid. Anal. Prev. 2021, 150, 105937. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Shen, D.; Wang, J.; Huang, S.; Filev, D. Calibration of human driving behavior and preference using vehicle trajectory data. Transp. Res. Part Emerg. Technol. 2022, 145, 103916. [Google Scholar] [CrossRef]
- Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2118–2125. [Google Scholar]
- Chen, Y.; Li, G.; Li, S.; Wang, W.; Li, S.E.; Cheng, B. Exploring Behavioral Patterns of Lane Change Maneuvers for Human-like Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14322–14335. [Google Scholar] [CrossRef]
- Li, A.; Jiang, H.; Li, Z.; Zhou, J.; Zhou, X. Human-Like Trajectory Planning on Curved Road: Learning From Human Drivers. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3388–3397. [Google Scholar] [CrossRef]
- de Beaucorps, P.; Streubel, T.; Verroust-Blondet, A.; Nashashibi, F.; Bradai, B.; Resende, P. Decision-making for automated vehicles at intersections adapting human-like behavior. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 212–217. [Google Scholar] [CrossRef] [Green Version]
- Musabini, A.; Bozbayir, E.; Marcasuzaa, H.; Ramírez, O.A.I. Park4U Mate: Context-Aware Digital Assistant for Personalized Autonomous Parking. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 724–731. [Google Scholar] [CrossRef]
- Ruijten, P.A.M.; Terken, J.M.B.; Chandramouli, S.N. Enhancing Trust in Autonomous Vehicles through Intelligent User Interfaces That Mimic Human Behavior. Multimodal Technol. Interact. 2018, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Aremyr, E.; Jönsson, M.; Strömberg, H. Anthropomorphism: An Investigation of Its Effect on Trust in Human-Machine Interfaces for Highly Automated Vehicles. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy, 26–30 August 2018; Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer: Cham, Switzerlands, 2019; pp. 343–352. [Google Scholar]
- Siebert, F.W.; Wallis, F.L. How speed and visibility influence preferred headway distances in highly automated driving. Transp. Res. Part Traffic Psychol. Behav. 2019, 64, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Siebert, F.W.; Oehl, M.; Bersch, F.; Pfister, H.R. The exact determination of subjective risk and comfort thresholds in car following. Transp. Res. Part Traffic Psychol. Behav. 2017, 46, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Siebert, F.W.; Oehl, M.; Pfister, H.R. The influence of time headway on subjective driver states in adaptive cruise control. Transp. Res. Part Traffic Psychol. Behav. 2014, 25, 65–73. [Google Scholar] [CrossRef] [Green Version]
- De Vos, A.P.; Theeuwes, J.; Hoekstra, W.; Coëmet, M.J. Behavioral Aspects of Automatic Vehicle Guidance: Relationship Between Headway and Driver Comfort. Transp. Res. Rec. 1997, 1573, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Beggiato, M.; Hartwich, F.; Roßner, P.; Dettmann, A.; Enhuber, S.; Pech, T.; Gesmann-Nuissl, D.; Mößner, K.; Bullinger, A.C.; Krems, J. KomfoPilot—Comfortable Automated Driving. In Smart Automotive Mobility; Meixner, G., Ed.; Human–Computer Interaction Series; Springer International Publishing: Cham, Switzerlands, 2020; pp. 71–154. [Google Scholar]
- Haghzare, S.; Campos, J.L.; Bak, K.; Mihailidis, A. Older adults’ acceptance of fully automated vehicles: Effects of exposure, driving style, age, and driving conditions. Accid. Anal. Prev. 2021, 150, 105919. [Google Scholar] [CrossRef]
- Hoff, K.; Bashir, M. Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Hum. Factors J. Hum. Factors Ergon. Soc. 2015, 57, 407–434. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. Int. J. Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Schoettle, B.; Sivak, M. A Survey of Public Opinion about Autonomous and Self-Driving Vehicles in the U.S., the U.K., and Australia. In Proceedings of the Transportation Research Board 93rd Annual Meeting, Washington, DC, USA, 12–16 January 2014. [Google Scholar]
- Kyriakidis, M.; Happee, R.; de Winter, J. Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transp. Res. Part F-Traffic Psychol. Behav. 2015, 32, 127–140. [Google Scholar] [CrossRef]
