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Abstract: Due to the rapid increase in cargoes and postal transport volumes in smart transportation
systems, an efficient automated multidimensional terminal with autonomous elevating transfer
vehicles (ETVs) should be established, and an effective cooperative scheduling strategy for vehicles
needs to be designed for improving cargo handling efficiency. In this paper, as one of the most
effective artificial intelligence technologies, the artificial bee colony algorithm (ABC), which possesses
a strong global optimization ability and fewer parameters, is firstly introduced to simultaneously
manage the autonomous ETVs and assign the corresponding entrances and exits. Moreover, as
ABC has the disadvantage of slow convergence rate, a novel full-dimensional search strategy with
parallelization (PfdABC) and a random multidimensional search strategy (RmdABC) are incorporated
in the framework of ABC to increase the convergence speed. After being evaluated on benchmark
functions, it is applied to solve the combinatorial optimization problem with multiple tasks and
multiple entrances and exits in the terminal. The simulations show that the proposed algorithms
can achieve a much more desired performance than the traditional artificial bee colony algorithm
in terms of balancing the exploitation and exploration abilities, especially when dealing with the
cooperative control and scheduling problems.

Keywords: intelligent scheduling; artificial bee colony algorithm; vehicle cooperative control;
parallelization; multidimensional search

1. Introduction

Nowadays, transport activities around the world are developing rapidly, and the coop-
erative management of cargo terminals, which are the major gateway for cargo services, has
become crucial. Thus, an effective and efficient scheduling and cooperative management
strategy considering the route of ETVs and the assignment of entrances and exits should be
designed to minimize the time cost for handling all inbound and outbound cargoes [1–3].

Actually, if the numbers of ETVs and tasks are small, the scheduling problem can be
regarded as a zero-one integer linear programming problem and can be solved using the
simple method, such as the Hungarian algorithm [4], the mixed-integer linear model [5],
the enumeration technique [6], the priority rule-based procedure [7], and so on. But for
large-scale problems that are difficult to be solved by traditional optimization algorithms,
the evolutionary algorithms with high robustness, become more effective. Guo [8] and
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Qiu [9] studied the inbound and outbound cargo scheduling problem with a single ETV and
solved it with the genetic algorithm and the particle swarm optimization (PSO) algorithm,
respectively. PSO was also applied to assign two ETVs to different cargo areas with an
improved shared fitness strategy in ref. [10]. The works mentioned above focus on deciding
the cargo transportation sequence by considering the picking sequence and ETV routing,
but very few studies have discussed the problem of the assignment of entrances and exits
if there are several gates in the freight station.

In our research, a swarm intelligent algorithm named the artificial bee colony algorithm
(ABC), which possesses a strong global optimization ability and fewer parameters [11–14],
is firstly proposed to solve the problem of assigning the entrances and exits as well as
autonomous ETVs for several outbound and inbound tasks simultaneously. Actually, as
an artificial intelligence algorithm, the ABC has been well adapted for various complex
optimization and scheduling problems [15–21]; however, it often suffers from the problem
of a slow convergence rate because of its single-dimensional random search strategy in the
bee updating phases. To accelerate the convergence speed without reducing the accuracy,
other metaheuristic algorithms were introduced and combined with the traditional ABC.
Ustun and Toktas [22] combined the mutation and the crossover operators in differential
evolution algorithm with the onlooker bee phases to improve the accuracy and speed
up the convergence. Aiming at improving the optimization accuracy, combined with
the learning characteristics of the Q-learning algorithm, the update dimension in each
iteration could be dynamically adjusted in ref. [23]. Xu et al. [24] introduced a differential
evolution strategy in the employed bee phase to accelerate its convergence and adopted
the global best position to guide the updating processes in the onlooker bee phase, which
could enhance the local search ability. The firework explosion search mechanism was
introduced to explore the potential food sources of ABC in ref. [25]. A modified search
operator was employed in ref. [26] to exploit useful information of the current best solution
in the onlooker phase, and the ability of exploitation could be improved. Obviously, most
of the improvements are based on the introduced search strategies or the combinations
with other algorithms, and there are few systematic analyses and improvements from the
perspective of operation mechanisms. Therefore, for balancing the abilities of exploration
and exploitation, after modeling the actions of the ETV in a cargo terminal with multiple
entrances and exits, improved ABC algorithms with paralleled full-dimensional search
strategy and random multidimensional search strategy are proposed in this paper.

