Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms
Abstract
1. Introduction
2. The Scheduling Model of Freight Station
3. Methodologies
3.1. ABC Algorithm
3.2. The Improved ABC Algorithms
3.2.1. Paralleled Full-Dimensional ABC Algorithm
3.2.2. Random Multidimensional Artificial Bee Colony Algorithm
Algorithm 1: Pseudo-code of RmdABC. | |
01: | //Initialization, set the maximum number of iterations, the swarm size N, the number of dimension D |
02: | //Employed bee phase for i = 1 to FoodNumber |
03: | flag = 0; |
04: | Random_D = randi(D); //Generate a random sequence |
05: | //Random multi-dimensional greedy search strategy for j = 1 to Random_D |
06: | produce candidate solution with Equation (7), evaluate its fitness value; |
07: | if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1; |
08: | end if |
09: | end for |
10: | if flag = 1 then trial = 0; else trial + 1; |
11: | end if |
12: | end for |
13: | //Onlooker bee phase According to Equation (8), calculate the probability probi and determine if the onlooker bee chooses to exploit or not around the ith employed bee |
14: | for i = 1 to FoodNumber |
15: | flag = 0; |
16: | if rand < probi |
17: | produce the candidate solution with Equation (7) and evaluate its fitness value; |
18: | if fitness (Soli) < fitness (Foodi) then Foodi = Soli and flag = 1; |
19: | end if |
20: | if flag = 1 then trial = 0; else trial + 1; |
21: | end if |
22: | end for |
23: | //Scout bee phase if trial > Limit |
24: | trial = 0; |
25: | Randomly generate a solution; |
26: | end if |
27: | end for |
4. Implementation and Experimental Results
4.1. Verification with Benchmark Functions
4.2. Scheduling Problem
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 889 | 654 | 805 | 841 | 912 | 735 | 889 | 903 | 836 | 749 |
Result/s | 6841.9 | 6811.9 | 6828.4 | 6779.6 | 6854.9 | 6819.5 | 6841.9 | 6866.1 | 6826.1 | 6811.9 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 889 | 654 | 901 | 912 | 912 | 905 | 697 | 903 | 827 | 749 |
Result/s | 6841.9 | 6811.9 | 6828.4 | 6854.9 | 6854.9 | 6819.5 | 6757.4 | 6866.1 | 6826.1 | 6828.4 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 4, 27, 25, 30, 26, 7, 15, 24, 2, 16, 17, 11 | 1 | 39, 40, 51, 45, 60, 34, 38, 44, 31, 46, 33, 59, 41 | |||||||
2 | 1, 5, 12, 14, 21, 10 | 2 | 52, 53, 58,3 6, 35, 55, 42 | |||||||
3 | 9 | 3 | 47, 54, 56, 43, 49 | |||||||
4 | 29, 8 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 22, 28 | 7 | 57, 50 | |||||||
8 | 18, 3, 20, 6 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 1098 | 872 | 725 | 915 | 1003 | 1000 | 697 | 605 | 835 | 898 |
Result/s | 6852.9 | 6772.4 | 6806.41 | 6697.15 | 6892.79 | 6905.64 | 6748.78 | 6865.9 | 6787.76 | 6803 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 732 | 1079 | 509 | 840 | 602 | 675 | 786 | 821 | 753 | 835 |
Result/s | 6839.3 | 6824.9 | 6877.64 | 6796.28 | 6787.27 | 6864.15 | 6808.01 | 6871.29 | 6839.52 | 6817.27 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 17, 25, 10, 16, 11, 15, 27, 26, 7, 24, 4, 30, 2 | 1 | 34, 33, 51, 60, 40, 45, 44, 39, 38, 41, 31, 46, 59 | |||||||