- Haboucha, C.J.; Ishaq, R.; Shiftan, Y. User preferences regarding autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78, 37–49. [Google Scholar] [CrossRef]
- Helldin, T.; Falkman, G.; Riveiro, M.; Davidsson, S. Presenting system uncertainty in automotive UIs for supporting trust calibration in autonomous driving. In Proceedings of the International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Eindhoven, The Netherlands, 28–30 October 2013. [Google Scholar] [CrossRef]
- Korber, M.; Prasch, L.; Bengler, K. Why Do I Have to Drive Now? Post Hoc Explanations of Takeover Requests. Hum. Factors J. Hum. Factors Ergon. Soc. 2018, 60, 305–323. [Google Scholar] [CrossRef] [Green Version]
- McGuirl, J.; Sarter, N. Supporting Trust Calibration and the Effective Use of Decision Aids by Presenting Dynamic System Confidence Information. Hum. Factors J. Hum. Factors Ergon. Soc. 2006, 48, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yi, B.; Song, X.; Zhao, S.; Wang, J.; Cao, H. Can we adapt to highly automated vehicles as passengers? The mediating effect of trust and situational awareness on role adaption moderated by automated driving style. Transp. Res. Part Traffic Psychol. Behav. 2022, 90, 269–286. [Google Scholar] [CrossRef]
- Sibi, S.; Balters, S.; Mok, B.; Steinert, M.; Ju, W. Assessing Driver Cortical Activity under Varying Levels of Automation with Functional Near Infrared Spectroscopy. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1509–1516. [Google Scholar] [CrossRef]
- Gustavsson, P.; Victor, T.; Johansson, J.; Tivesten, E.; Johansson Malmlöf, R.; Ljung Aust, M. What were they thinking? Subjective experiences associated with automation expectation mismatch. In Proceedings of the 6th Driver Distraction and Inattention Conference, Gothenburg, Sweden, 15–17 October 2018; pp. 64–75. [Google Scholar]
- Google. Google Maps Directions for Driving from Sindelfingen, Baden-Württemberg, to Kirchheim unter Teck, Baden-Württemberg. n.d. [Online]. Available online: https://www.google.com/maps (accessed on 5 January 2023).
- Charness, N.; Yoon, J.; Souders, D.; Stothart, C.; Yehnert, C. Predictors of attitudes toward autonomous vehicles: The roles of age, gender, prior knowledge, and personality. Front. Psychol. 2018, 9, 2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Scale Description—English and German Scale Version, 2017. Int. J. Hum.–Comput. Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Merritt, S.; Heimbaugh, H.; LaChapell, J.; Lee, D. I Trust It, but I Don’t Know Why: Effects of Implicit Attitudes Toward Automation on Trust in an Automated System. Hum. Factors 2013, 55, 520–534. [Google Scholar] [CrossRef]
- Bartneck, C.; Kulic, D.; Croft, E.; Zoghbi, S. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Int. J. Soc. Robot. 2008, 1, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Mcknight, D.H.; Carter, M.; Thatcher, J.B.; Clay, P.F. Trust in a Specific Technology: An Investigation of Its Components and Measures. ACM Trans. Manag. Inf. Syst. 2011, 2, 1–25. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in automation: Designing for appropriate reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef] [Green Version]
- Dixit, V.; Xiong, Z.; Jian, S.; Saxena, N. Risk of automated driving: Implications on safety acceptability and productivity. Accid. Anal. Prev. 2019, 125, 257–266. [Google Scholar] [CrossRef]
- Detjen, H.; Pfleging, B.; Schneegass, S. A Wizard of Oz Field Study to Understand Non-Driving-Related Activities, Trust, and Acceptance of Automated Vehicles. In Proceedings of the 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’20), Virtual Event, 21–22 September 2020; Association for Computing Machinery: New York, NY, USA; pp. 19–29. [Google Scholar] [CrossRef]
Parameter | Unit | Artificial VD Driver | Artificial VA Driver | Condition |
---|---|---|---|---|
Maximum Velocity | km/h | 115 | 180 | No Speed Limit |
Median Time gap | s | −2.50 | −1.00 | 60 km/h < km/h ≤ |
Time gaps below 1 s | % | 5 | 40 | v > 60 km/h ≤ |
Time above Speed Limit | % | 0 | 80 | v > 60 km/h 80 km/h ≤ ≤ 120 km/h |