The rest of paper is organized as follows: Section 2 introduces how to establish the
scheduling model for a cargo terminal. Then, two improved strategies based on the ABC
are proposed in Section 3. In Section 4, the improved algorithms are applied to solve the
ETV scheduling problem considering multiple entrances and exits. Finally, the above work
is summarized.

2. The Scheduling Model of Freight Station

The airport freight station consists of a container storage area, a bulk cargo storage
area, and an unhandled cargo area. As the core of the whole station, the container storage
area is a three-dimensional warehouse used for handling the containerized cargo which is
unloaded from aircraft on the air side or inbounded from the bulk cargo storage area on the
land side. The shelves in the warehouse consist of two rows with 16 entrances and exits,
and each row has eight layers and 60 columns.

ETV is employed for handling cargoes between different entrances and exits. During
the pickup and delivery operations, ETVs experience three stages, which are acceleration,
constant speed, and deceleration, in the horizontal and vertical directions. Thus, the time
needed to finish a whole delivery process is determined by the maximum value between
the horizontal travelling time Tx and the vertical lifting time Ty, which are defined as
Equations (1) and (2). {

Tx = 2 ∗
√

w ∗ u
ax

, w ∗ u ≤ Dx;

Tx = Txi +
w ∗ u − Dx

Vx
, w ∗ u > Dx.

(1)
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 Ty = 2 ∗
√

h ∗ e
ay

, h ∗ e ≤ Dy;

Ty = Tyj +
h ∗ e − Dy

Vy
, h ∗ e > Dy.

(2)

Here, e and u are the differences of layers and columns between the initial position
and the destination, h and w are the height and width of storage location, and ax, ay, Vx, and
Vy are the accelerations and velocities in horizontal and vertical directions, respectively.

Equations (3) and (4) describe the time costs Txi and Tyj, and the travelled distances
Dx and Dy, when ETV accelerates to the maximum speed and immediately decelerates to 0
in different directions

Txi = 2 ∗Vx/ax, Tyj = 2 ∗Vy/ay (3)

Dx =
1
4
∗ ax ∗ Txi

2, Dy =
1
4
∗ ay ∗ Tyj

2 (4)

Based on the motion analysis for ETVs, the time cost Ti needed to execute the ith task,
including picking up, releasing, as well as moving the assigned cargoes, is expressed as
Equation (5),

Ti = Ti0 + Ti1 + 2ζ (5)

Here, Ti0 is the time needed to move from its current position to the cargo’s position,
Ti1 is the time used to move to the destination after an ETV receives the cargo, and ζ is the
time used to load or unload the cargo.

Thus, if there are n independent inbound and outbound tasks in the cargo terminal, in
order to improve its operational efficiency, the sequence of inbound and outbound tasks
considering the actions of the ETV should be scheduled, and the total time cost T defined
as Equation (6) should be minimized.

Minimize T = ∑n
i=1 Ti = ∑n

i=1

(
Ti0 + Ti1

)
+ 2nζ (6)

In order to solve the minimization problem mentioned above, an effective optimization
algorithm should be introduced.

3. Methodologies
3.1. ABC Algorithm

As a typical swarm intelligence algorithm, ABC simulates the foraging behaviors of
natural bees, where a food source represents a solution and its fitness is measured in terms
of nectar amount.

The algorithm begins with a randomly distributed initial population generation and
evaluation [11]. Then, repeated search cycles are executed to update the optimal solution.
During the cycles, as shown in Equation (7), employed bee probabilistically produces
neighbor food source x′ik around the current optimal solution xik.

x′ik = xik + rand(−1, 1) ∗
(

xik − xjk

)
(7)

Here, i and j represent the numbers of the solutions, i, j ∈ {1, 2, . . ., N}, i 6= j. k is the
dimension of the solution, which is selected randomly, k ∈ {1, 2, . . ., D}.

Subsequently, the mth onlooker bee randomly chooses to exploit or not around corre-
sponding employed bee with the probability Pm defined as Equation (8).

Pm =
f itnessm

∑SN
m=1 f itnessm

(8)

If the current solution to be exploited cannot be improved for several iterations, it will
be abandoned, and a randomly produced scout bee will replace it.
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3.2. The Improved ABC Algorithms

Obviously, in the ABC algorithm, a random single dimensional search is executed,
which means only one dimension will be randomly selected and updated according to
Equation (7) in either the employed bee phase or onlooker bee phase. In this case, the
updated dimension may be different in each iteration and the optimal dimension obtained
in the previous iterations is likely to be omitted in the following iterations. Thus, the
search toward the possible optimal solution is unable to be continued, and the optimization
accuracy as well as the convergence speed will be affected. To improve the probability of
obtaining the optimal solution without any influence on the convergence speed, several
improvements are introduced in this section.

