Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms
Abstract
:1. Introduction
2. The Scheduling Model of Freight Station
3. Methodologies
3.1. ABC Algorithm
3.2. The Improved ABC Algorithms
3.2.1. Paralleled Full-Dimensional ABC Algorithm
3.2.2. Random Multidimensional Artificial Bee Colony Algorithm
Algorithm 1: Pseudo-code of RmdABC. | |
01: | //Initialization, set the maximum number of iterations, the swarm size N, the number of dimension D |
02: | //Employed bee phase for i = 1 to FoodNumber |
03: | flag = 0; |
04: | Random_D = randi(D); //Generate a random sequence |
05: | //Random multi-dimensional greedy search strategy for j = 1 to Random_D |
06: | produce candidate solution with Equation (7), evaluate its fitness value; |
07: | if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1; |
08: | end if |
09: | end for |
10: | if flag = 1 then trial = 0; else trial + 1; |
11: | end if |
12: | end for |
13: | //Onlooker bee phase According to Equation (8), calculate the probability probi and determine if the onlooker bee chooses to exploit or not around the ith employed bee |
14: | for i = 1 to FoodNumber |
15: | flag = 0; |
16: | if rand < probi |
17: | produce the candidate solution with Equation (7) and evaluate its fitness value; |
18: | if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1; |
19: | end if |
20: | if flag = 1 then trial = 0; else trial + 1; |
21: | end if |
22: | end for |
23: | //Scout bee phase if trial > Limit |
24: | trial = 0; |
25: | Randomly generate a solution; |
26: | end if |
27: | end for |
4. Implementation and Experimental Results
4.1. Verification with Benchmark Functions
4.2. Scheduling Problem
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 889 | 654 | 805 | 841 | 912 | 735 | 889 | 903 | 836 | 749 |
Result/s | 6841.9 | 6811.9 | 6828.4 | 6779.6 | 6854.9 | 6819.5 | 6841.9 | 6866.1 | 6826.1 | 6811.9 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 889 | 654 | 901 | 912 | 912 | 905 | 697 | 903 | 827 | 749 |
Result/s | 6841.9 | 6811.9 | 6828.4 | 6854.9 | 6854.9 | 6819.5 | 6757.4 | 6866.1 | 6826.1 | 6828.4 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 4, 27, 25, 30, 26, 7, 15, 24, 2, 16, 17, 11 | 1 | 39, 40, 51, 45, 60, 34, 38, 44, 31, 46, 33, 59, 41 | |||||||
2 | 1, 5, 12, 14, 21, 10 | 2 | 52, 53, 58,3 6, 35, 55, 42 | |||||||
3 | 9 | 3 | 47, 54, 56, 43, 49 | |||||||
4 | 29, 8 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 22, 28 | 7 | 57, 50 | |||||||
8 | 18, 3, 20, 6 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 1098 | 872 | 725 | 915 | 1003 | 1000 | 697 | 605 | 835 | 898 |
Result/s | 6852.9 | 6772.4 | 6806.41 | 6697.15 | 6892.79 | 6905.64 | 6748.78 | 6865.9 | 6787.76 | 6803 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 732 | 1079 | 509 | 840 | 602 | 675 | 786 | 821 | 753 | 835 |