2 | 14, 21, 12, 1, 5 | 2 | 52, 36, 55, 35, 54, 53, 42, 58 | |||||||
3 | 9 | 3 | 56, 49, 43, 47 | |||||||
4 | 8, 29 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 22, 28, 13 | 7 | 57, 50 | |||||||
8 | 20, 18, 3, 6 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 488 | 230 | 223 | 501 | 179 | 346 | 267 | 464 | 202 | 595 |
Result/s | 6621.11 | 6623.11 | 6613.61 | 6609.98 | 6617.36 | 6617.24 | 6617.36 | 6611.73 | 6617.12 | 6615.49 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 213 | 464 | 228 | 82 | 82 | 536 | 153 | 524 | 422 | 388 |
Result/s | 6606.35 | 6617.48 | 6630.49 | 6615.37 | 6611.86 | 6617.36 | 6617.48 | 6619.24 | 6615.37 | 6611.74 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 15, 16, 24, 25, 17, 7, 11, 26, 4, 30, 2 | 1 | 46, 31, 41, 45, 44, 59, 38, 33, 60, 51, 34, 39, 40 | |||||||
2 | 14, 12, 5, 1, 10, 21 | 2 | 55, 42, 35, 58, 52, 36, 53 | |||||||
3 | 9 | 3 | 54, 56, 47, 43, 49 | |||||||
4 | 29, 27 | 4 | 32, 48 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 28 | 7 | 57, 50 | |||||||
8 | 18, 6, 3, 20, 8, 3 |
(a) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Iteration | 209 | 209 | 213 | 209 | 223 | 546 | 580 | 209 | 331 | 423 |
Result/s | 6617.12 | 6617.12 | 6611.86 | 6617.12 | 6611.86 | 6611.86 | 6615.61 | 6617.12 | 6617.24 | 6617.36 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Iteration | 539 | 191 | 209 | 223 | 529 | 580 | 546 | 223 | 209 | 223 |
Result/s | 6621.11 | 6611.86 | 6617.12 | 6611.86 | 6615.61 | 6615.61 | 6615.61 | 6611.86 | 6617.12 | 6611.86 |
(b) | ||||||||||
Inbound tasks | Outbound tasks | |||||||||
1 | 15, 11, 30, 27, 7, 26, 24, 25, 17, 2, 16, 4 | 1 | 39, 59, 34, 38, 41, 40, 31, 60, 33, 45, 51, 46, 44 | |||||||
2 | 21, 14, 12, 1, 10, 5 | 2 | 52, 42, 58, 36, 53, 55, 35 | |||||||
3 | 9 | 3 | 47, 54, 49, 43, 56 | |||||||
4 | 29, 8 | 4 | 48, 32 | |||||||
5 | 19 | 5 | 37 | |||||||
6 | 23 | 6 | ||||||||
7 | 13, 22, 28 | 7 | 57, 50 | |||||||
8 | 20, 3, 6, 18 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, L.C.; Ng, T.S.; Lam, S.W. Improving air cargo service through efficient order release. In Proceedings of the 7th International Conference on Service Systems and Service Management, Tokyo, Japan, 28–30 June 2010. [Google Scholar]
- Wu, P.J.; Yang, C.K. Sustainable development in aviation logistics: Successful drivers and business strategies. Bus. Strategy Environ. 2021, 30, 3763–3771. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, K. International trade drivers and freight network analysis: The case of the Chinese air cargo sector. J. Transp. Geogr. 2018, 71, 253–262. [Google Scholar] [CrossRef]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef]
- Hu, W.; Mao, J.; Wei, K. Energy-efficient Dispatching Solution in an Automated Air Cargo Terminal. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Madison, WI, USA, 17–20 August 2013; pp. 144–149. [Google Scholar]
- Hamzaoui, M.A.; Sari, Z. Optimal dimensions minimizing expected travel time of a single machine flow rack AS/RS. Mechatronics 2015, 31, 158–168. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Weidinger, F. Optimizing automated sorting in warehouses: The minimum order spread sequencing problem. Eur. J. Oper. Res. 2019, 270, 386–400. [Google Scholar] [CrossRef]