3.2.1. Paralleled Full-Dimensional ABC Algorithm

Different from randomly updating only one dimension in traditional ABC algorithm,
the full-dimensional search strategy (fdABC) is introduced in this section, where all di-
mensions of the solution are traversed with Equation (7) and the optimal dimension is
kept for further exploration, therefore the search could be extended and the possibility
of obtaining the optimal solution will be improved, but the cost of time will increase in-
evitably. In order to improve its efficiency, a master-slave parallel mode [27] is applied to
the most time-consuming stages, such as the calculation of initial fitness values and the
updating procedure in the employed bee phase, in which the population is divided into
different parts and the repeated calculations are executed in multi-core processor. Thus
the corresponding tasks could be finished in parallel, meanwhile the process of the ABC
algorithm will not be affected. The following are the main steps of PfdABC algorithm:

Step 1: Initialization. The parameters of ABC, including the food source, the popula-
tion, and the maximum number of iterations are initialized, and the initial population is
divided into different parts. Then, each of them is evaluated in different CPU cores.

Step 2: Employed bee phase. A full-dimensional search is performed in this phase. All
the employed bees are equally distributed into different CPU cores, and the neighborhood
searches using Equation (7) are executed in all dimensions, where k varies from zero to
the number of dimensions. If the fitness value of the updated solution is better than the
previous one, it will be preserved for further searches.

Step 3: Onlooker bee phase. Onlooker bee selects a food source with Equation (8) and
executes a full-dimensional search around the selected solution.

Step 4: Scout bee phase. If the number of iteration reaches the threshold and there is
no better solution, a new solution will be generated randomly.

Step 5: Record the global optimal solution obtained so far and jump to step 2 for
further exploration until reaching the maximum iteration number.

3.2.2. Random Multidimensional Artificial Bee Colony Algorithm

The PfdABC algorithm mentioned above travels all the dimensions in parallel, which
could improve the optimization accuracy and efficiency. In this part, another algorithm
named random multidimensional artificial bee colony (RmdABC) algorithm is proposed to
balance the abilities of exploration and exploitation. The key improvement of the strategy
is to randomly select several dimensions from {1, 2, . . ., D}, and execute corresponding
updating cycles with Equation (7) in the related dimensions. The number of updating
cycles for one solution is equal to the number of selected dimensions, that is, it could be one
to D. As RmdABC randomly traverses any number of dimensions for each solution, fewer
dimensions are updated compared to PfdABC, and its time complexity could be greatly
improved. On the other hand, RmdABC covers more dimensions compared to ABC, and
the likelihood of obtaining the optimal solution could be enhanced. The pseudo-code of
RmdABC is shown as Algorithm 1.
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Algorithm 1: Pseudo-code of RmdABC.

01: //Initialization,
set the maximum number of iterations, the swarm size N, the number of dimension D

02: //Employed bee phase
for i = 1 to FoodNumber

03: flag = 0;
04: Random_D = randi(D); //Generate a random sequence
05: //Random multi-dimensional greedy search strategy

for j = 1 to Random_D
06: produce candidate solution with Equation (7), evaluate its fitness value;
07: if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1;
08: end if
09: end for
10: if flag = 1 then trial = 0; else trial + 1;
11: end if
12: end for
13: //Onlooker bee phase

According to Equation (8), calculate the probability probi and determine if the onlooker
bee chooses to exploit or not around the ith employed bee

14: for i = 1 to FoodNumber
15: flag = 0;
16: if rand < probi
17: produce the candidate solution with Equation (7) and evaluate its fitness value;
18: if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1;
19: end if
20: if flag = 1 then trial = 0; else trial + 1;
21: end if
22: end for
23: //Scout bee phase

if trial > Limit
24: trial = 0;
25: Randomly generate a solution;
26: end if
27: end for

As stated above, more dimensions are explored in fdABC compared to ABC, but more
time is needed. With the master-slave parallel strategy, calculations could be executed
in different CPU cores, and the time for optimization could be reduced; through random
dimensional selection, less dimensions will be explored, thus the efficiency could be im-
proved. Therefore, the two proposed strategies could effectively balance the abilities of
exploration and exploitation.