Result/s | 6839.3 | 6824.9 | 6877.64 | 6796.28 | 6787.27 | 6864.15 | 6808.01 | 6871.29 | 6839.52 | 6817.27 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 17, 25, 10, 16, 11, 15, 27, 26, 7, 24, 4, 30, 2 | 1 | 34, 33, 51, 60, 40, 45, 44, 39, 38, 41, 31, 46, 59 | |||||||
2 | 14, 21, 12, 1, 5 | 2 | 52, 36, 55, 35, 54, 53, 42, 58 | |||||||
3 | 9 | 3 | 56, 49, 43, 47 | |||||||
4 | 8, 29 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 22, 28, 13 | 7 | 57, 50 | |||||||
8 | 20, 18, 3, 6 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 488 | 230 | 223 | 501 | 179 | 346 | 267 | 464 | 202 | 595 |
Result/s | 6621.11 | 6623.11 | 6613.61 | 6609.98 | 6617.36 | 6617.24 | 6617.36 | 6611.73 | 6617.12 | 6615.49 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 213 | 464 | 228 | 82 | 82 | 536 | 153 | 524 | 422 | 388 |
Result/s | 6606.35 | 6617.48 | 6630.49 | 6615.37 | 6611.86 | 6617.36 | 6617.48 | 6619.24 | 6615.37 | 6611.74 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 15, 16, 24, 25, 17, 7, 11, 26, 4, 30, 2 | 1 | 46, 31, 41, 45, 44, 59, 38, 33, 60, 51, 34, 39, 40 | |||||||
2 | 14, 12, 5, 1, 10, 21 | 2 | 55, 42, 35, 58, 52, 36, 53 | |||||||
3 | 9 | 3 | 54, 56, 47, 43, 49 | |||||||
4 | 29, 27 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 28 | 7 | 57, 50 | |||||||
8 | 18, 6, 3, 20, 8, 3 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 209 | 209 | 213 | 209 | 223 | 546 | 580 | 209 | 331 | 423 |
Result/s | 6617.12 | 6617.12 | 6611.86 | 6617.12 | 6611.86 | 6611.86 | 6615.61 | 6617.12 | 6617.24 | 6617.36 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 539 | 191 | 209 | 223 | 529 | 580 | 546 | 223 | 209 | 223 |
Result/s | 6621.11 | 6611.86 | 6617.12 | 6611.86 | 6615.61 | 6615.61 | 6615.61 | 6611.86 | 6617.12 | 6611.86 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 15, 11, 30, 27, 7, 26, 24, 25, 17, 2, 16, 4 | 1 | 39, 59, 34, 38, 41, 40, 31, 60, 33, 45, 51, 46, 44 | |||||||
2 | 21, 14, 12, 1, 10, 5 | 2 | 52, 42, 58, 36, 53, 55, 35 | |||||||
3 | 9 | 3 | 47, 54, 49, 43, 56 | |||||||
4 | 29, 8 | 4 | 48, 32 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 22, 28 | 7 | 57, 50 | |||||||
8 | 20, 3, 6, 18 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, L.C.; Ng, T.S.; Lam, S.W. Improving air cargo service through efficient order release. In Proceedings of the 7th International Conference on Service Systems and Service Management, Tokyo, Japan, 28–30 June 2010. [Google Scholar]
- Wu, P.J.; Yang, C.K. Sustainable development in aviation logistics: Successful drivers and business strategies. Bus. Strategy Environ. 2021, 30, 3763–3771. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, K. International trade drivers and freight network analysis: The case of the Chinese air cargo sector. J. Transp. Geogr. 2018, 71, 253–262. [Google Scholar] [CrossRef]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Mao, J.; Wei, K. Energy-efficient Dispatching Solution in an Automated Air Cargo Terminal. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Madison, WI, USA, 17–20 August 2013; pp. 144–149. [Google Scholar]