- Guo, C.H. Research on application of scheduling optimization of ETV based on improved genetic algorithm. Logist. Sci.-Tech. 2015, 38, 61–69. [Google Scholar]
- Qiu, J.D.; Jiang, Z.Y.; Tang, M.N. Research and application of NLAPSO algorithm to ETV scheduling optimization in airport cargo terminal. J. Lanzhou Jiaotong Univ. 2019, 34, 65–70. [Google Scholar]
- Ding, F.; Song, X.J. Application of shared fitness particle swarm in double ETV system. Comput. Meas. Control. 2018, 26, 228–247. [Google Scholar]
- Radhwan, A.A.; Saleh, R.A. Artificial bee colony algorithm with directed scout. Soft Comput. 2021, 25, 13567–13593. [Google Scholar]
- Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem. Appl. Soft Comput. 2019, 76, 595–606. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Betar, M.A.; Bolaji, A.L.; Doush, I.A.; Hammouri, A.I.; Mafarja, M. Island artificial bee colony for global optimization. Soft Comput. 2020, 24, 13461–13487. [Google Scholar] [CrossRef]
- Roeva, O.; Petkova, D.; Castillo, O. Joint set-up of parameters in genetic algorithms and the artificial bee colony algorithm: An approach for cultivation process modelling. Soft Comput. 2021, 25, 2015–2038. [Google Scholar] [CrossRef]
- Forouzandeh, S.; Berahmand, K.; Nasiri, E.; Rostami, M. A Hotel Recommender System for Tourists Using the Artificial Bee Colony Algorithm and Fuzzy TOPSIS Model: A Case Study of Trip Advisor. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 399–429. [Google Scholar] [CrossRef]
- Li, Y.C.; Liu, L.B.; Wang, J.; Zhao, J. Improved artificial bee algorithm for reliability-based optimization of truss structures. Open Civ. Eng. J. 2018, 11, 235–243. [Google Scholar]
- Luo, K.P. A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem. Eng. Optim. 2020, 52, 1421–1440. [Google Scholar] [CrossRef]
- Alazzawi, A.; Rais, H.M.; Basri, S. Hybrid artificial bee colony strategy for t-way test set generation with constraints support. In Proceedings of the IEEE Student Conference on Research and Development, Bandar Seri Iskandar, Malaysia, 15–17 October 2019. [Google Scholar]
- Weidinger, F. Picker routing in rectangular mixed shelves warehouses. Comput. Oper. Res. 2018, 95, 139–150. [Google Scholar] [CrossRef]
- Zhou, J.J.; Yao, X.F. A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition. Int. J. Adv. Manuf. Technol. 2017, 88, 3371–3387. [Google Scholar] [CrossRef]
- Chen, G.; Sun, P.; Zhang, J. Repair strategy of military communication network based on discrete artificial bee colony algorithm. IEEE Access 2020, 8, 73051–73060. [Google Scholar] [CrossRef]
- Ustun, D.; Toktas, A.; Erkan, U.; Akdagli, A. Modified artificial bee colony algorithm with differential evolution to enhance precision and convergence performance. Expert Syst. Appl. 2022, 198, 116930. [Google Scholar] [CrossRef]
- Long, X.J.; Zhang, J.T.; Zhou, K.; Jin, T.G. Dynamic Self-Learning Artificial Bee Colony Optimization Algorithm for Flexible Job-Shop Scheduling Problem with Job Insertion. Processes 2022, 10, 571. [Google Scholar] [CrossRef]