4. Implementation and Experimental Results

To evaluate the performance of the proposed algorithms, we consider two cases, which
are the benchmark functions and the task-set scheduling problem in an air cargo terminal.

Corresponding experiments are executed using MATLAB on a computer with Inter(R)
Core (TM) i7-8750h CPU @2.20Ghz, 16 GB of memory. The parameters of the PSO and ABC
algorithms are set as follows: The swarm size of the corresponding algorithms is set to 200;
the maximum number of local searches is 100; the maximum number of iterations is equal
to 1500; cognitive and social components of PSO are both set to 1.8; and the inertia weight,
which determines how the previous velocity of the particle influences the velocity in the
next iteration, is 0.6, as recommended in [28].

4.1. Verification with Benchmark Functions

CEC benchmark functions as shown in Table 1 are introduced, and ABC, fdABC,
PfdABC, as well as RmdABC are applied to solve them with MATLAB. The algorithms are
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executed twenty times, and the simulation statistical results, including average runtime,
shortest runtime, average optimal results, best optimization solutions, and their variances,
are concluded in Tables 2–4, corresponding to different dimensions.

Table 1. Benchmark functions.

The Name of Function Function Expression Search Space Minimum Value

1. Bent Cigar Function f1(x) = x2
1 + 106

D

∑
i=2

x2
i

[−100, 100]D 0

2. Sum of Different Power Function
f2(x) =

D

∑
i=1
|x i |

i+1 [−100, 100]D 0

3. Rosenbrock’s Function
f3(x) =

D−1

∑
i=1

(100
(
xi

2 − xi+1
)2

+ (xi − 1)2)
[−100, 100]D 0

4. Rastrigin’s Function f4(x) =
n

∑
i=1

[x2
i − 10 cos(2πxi) + 10] [−500, 500]D 0

5. Step’s Function f5(x) =
n

∑
i=1

(|xi + 0.5|)2 [−100, 100]D 0

Table 2. The performance of PfdABC, RmdABC, fdABC, and ABC on 60 dimensions.

Function Name Algorithm Average
Runtime/s

Average Optimal
Result/s

Best Optimal
Result/s

Shortest
Runtime/s

Variance of
Optimal Result/s

1.Bent Cigar Function

ABC 111.849 2.320 × 105 1.709 × 105 111.4955 2.039 × 109

fdABC 253.316 2.929 × 10−252 1.416 × 10−252 251.577 0
RmdABC 188.172 1.654 × 10−2 1.49 × 10−4 179.199 2.28 × 10−4

PfdABC 256.408 2.995 × 10−16 1.028 × 10−16 179.199 1.055 × 10−32

2. Sum of Different Power
Function

ABC 121.258 3.0245 × 1041 1.593 × 1036 120.91 4.433 × 1083

fdABC 676.282 8.680 × 10−255 7.047 × 10−258 672.29 0
RmdABC 401.083 2.091 × 10−42 6.660 × 10−46 395.373 1.791 × 10−83

PfdABC 490.647 4.164 × 10−89 1.902 × 10−90 488.905 4.053 × 10−177

3. Rosenbrock’s Function

ABC 116.400 5490.448 4884.468 115.536 2.083 × 105

fdABC 284.881 2.33 × 10−3 1.27 × 10−4 279.176 2.021 × 10−6

RmdABC 212.479 1.1359 0.323 208.025 1.013
PfdABC 288.203 0.140 0.0072 286.3592 0.0245

4. Rastrigin’s Function

ABC 121.356 198.642 179.002 121.051 163.148
fdABC 250.787 0 0 245.425 0

RmdABC 190.324 4.145 × 10−6 2.271 × 10−7 189.681 2.759 × 10−11

PfdABC 279.681 2.956 × 10−13 2.274 × 10−13 272.530 3.447 × 10−27

5. Step’s Function

ABC 120.309 0.232 0.177 119.949 0.843 × 10−4

fdABC 224.032 0 0 218.470 0
RmdABC 178.819 1.262 × 10−8 4.285 × 10−10 178.200 1.121 × 10−16

PfdABC 266.942 3.298 × 10−22 1.464 × 10−22 255.218 1.416 × 10−44

Table 3. The performance of PfdABC, RmdABC, fdABC, and ABC on 80 dimensions.