- Hamzaoui, M.A.; Sari, Z. Optimal dimensions minimizing expected travel time of a single machine flow rack AS/RS. Mechatronics 2015, 31, 158–168. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Weidinger, F. Optimizing automated sorting in warehouses: The minimum order spread sequencing problem. Eur. J. Oper. Res. 2019, 270, 386–400. [Google Scholar] [CrossRef]
- Guo, C.H. Research on application of scheduling optimization of ETV based on improved genetic algorithm. Logist. Sci.-Tech. 2015, 38, 61–69. [Google Scholar]
- Qiu, J.D.; Jiang, Z.Y.; Tang, M.N. Research and application of NLAPSO algorithm to ETV scheduling optimization in airport cargo terminal. J. Lanzhou Jiaotong Univ. 2019, 34, 65–70. [Google Scholar]
- Ding, F.; Song, X.J. Application of shared fitness particle swarm in double ETV system. Comput. Meas. Control. 2018, 26, 228–247. [Google Scholar]
- Radhwan, A.A.; Saleh, R.A. Artificial bee colony algorithm with directed scout. Soft Comput. 2021, 25, 13567–13593. [Google Scholar]
- Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem. Appl. Soft Comput. 2019, 76, 595–606. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Betar, M.A.; Bolaji, A.L.; Doush, I.A.; Hammouri, A.I.; Mafarja, M. Island artificial bee colony for global optimization. Soft Comput. 2020, 24, 13461–13487. [Google Scholar] [CrossRef]
- Roeva, O.; Petkova, D.; Castillo, O. Joint set-up of parameters in genetic algorithms and the artificial bee colony algorithm: An approach for cultivation process modelling. Soft Comput. 2021, 25, 2015–2038. [Google Scholar] [CrossRef]
- Forouzandeh, S.; Berahmand, K.; Nasiri, E.; Rostami, M. A Hotel Recommender System for Tourists Using the Artificial Bee Colony Algorithm and Fuzzy TOPSIS Model: A Case Study of Trip Advisor. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 399–429. [Google Scholar] [CrossRef]
- Li, Y.C.; Liu, L.B.; Wang, J.; Zhao, J. Improved artificial bee algorithm for reliability-based optimization of truss structures. Open Civ. Eng. J. 2018, 11, 235–243. [Google Scholar]
- Luo, K.P. A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem. Eng. Optim. 2020, 52, 1421–1440. [Google Scholar] [CrossRef]
- Alazzawi, A.; Rais, H.M.; Basri, S. Hybrid artificial bee colony strategy for t-way test set generation with constraints support. In Proceedings of the IEEE Student Conference on Research and Development, Bandar Seri Iskandar, Malaysia, 15–17 October 2019. [Google Scholar]
- Weidinger, F. Picker routing in rectangular mixed shelves warehouses. Comput. Oper. Res. 2018, 95, 139–150. [Google Scholar] [CrossRef]
- Zhou, J.J.; Yao, X.F. A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition. Int. J. Adv. Manuf. Technol. 2017, 88, 3371–3387. [Google Scholar] [CrossRef]