- Xu, F.Y.; Li, H.L.; Pun, C.M.; Hu, H.D. A new global best guided artificial bee colony algorithm with application in robot path planning. Appl. Soft Comput. 2020, 88, 106037. [Google Scholar] [CrossRef]
- Chen, X.; Wei, X.; Yang, G.X.; Du, W.L. Fireworks explosion based artificial bee colony for numerical optimization. Knowl.-Based Syst. 2020, 188, 105002. [Google Scholar] [CrossRef]
- Brajevic, I. A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems. Mathematics 2021, 9, 1211. [Google Scholar] [CrossRef]
- Wang, H.Q.; Wei, J.H.; Wen, S.J.; Hou, Y.L. Research on parallel optimization of artificial bee colony algorithm. In Proceedings of the International Conference on Advanced Mechatronic system, Auckland, New Zealand, 9–12 July 2018. [Google Scholar]
- Karaboga, D.; Akay, B. A comparative study of Artifificial Bee Colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar]
The Name of Function | Function Expression | Search Space | Minimum Value |
---|---|---|---|
1. Bent Cigar Function | |||
2. Sum of Different Power Function | |||
3. Rosenbrock’s Function | |||
4. Rastrigin’s Function | |||
5. Step’s Function |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Variance of Optimal Result/s |
---|---|---|---|---|---|---|
1.Bent Cigar Function | ABC | 111.849 | 2.320 × 105 | 1.709 × 105 | 111.4955 | 2.039 × 109 |
fdABC | 253.316 | 2.929 × 10−252 | 1.416 × 10−252 | 251.577 | 0 | |
RmdABC | 188.172 | 1.654 × 10−2 | 1.49 × 10−4 | 179.199 | 2.28 × 10−4 | |
PfdABC | 256.408 | 2.995 × 10−16 | 1.028 × 10−16 | 179.199 | 1.055 × 10−32 | |
2. Sum of Different Power Function | ABC | 121.258 | 3.0245 × 1041 | 1.593 × 1036 | 120.91 | 4.433 × 1083 |
fdABC | 676.282 | 8.680 × 10−255 | 7.047 × 10−258 | 672.29 | 0 | |
RmdABC | 401.083 | 2.091 × 10−42 | 6.660 × 10−46 | 395.373 | 1.791 × 10−83 | |
PfdABC | 490.647 | 4.164 × 10−89 | 1.902 × 10−90 | 488.905 | 4.053 × 10−177 | |
3. Rosenbrock’s Function | ABC | 116.400 | 5490.448 | 4884.468 | 115.536 | 2.083 × 105 |
fdABC | 284.881 | 2.33 × 10−3 | 1.27 × 10−4 | 279.176 | 2.021 × 10−6 | |
RmdABC | 212.479 | 1.1359 | 0.323 | 208.025 | 1.013 | |
PfdABC | 288.203 | 0.140 | 0.0072 | 286.3592 | 0.0245 | |
4. Rastrigin’s Function | ABC | 121.356 | 198.642 | 179.002 | 121.051 | 163.148 |
fdABC | 250.787 | 0 | 0 | 245.425 | 0 | |
RmdABC | 190.324 | 4.145 × 10−6 | 2.271 × 10−7 | 189.681 | 2.759 × 10−11 | |
PfdABC | 279.681 | 2.956 × 10−13 | 2.274 × 10−13 | 272.530 | 3.447 × 10−27 | |
5. Step’s Function | ABC | 120.309 | 0.232 | 0.177 | 119.949 | 0.843 × 10−4 |
fdABC | 224.032 | 0 | 0 | 218.470 | 0 | |
RmdABC | 178.819 | 1.262 × 10−8 | 4.285 × 10−10 | 178.200 | 1.121 × 10−16 | |
PfdABC | 266.942 | 3.298 × 10−22 | 1.464 × 10−22 | 255.218 | 1.416 × 10−44 |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Var Optimal Result/s | |
---|---|---|---|---|---|---|---|
1. Bent Cigar Function | ABC | 186.356 | 7.443 × 107 | 6.612 × 107 | 185.785 | 8.560 × 1013 | |
fdABC | 349.896 | 9.500 × 10−25 | 1.073 × 10−251 | 341.500 | 0 | ||