Function Name Algorithm Average
Runtime/s

Average Optimal
Result/s

Best Optimal
Result/s

Shortest
Runtime/s

Var Optimal
Result/s

1. Bent Cigar Function

ABC 186.356 7.443 × 107 6.612 × 107 185.785 8.560 × 1013

fdABC 349.896 9.500 × 10−25 1.073 × 10−251 341.500 0
RmdABC 254.843 1.830 0.187 242.967 8.657926
PfdABC 336.140 3.739 × 10−11 2.729 × 10−11 330.117 6.778 × 10−23

2. Sum of Different
Power Function

ABC 161.169 7.666 × 1082 9.065 × 1073 157.306 5.875 × 10116

fdABC 1092.133 5.377 × 10−250 9.849 × 10−253 1083.415 0
RmdABC 641.927 1.236 × 10−18 4.733 × 10−22 629.479 1.193259 × 10−35

PfdABC 767.770 9.062 × 10−72 2.578 × 10−72 761.159 6.124 × 10−143

3. Rosenbrock’s
Function

ABC 153.868 65,508.192 53,885.588 152.849 7.237 × 107

fdABC 408.311 0.00517 0.000291 393.921 3.638 × 10−5

RmdABC 297.845 2.626 1.1049 287.474 1.758
PfdABC 388.867 0.264 0.041 380.135 0.064
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Table 3. Cont.

Function Name Algorithm Average
Runtime/s

Average Optimal
Result/s

Best Optimal
Result/s

Shortest
Runtime/s

Var Optimal
Result/s

4. Rastrigin’s
Function

ABC 155.747 759.215 687.486 153.785 2578.573
fdABC 351.982 0 0 346.306 0

RmdABC 275.060 0.0184 0.0056 270.149 9.127 × 10−5

PfdABC 358.622 4.206 × 10−13 2.274 × 10−13 353.856 5.888 × 10−27

5. Step’s Function

ABC 151.843 8.142 6.349 151.444 0.965
fdABC 300.048 0 0 297.340 0

RmdABC 537.590 6.049 × 10−7 2.1807 × 10−8 373.611 3.606 × 10−13

PfdABC 333.573 3.940 × 10−17 2.531 × 10−17 323.896 9.741 × 10−35

Table 4. The performance of PfdABC, RmdABC, fdABC and ABC on 100 dimensions.

Function Name Algorithm Average
Runtime/s

Average Optimal
Result/s

Best Optimal
Result/s

Shortest
Runtime/s

Var Optimal
Result/s

1. Bent Cigar Function

ABC 223.196 3.787 × 108 3.416 × 108 222.774 1.099 × 1015

fdABC 425.692 2.044 × 10−251 1.091 × 10−251 420.020 0
RmdABC 303.243 12.037 0.405 300.169 199.478
PfdABC 399.895 4.392 × 10−8 3.463 × 10−8 387.853 6.669 × 10−17

2. Sum of Different
Power Function

ABC 199.808 2.279 × 10120 7.215 × 10111 197.343 2.222 × 10241

fdABC 1664.371 1.671 × 10−245 6.863 × 10−248 1619.398 0
RmdABC 920.823 3.470 × 10−6 4.151 × 10−9 911.149 1.069 × 10−10

PfdABC 1120.629 8.680 × 10−57 3.9115 × 10−58 1115.067 5.118 × 10−113

3. Rosenbrock’s
Function

ABC 189.997 5.919 × 103 4.346 × 105 186.093 9.399 × 109

fdABC 538.976 0.00884 0.001 504.637 1.04 × 10−4

RmdABC 351.792 6.042937 1.430 337.071 18.386
PfdABC 456.292 1.021 0.201 449.671 1.568

4. Rastrigin’s
Function

ABC 193.990 152.642 193.287 193.2873 65.193
fdABC 458.470157 0 0 452.714 0

RmdABC 574.398 7.97 × 10−4 8.599 × 10−5 573.802 7.859 × 10−7

PfdABC 454.618 1.136 × 10−10 8.356 × 10−11 450.936 2.190 × 10−22

5. Step’s Function

ABC 189.754 78.395 63.6545 187.726 97.986519
fdABC 637.867 0 0 622.008 0

RmdABC 289.625 1.379 × 10−7 1.838 × 10−8 287.601 1.87107 × 10−14

PfdABC 398.953 5.632 × 10−14 2.467 × 10−14 391.252 3.979 × 10−28

The results show that the average runtime and shortest runtime on all benchmark
functions corresponding to PfdABC, fdABC, and RmdABC increase, but the quality of the
optimal solution as well as the local-searching ability have been improved significantly
compared to ABC, meanwhile the optimal variances on different dimensions show that the
stabilities have been greatly improved with the three proposed strategies.