- Chen, G.; Sun, P.; Zhang, J. Repair strategy of military communication network based on discrete artificial bee colony algorithm. IEEE Access 2020, 8, 73051–73060. [Google Scholar] [CrossRef]
- Ustun, D.; Toktas, A.; Erkan, U.; Akdagli, A. Modified artificial bee colony algorithm with differential evolution to enhance precision and convergence performance. Expert Syst. Appl. 2022, 198, 116930. [Google Scholar] [CrossRef]
- Long, X.J.; Zhang, J.T.; Zhou, K.; Jin, T.G. Dynamic Self-Learning Artificial Bee Colony Optimization Algorithm for Flexible Job-Shop Scheduling Problem with Job Insertion. Processes 2022, 10, 571. [Google Scholar] [CrossRef]
- Xu, F.Y.; Li, H.L.; Pun, C.M.; Hu, H.D. A new global best guided artificial bee colony algorithm with application in robot path planning. Appl. Soft Comput. 2020, 88, 106037. [Google Scholar] [CrossRef]
- Chen, X.; Wei, X.; Yang, G.X.; Du, W.L. Fireworks explosion based artificial bee colony for numerical optimization. Knowl.-Based Syst. 2020, 188, 105002. [Google Scholar] [CrossRef]
- Brajevic, I. A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems. Mathematics 2021, 9, 1211. [Google Scholar] [CrossRef]
- Wang, H.Q.; Wei, J.H.; Wen, S.J.; Hou, Y.L. Research on parallel optimization of artificial bee colony algorithm. In Proceedings of the International Conference on Advanced Mechatronic system, Auckland, New Zealand, 9–12 July 2018. [Google Scholar]
- Karaboga, D.; Akay, B. A comparative study of Artifificial Bee Colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar]
The Name of Function | Function Expression | Search Space | Minimum Value |
---|---|---|---|
1. Bent Cigar Function | |||
2. Sum of Different Power Function | |||
3. Rosenbrock’s Function | |||
4. Rastrigin’s Function | |||
5. Step’s Function |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Variance of Optimal Result/s |
---|---|---|---|---|---|---|
1.Bent Cigar Function | ABC | 111.849 | 2.320 × 105 | 1.709 × 105 | 111.4955 | 2.039 × 109 |
fdABC | 253.316 | 2.929 × 10−252 | 1.416 × 10−252 | 251.577 | 0 | |
RmdABC | 188.172 | 1.654 × 10−2 | 1.49 × 10−4 | 179.199 | 2.28 × 10−4 | |
PfdABC | 256.408 | 2.995 × 10−16 | 1.028 × 10−16 | 179.199 | 1.055 × 10−32 | |
2. Sum of Different Power Function | ABC | 121.258 | 3.0245 × 1041 | 1.593 × 1036 | 120.91 | 4.433 × 1083 |
fdABC | 676.282 | 8.680 × 10−255 | 7.047 × 10−258 | 672.29 | 0 | |
RmdABC | 401.083 | 2.091 × 10−42 | 6.660 × 10−46 | 395.373 | 1.791 × 10−83 | |
PfdABC | 490.647 | 4.164 × 10−89 | 1.902 × 10−90 | 488.905 | 4.053 × 10−177 | |
3. Rosenbrock’s Function | ABC | 116.400 | 5490.448 | 4884.468 | 115.536 | 2.083 × 105 |
fdABC | 284.881 | 2.33 × 10−3 | 1.27 × 10−4 | 279.176 | 2.021 × 10−6 | |
RmdABC | 212.479 | 1.1359 | 0.323 | 208.025 | 1.013 | |
PfdABC | 288.203 | 0.140 | 0.0072 | 286.3592 | 0.0245 | |
4. Rastrigin’s Function | ABC | 121.356 | 198.642 | 179.002 | 121.051 | 163.148 |
fdABC | 250.787 | 0 | 0 | 245.425 | 0 | |