Resulting Driving Style DS | - | 0.02 | 0.87 |
Selected ADS | Unselected ADS | |||
---|---|---|---|---|
Scales | M (SD) | M (SD) | t | p |
Anthropomorphism | 4.35 (0.40) | 3.80 (0.74) | 2.71 | 0.013 * |
Likability | 4.44 (0.46) | 4.20 (0.61) | 1.34 | 0.191 |
Intelligence | 4.33 (0.46) | 4.09 (0.56) | 1.46 | 0.156 |
Safety | 4.56 (0.46) | 4.25 (0.45) | 2.19 | 0.036 * |
Overall Driving Strategy | ||||
Assessment | 4.54 (0.51) | 3.94 (0.86) | 2.55 | 0.018 * |
Comprehensibility | 4.31 (0.47) | 4.00 (0.37) | 2.37 | 0.023 * |
Selected ADS | Unselected ADS | ||||
---|---|---|---|---|---|
Rating Criteria | Driving Situation Category | M (SD) | M (SD) | U | p |
Comfort | Reaction to Speed Limit | 2.36 (0.97) | 1.36 (1.87) | 1512 | 0.013 * |
Deceleration to Lead Vehicle: Intensity | 2.26 (1.01) | 0.79 (1.93) | 228 | 0.027 * | |
Driving Path in Curve | 2.46 (0.71) | 1.71 (1.47) | 1937 | 0.012 * | |
Deceleration in Curve | 1.88 (0.93) | 0.75 (1.54) | 147 | 0.037 * | |
Lane Selection | 0.21 (1.22) | −1.21 (1.28) | 453.5 | <0.001 *** | |
Safety | Reaction to Speed Limit | 2.68 (0.77) | 2.06 (1.48) | 1502.5 | 0.006 ** |
Deceleration to Lead Vehicle: Intensity | 2.70 (0.70) | 2.07 (1.14) | 221 | 0.027 * | |
Driving Path in Curve | 2.33 (0.80) | 1.67 (1.46) | 1882 | 0.033 * | |
Overtaking on the Right | 2.60 (0.97) | 0.45 (2.21) | 84.5 | 0.023 * | |
Lane Change Right: Decision | 2.76 (0.60) | 1.95 (1.73) | 661 | 0.038 * |
Nr. | Rated Driving Situation Categories | Meaning |
---|---|---|
1. | Reaction to Speed Limit | Timing and intensity of deceleration in front of a speed reducing speed limit sign and acceleration behind an increasing speed limit sign. |
2. | Deceleration to Lead Vehicle: Intensity | Deceleration intensity when approaching a slower lead vehicle. |
3. | Driving Path in Curve | Driving paths taken in curves on motorway feeder roads, on- and off-ramps. The driving paths varied between driving in the lane center and driving closer to the inside of the curve. |
4. | Deceleration in Curve | Timing and intensity of deceleration in front or while driving through curves on motorway feeder roads, on- and off-ramps. |
5. | Lane Selection | Appropriateness of lane selection decision. In this category, no lane change was performed. Participants were expressing either their satisfaction with the choice of lane or dissatisfaction when they wished to switch lanes to the left for the purpose of driving faster or responding to a potential cut-in vehicle, or to the right in order to comply with the rule of driving on the right-hand side. |
6. | Overtaking on the Right | Appropriateness or correctness of overtaking on the right side. Note: The AV always complied with traffic regulations and only overtook on the right if conditions to legally do so were fulfilled. |
7. | Lane Change Right: Decision | Appropriateness of the decision to change to the right lane. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasile, L.; Seitz, B.; Staab, V.; Liebherr, M.; Däsch, C.; Schramm, D. Influences of Personal Driving Styles and Experienced System Characteristics on Driving Style Preferences in Automated Driving. Appl. Sci. 2023, 13, 8855. https://doi.org/10.3390/app13158855
Vasile L, Seitz B, Staab V, Liebherr M, Däsch C, Schramm D. Influences of Personal Driving Styles and Experienced System Characteristics on Driving Style Preferences in Automated Driving. Applied Sciences. 2023; 13(15):8855. https://doi.org/10.3390/app13158855
Chicago/Turabian StyleVasile, Laurin, Barbara Seitz, Verena Staab, Magnus Liebherr, Christoph Däsch, and Dieter Schramm. 2023. "Influences of Personal Driving Styles and Experienced System Characteristics on Driving Style Preferences in Automated Driving" Applied Sciences 13, no. 15: 8855. https://doi.org/10.3390/app13158855
APA StyleVasile, L., Seitz, B., Staab, V., Liebherr, M., Däsch, C., & Schramm, D. (2023). Influences of Personal Driving Styles and Experienced System Characteristics on Driving Style Preferences in Automated Driving. Applied Sciences, 13(15), 8855. https://doi.org/10.3390/app13158855