Figure 1 graphically shows the fitness values for solving Expanded Schaffer’s Function
with different dimensions. Obviously, fdABC, PfdABC, and RmdABC algorithms possess
faster convergence speeds and better accuracies compared with ABC.

Based on the results above, the introduction of the random multidimensional strategy
and parallel full-dimensional strategy greatly improves the performance of traditional ABC.
fdABC possesses the best optimization result, but it spends too much time on optimizing.
The optimization solutions corresponding to PfdABC and RmdABC are not as good as
fdABC, but they can reduce the optimization time effectively. The time cost of RmdABC
is lower than fdABC and PfdABC, as RmdABC randomly selects part of dimensions in
each iteration. Obviously, the proposed PfdABC and RmdABC algorithms could balance
the abilities of exploration and exploitation compared to ABC and fdABC, and the cor-
responding algorithms must be selected during application on the basis of the practical
problems.
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4.2. Scheduling Problem

The cargo terminal mentioned in this section is the northern freight area in Xinzheng
international airport, and there are totally 16 entrances and exits in total in the container
storage area. The coordinates of the nine entrances are R1(1-1-5), R2(2-1-15), R3(1-1-20),
R4(1-1-25), R5(1-1-30), R6(1-1-35), R7(1-1-40), R8(1-1-50), and R9(1-1-60), and the coordi-
nates of exits are C1(1-1-8), C2(1-1-18), C3(1-1-28), C4(1-1-38), C5(1-1-48), C6(2-1-53), and
C7(1-1-58) respectively, where the first value in the bracket represents the row number of
shelf, the second value indicates the number of layers, and the third value is the number of
columns. Sixty tasks are waiting to be scheduled, where the first thirty tasks are inbound
and the later thirty tasks are outbound. The assigned positions are listed as Table 5.

Table 5. Task sets to be scheduled.

Inbound Tasks Inbound Tasks Outbound Tasks Outbound Tasks

1 I(1-5-34) 16 I(1-8-44) 31 O(1-3-10) 46 O(2-8-10)
2 I(2-3-14) 17 I(2-8-32) 32 O(1-5-55) 47 O(1-3-32)
3 I(1-3-58) 18 I(2-3-54) 33 O(1-5-25) 48 O(1-4-50)
4 I(1-5-26) 19 I(1-3-40) 34 O(2-4-8) 49 O(2-3-38)
5 I(1-5-30) 20 I(1-4-60) 35 O(2-2-18) 50 O(2-1-58)
6 I(1-2-55) 21 I(1-3-20) 36 O(2-1-16) 51 O(1-5-24)
7 I(1-5-24) 22 I(2-2-43) 37 O(2-3-51) 52 O(1-4-30)
8 I(1-4-40) 23 I(2-4-50) 38 O(1-5-6) 53 O(2-6-40)
9 I(1-5-40) 24 I(1-6-10) 39 O(2-5-3) 54 O(2-4-35)

10 I(1-5-35) 25 I(2-7-20) 40 O(1-6-12) 55 O(2-8-51)
11 I(2-5-23) 26 I(1-6-15) 41 O(2-6-13) 56 O(2-2-30)
12 I(1-7-43) 27 I(2-8-30) 42 O(2-7-49) 57 O(1-2-60)
13 I(1-3-48) 28 I(2-2-45) 43 O(1-7-57) 58 O(1-3-26)
14 I(1-8-50) 29 I(1-7-58) 44 O(1-5-25) 59 O(1-6-35)
15 I(1-6-21) 30 I(1-4-9) 45 O(2-6-18) 60 O(2-8-10)

For solving the optimal scheduled sequence, a sort mapping coding (SMC) strategy is
introduced to establish the mapping relationship between the solution and optimization
algorithm. It assigns a random number to each dimension of the solution, then sorts
the numbers in ascending order and assigns index values based on their sequence. The
resulting sequence represented by the index values is the scheduling scheme. The values
obtained with SMC could be updated based on Equation (7) with the help of ABC, where
the number of dimensions to be updated is determined by different algorithms: ABC
algorithm only randomly selects one dimension, all dimensions can be updated in PfdABC,
and RmdABC randomly selects certain dimensions.