RmdABC | 190.324 | 4.145 × 10−6 | 2.271 × 10−7 | 189.681 | 2.759 × 10−11 | |
PfdABC | 279.681 | 2.956 × 10−13 | 2.274 × 10−13 | 272.530 | 3.447 × 10−27 | |
5. Step’s Function | ABC | 120.309 | 0.232 | 0.177 | 119.949 | 0.843 × 10−4 |
fdABC | 224.032 | 0 | 0 | 218.470 | 0 | |
RmdABC | 178.819 | 1.262 × 10−8 | 4.285 × 10−10 | 178.200 | 1.121 × 10−16 | |
PfdABC | 266.942 | 3.298 × 10−22 | 1.464 × 10−22 | 255.218 | 1.416 × 10−44 |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Var Optimal Result/s | |
---|---|---|---|---|---|---|---|
1. Bent Cigar Function | ABC | 186.356 | 7.443 × 107 | 6.612 × 107 | 185.785 | 8.560 × 1013 | |
fdABC | 349.896 | 9.500 × 10−25 | 1.073 × 10−251 | 341.500 | 0 | ||
RmdABC | 254.843 | 1.830 | 0.187 | 242.967 | 8.657926 | ||
PfdABC | 336.140 | 3.739 × 10−11 | 2.729 × 10−11 | 330.117 | 6.778 × 10−23 | ||
2. Sum of Different Power Function | ABC | 161.169 | 7.666 × 1082 | 9.065 × 1073 | 157.306 | 5.875 × 10116 | |
fdABC | 1092.133 | 5.377 × 10−250 | 9.849 × 10−253 | 1083.415 | 0 | ||
RmdABC | 641.927 | 1.236 × 10−18 | 4.733 × 10−22 | 629.479 | 1.193259 × 10−35 | ||
PfdABC | 767.770 | 9.062 × 10−72 | 2.578 × 10−72 | 761.159 | 6.124 × 10−143 | ||
3. Rosenbrock’s Function | ABC | 153.868 | 65,508.192 | 53,885.588 | 152.849 | 7.237 × 107 | |
fdABC | 408.311 | 0.00517 | 0.000291 | 393.921 | 3.638 × 10−5 | ||
RmdABC | 297.845 | 2.626 | 1.1049 | 287.474 | 1.758 | ||
PfdABC | 388.867 | 0.264 | 0.041 | 380.135 | 0.064 | ||
4. Rastrigin’s Function | ABC | 155.747 | 759.215 | 687.486 | 153.785 | 2578.573 | |
fdABC | 351.982 | 0 | 0 | 346.306 | 0 | ||
RmdABC | 275.060 | 0.0184 | 0.0056 | 270.149 | 9.127 × 10−5 | ||
PfdABC | 358.622 | 4.206 × 10−13 | 2.274 × 10−13 | 353.856 | 5.888 × 10−27 | ||
5. Step’s Function | ABC | 151.843 | 8.142 | 6.349 | 151.444 | 0.965 | |
fdABC | 300.048 | 0 | 0 | 297.340 | 0 | ||
RmdABC | 537.590 | 6.049 × 10−7 | 2.1807 × 10−8 | 373.611 | 3.606 × 10−13 | ||
PfdABC | 333.573 | 3.940 × 10−17 | 2.531 × 10−17 | 323.896 | 9.741 × 10−35 |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Var Optimal Result/s |
---|---|---|---|---|---|---|
1. Bent Cigar Function | ABC | 223.196 | 3.787 × 108 | 3.416 × 108 | 222.774 | 1.099 × 1015 |
fdABC | 425.692 | 2.044 × 10−251 | 1.091 × 10−251 | 420.020 | 0 | |
RmdABC | 303.243 | 12.037 | 0.405 | 300.169 | 199.478 | |
PfdABC | 399.895 | 4.392 × 10−8 | 3.463 × 10−8 | 387.853 | 6.669 × 10−17 | |
2. Sum of Different Power Function | ABC | 199.808 | 2.279 × 10120 | 7.215 × 10111 | 197.343 | 2.222 × 10241 |
fdABC | 1664.371 | 1.671 × 10−245 | 6.863 × 10−248 | 1619.398 | 0 | |
RmdABC | 920.823 | 3.470 × 10−6 | 4.151 × 10−9 | 911.149 | 1.069 × 10−10 | |
PfdABC | 1120.629 | 8.680 × 10−57 | 3.9115 × 10−58 | 1115.067 | 5.118 × 10−113 | |
3. Rosenbrock’s Function | ABC | 189.997 | 5.919 × 103 | 4.346 × 105 | 186.093 | 9.399 × 109 |
fdABC | 538.976 | 0.00884 | 0.001 | 504.637 | 1.04 × 10−4 | |