For the above scheduling problem, comparative studies among five algorithms, in-
cluding PSO, ABC, PfdABC, and RmdABC, are executed. The scheduling program ran 20
times, and Tables 6–9 show the optimization results, including the convergence iterations
and task execution time corresponding to the optimal solution, the resulting sequences,
and the allocation plans of entrances and exits. Obviously, all swarm intelligent algorithms
could solve the complicated cargo scheduling problem in certain iterations.

Table 6. (a) The scheduling results with PSO. (b) Entrances and exits allocation scheme with PSO.

(a)

1 2 3 4 5 6 7 8 9 10

Iteration 889 654 805 841 912 735 889 903 836 749

Result/s 6841.9 6811.9 6828.4 6779.6 6854.9 6819.5 6841.9 6866.1 6826.1 6811.9

11 12 13 14 15 16 17 18 19 20

Iteration 889 654 901 912 912 905 697 903 827 749

Result/s 6841.9 6811.9 6828.4 6854.9 6854.9 6819.5 6757.4 6866.1 6826.1 6828.4
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Table 6. Cont.

(b)

Inbound tasks Outbound tasks

1 4, 27, 25, 30, 26, 7, 15, 24, 2, 16, 17, 11 1 39, 40, 51, 45, 60, 34, 38, 44, 31, 46, 33, 59, 41

2 1, 5, 12, 14, 21, 10 2 52, 53, 58,3 6, 35, 55, 42

3 9 3 47, 54, 56, 43, 49

4 29, 8 4 32, 48

5 19 5 37

6 23 6

7 13, 22, 28 7 57, 50

8 18, 3, 20, 6

Optimal scheduling route: 39 40 4 51 1 45 60 27 34 25 38 30 26 13 18 57 50 3 23 32 48 29
5 44 7 31 12 14 15 24 46 2 33 59 16 17 41 52 9 47 21 53 58 10 36 35 55 8 19 22 28 20 54 56 37 6
43 49 42 11.

Table 7. (a) The scheduling results with ABC. (b) Entrances and exits allocation scheme with ABC.

(a)

1 2 3 4 5 6 7 8 9 10

Iteration 1098 872 725 915 1003 1000 697 605 835 898

Result/s 6852.9 6772.4 6806.41 6697.15 6892.79 6905.64 6748.78 6865.9 6787.76 6803

11 12 13 14 15 16 17 18 19 20

Iteration 732 1079 509 840 602 675 786 821 753 835

Result/s 6839.3 6824.9 6877.64 6796.28 6787.27 6864.15 6808.01 6871.29 6839.52 6817.27

(b)

Inbound tasks Outbound tasks

1 17, 25, 10, 16, 11, 15, 27, 26, 7, 24, 4, 30, 2 1 34, 33, 51, 60, 40, 45, 44, 39, 38, 41, 31, 46, 59

2 14, 21, 12, 1, 5 2 52, 36, 55, 35, 54, 53, 42, 58

3 9 3 56, 49, 43, 47

4 8, 29 4 32, 48

5 19 5 37

6 23 6

7 22, 28, 13 7 57, 50

8 20, 18, 3, 6

Optimal scheduling route: 17 34 25 14 33 51 10 9 22 60 16 52 36 11 15 27 40 19 55 56 45
26 23 44 7 39 21 38 24 35 41 4 30 12 20 18 3 1 54 28 49 43 53 37 8 31 42 47 32 2 6 46 48 13 57 5
59 50 58 29.

Table 8. (a) The scheduling results with PfdABC. (b) Entrances and exits allocation scheme with
PfdABC.

(a)

1 2 3 4 5 6 7 8 9 10

Iteration 488 230 223 501 179 346 267 464 202 595

Result/s 6621.11 6623.11 6613.61 6609.98 6617.36 6617.24 6617.36 6611.73 6617.12 6615.49

11 12 13 14 15 16 17 18 19 20

Iteration 213 464 228 82 82 536 153 524 422 388

Result/s 6606.35 6617.48 6630.49 6615.37 6611.86 6617.36 6617.48 6619.24 6615.37 6611.74
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Table 8. Cont.

(b)

Inbound tasks Outbound tasks

1 15, 16, 24, 25, 17, 7, 11, 26, 4, 30, 2 1 46, 31, 41, 45, 44, 59, 38, 33, 60, 51, 34, 39, 40

2 14, 12, 5, 1, 10, 21 2 55, 42, 35, 58, 52, 36, 53

3 9 3 54, 56, 47, 43, 49

4 29, 27 4 32, 48

5 19 5 37

6 23 6

7 13, 28 7 57, 50

8 18, 6, 3, 20, 8, 3

Optimal scheduling route: 15 16 46 31 24 41 55 42 54 56 29 25 45 27 44 14 35 58 9 47 43
49 19 23 32 13 28 22 37 18 6 3 57 50 20 48 8 59 17 38 33 12 52 7 11 60 51 34 39 5 1 36 10 53 21
26 4 30 40 2.

Table 9. (a) The scheduling results with RmdABC. (b) Entrances and exits allocation scheme with
RmdABC.

(a)

1 2 3 4 5 6 7 8 9 10

Iteration 209 209 213 209 223 546 580 209 331 423

Result/s 6617.12 6617.12 6611.86 6617.12 6611.86 6611.86 6615.61 6617.12 6617.24 6617.36

11 12 13 14 15 16 17 18 19 20

Iteration 539 191 209 223 529 580 546 223 209 223

Result/s 6621.11 6611.86 6617.12 6611.86 6615.61 6615.61 6615.61 6611.86 6617.12 6611.86

(b)

Inbound tasks Outbound tasks

1 15, 11, 30, 27, 7, 26, 24, 25, 17, 2, 16, 4 1 39, 59, 34, 38, 41, 40, 31, 60, 33, 45, 51, 46, 44

2 21, 14, 12, 1, 10, 5 2 52, 42, 58, 36, 53, 55, 35

3 9 3 47, 54, 49, 43, 56

4 29, 8 4 48, 32

5 19 5 37

6 23 6

7 13, 22, 28 7 57, 50

8 20, 3, 6, 18

Optimal scheduling route: 15 39 59 21 52 14 11 30 27 34 38 41 40 7 26 31 46 44 12 42 9 47
19 29 8 58 1 36 54 49 48 13 22 37 20 3 57 50 6 18 28 32 23 10 24 25 17 60 2 33 45 5 53 16 4 51 55
35 43 56.

The statistical information of the above results are described in the box plot as Figure 2.
The numbers 1, 2, 3, and 4 in horizontal coordinate represent PSO, ABC, PfdABC, and
RmdABC, respectively. The plot shows that PfdABC and RmdABC are better as the
upper limits are lower than the lower limits of PSO and ABC, PfdABC possesses higher
optimization accuracy because of its lower low limit, and RmdABC is more stable as the
distance between the lower and upper limits is shorter.

In addition, several important indices, including the average time required to execute
the resulting sequence (Avg), the shortest executed time (Min), the longest inbound and
outbound time (Max), and the average convergence generations (Ite) are calculated based
on the results of 20 independent runs and shown in Table 10. It can be easily found that the
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minimum, maximum, and average inbound and outbound time corresponding to PfdABC
and RmdABC decreased by 4% at most compared to conventional ABC and PSO, and there
are relatively small gaps among the values of Avgs. On the other hand, by examining the
values of Ite, it can be seen that PfdABC and RmdABC require less generations to locate
the optimal solutions and that it improves by almost 60% compared to ABC and PSO, that
is, the advantage of fast convergence speed could be proved.

Table 10. The scheduling results.

Min (s) Max (s) Avg (s) Ite

PSO 6757.4 6854.9 6828.6 828
ABC 6697.14 6905.64 6822.92 814

PfdABC 6606.35 6630.49 6616.34 329
RmdABC 6611.86 6621.11 6615.19 332

Therefore, PfdABC and RmdABC can obtain faster convergence speed and smaller
mean values than those of ABC and PSO in the scheduling problem, and they are demon-
strated to be useful tools for solving the air cargo terminal scheduling problem.
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5. Conclusions

To improve the efficiency of the cargo terminal in a smart transport system, the intelli-
gent ABC algorithm was introduced to schedule the task set in this paper. Moreover, for
increasing the diversity of the population while accelerating the convergence, improved
algorithms, including PfdABC and RmdABC, are proposed to enhance the optimization
performance. The experimental results show that the ABC, PfdABC, and RmdABC algo-
rithms can solve the task-sets scheduling problem and that the proposed RmdABC and
PfdABC algorithms could improve the exploration and exploitation performance efficiently.

The proposed algorithms are efficient in solving complex optimization problems, but
their ability of solving dynamic scheduling problems should be verified, and the adaptation
of control parameters of ABC for different scheduling requirements should be addressed.
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