RmdABC | 351.792 | 6.042937 | 1.430 | 337.071 | 18.386 | |
PfdABC | 456.292 | 1.021 | 0.201 | 449.671 | 1.568 | |
4. Rastrigin’s Function | ABC | 193.990 | 152.642 | 193.287 | 193.2873 | 65.193 |
fdABC | 458.470157 | 0 | 0 | 452.714 | 0 | |
RmdABC | 574.398 | 7.97 × 10−4 | 8.599 × 10−5 | 573.802 | 7.859 × 10−7 | |
PfdABC | 454.618 | 1.136 × 10−10 | 8.356 × 10−11 | 450.936 | 2.190 × 10−22 | |
5. Step’s Function | ABC | 189.754 | 78.395 | 63.6545 | 187.726 | 97.986519 |
fdABC | 637.867 | 0 | 0 | 622.008 | 0 | |
RmdABC | 289.625 | 1.379 × 10−7 | 1.838 × 10−8 | 287.601 | 1.87107 × 10−14 | |
PfdABC | 398.953 | 5.632 × 10−14 | 2.467 × 10−14 | 391.252 | 3.979 × 10−28 |
Inbound Tasks | Inbound Tasks | Outbound Tasks | Outbound Tasks | ||||
---|---|---|---|---|---|---|---|
1 | I(1-5-34) | 16 | I(1-8-44) | 31 | O(1-3-10) | 46 | O(2-8-10) |
2 | I(2-3-14) | 17 | I(2-8-32) | 32 | O(1-5-55) | 47 | O(1-3-32) |
3 | I(1-3-58) | 18 | I(2-3-54) | 33 | O(1-5-25) | 48 | O(1-4-50) |
4 | I(1-5-26) | 19 | I(1-3-40) | 34 | O(2-4-8) | 49 | O(2-3-38) |
5 | I(1-5-30) | 20 | I(1-4-60) | 35 | O(2-2-18) | 50 | O(2-1-58) |
6 | I(1-2-55) | 21 | I(1-3-20) | 36 | O(2-1-16) | 51 | O(1-5-24) |
7 | I(1-5-24) | 22 | I(2-2-43) | 37 | O(2-3-51) | 52 | O(1-4-30) |
8 | I(1-4-40) | 23 | I(2-4-50) | 38 | O(1-5-6) | 53 | O(2-6-40) |
9 | I(1-5-40) | 24 | I(1-6-10) | 39 | O(2-5-3) | 54 | O(2-4-35) |
10 | I(1-5-35) | 25 | I(2-7-20) | 40 | O(1-6-12) | 55 | O(2-8-51) |
11 | I(2-5-23) | 26 | I(1-6-15) | 41 | O(2-6-13) | 56 | O(2-2-30) |
12 | I(1-7-43) | 27 | I(2-8-30) | 42 | O(2-7-49) | 57 | O(1-2-60) |
13 | I(1-3-48) | 28 | I(2-2-45) | 43 | O(1-7-57) | 58 | O(1-3-26) |
14 | I(1-8-50) | 29 | I(1-7-58) | 44 | O(1-5-25) | 59 | O(1-6-35) |
15 | I(1-6-21) | 30 | I(1-4-9) | 45 | O(2-6-18) | 60 | O(2-8-10) |
Min (s) | Max (s) | Avg (s) | Ite | |
---|---|---|---|---|
PSO | 6757.4 | 6854.9 | 6828.6 | 828 |
ABC | 6697.14 | 6905.64 | 6822.92 | 814 |
PfdABC | 6606.35 | 6630.49 | 6616.34 | 329 |
RmdABC | 6611.86 | 6621.11 | 6615.19 | 332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Su, M.; Xu, X.; Haasis, H.-D.; Zhao, R.; Wen, S.; Wang, Y. Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Appl. Sci. 2023, 13, 8750. https://doi.org/10.3390/app13158750
Wang H, Su M, Xu X, Haasis H-D, Zhao R, Wen S, Wang Y. Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Applied Sciences. 2023; 13(15):8750. https://doi.org/10.3390/app13158750
Chicago/Turabian StyleWang, Haiquan, Menghao Su, Xiaobin Xu, Hans-Dietrich Haasis, Ran Zhao, Shengjun Wen, and Yan Wang. 2023. "Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms" Applied Sciences 13, no. 15: 8750. https://doi.org/10.3390/app13158750
APA StyleWang, H., Su, M., Xu, X., Haasis, H.-D., Zhao, R., Wen, S., & Wang, Y. (2023). Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Applied Sciences, 13(15), 8750. https://doi.org/10.3390/app13158750