RmdABC | 254.843 | 1.830 | 0.187 | 242.967 | 8.657926 | ||
PfdABC | 336.140 | 3.739 × 10−11 | 2.729 × 10−11 | 330.117 | 6.778 × 10−23 | ||
2. Sum of Different Power Function | ABC | 161.169 | 7.666 × 1082 | 9.065 × 1073 | 157.306 | 5.875 × 10116 | |
fdABC | 1092.133 | 5.377 × 10−250 | 9.849 × 10−253 | 1083.415 | 0 | ||
RmdABC | 641.927 | 1.236 × 10−18 | 4.733 × 10−22 | 629.479 | 1.193259 × 10−35 | ||
PfdABC | 767.770 | 9.062 × 10−72 | 2.578 × 10−72 | 761.159 | 6.124 × 10−143 | ||
3. Rosenbrock’s Function | ABC | 153.868 | 65,508.192 | 53,885.588 | 152.849 | 7.237 × 107 | |
fdABC | 408.311 | 0.00517 | 0.000291 | 393.921 | 3.638 × 10−5 | ||
RmdABC | 297.845 | 2.626 | 1.1049 | 287.474 | 1.758 | ||
PfdABC | 388.867 | 0.264 | 0.041 | 380.135 | 0.064 | ||
4. Rastrigin’s Function | ABC | 155.747 | 759.215 | 687.486 | 153.785 | 2578.573 | |
fdABC | 351.982 | 0 | 0 | 346.306 | 0 | ||
RmdABC | 275.060 | 0.0184 | 0.0056 | 270.149 | 9.127 × 10−5 | ||
PfdABC | 358.622 | 4.206 × 10−13 | 2.274 × 10−13 | 353.856 | 5.888 × 10−27 | ||
5. Step’s Function | ABC | 151.843 | 8.142 | 6.349 | 151.444 | 0.965 | |
fdABC | 300.048 | 0 | 0 | 297.340 | 0 | ||
RmdABC | 537.590 | 6.049 × 10−7 | 2.1807 × 10−8 | 373.611 | 3.606 × 10−13 | ||
PfdABC | 333.573 | 3.940 × 10−17 | 2.531 × 10−17 | 323.896 | 9.741 × 10−35 |
Function Name | Algorithm | Average Runtime/s | Average Optimal Result/s | Best Optimal Result/s | Shortest Runtime/s | Var Optimal Result/s |
---|---|---|---|---|---|---|
1. Bent Cigar Function | ABC | 223.196 | 3.787 × 108 | 3.416 × 108 | 222.774 | 1.099 × 1015 |
fdABC | 425.692 | 2.044 × 10−251 | 1.091 × 10−251 | 420.020 | 0 | |
RmdABC | 303.243 | 12.037 | 0.405 | 300.169 | 199.478 | |
PfdABC | 399.895 | 4.392 × 10−8 | 3.463 × 10−8 | 387.853 | 6.669 × 10−17 | |
2. Sum of Different Power Function | ABC | 199.808 | 2.279 × 10120 | 7.215 × 10111 | 197.343 | 2.222 × 10241 |
fdABC | 1664.371 | 1.671 × 10−245 | 6.863 × 10−248 | 1619.398 | 0 | |
RmdABC | 920.823 | 3.470 × 10−6 | 4.151 × 10−9 | 911.149 | 1.069 × 10−10 | |
PfdABC | 1120.629 | 8.680 × 10−57 | 3.9115 × 10−58 | 1115.067 | 5.118 × 10−113 | |
3. Rosenbrock’s Function | ABC | 189.997 | 5.919 × 103 | 4.346 × 105 | 186.093 | 9.399 × 109 |
fdABC | 538.976 | 0.00884 | 0.001 | 504.637 | 1.04 × 10−4 | |
RmdABC | 351.792 | 6.042937 | 1.430 | 337.071 | 18.386 | |
PfdABC | 456.292 | 1.021 | 0.201 | 449.671 | 1.568 | |
4. Rastrigin’s Function | ABC | 193.990 | 152.642 | 193.287 | 193.2873 | 65.193 |
fdABC | 458.470157 | 0 | 0 | 452.714 | 0 | |
RmdABC | 574.398 | 7.97 × 10−4 | 8.599 × 10−5 | 573.802 | 7.859 × 10−7 | |
PfdABC | 454.618 | 1.136 × 10−10 | 8.356 × 10−11 | 450.936 | 2.190 × 10−22 | |
5. Step’s Function | ABC | 189.754 | 78.395 | 63.6545 | 187.726 | 97.986519 |
fdABC | 637.867 | 0 | 0 | 622.008 | 0 | |
RmdABC | 289.625 | 1.379 × 10−7 | 1.838 × 10−8 | 287.601 | 1.87107 × 10−14 | |
PfdABC | 398.953 | 5.632 × 10−14 | 2.467 × 10−14 | 391.252 | 3.979 × 10−28 |
Inbound Tasks | Inbound Tasks | Outbound Tasks | Outbound Tasks | ||||
---|---|---|---|---|---|---|---|
1 | I(1-5-34) | 16 | I(1-8-44) | 31 | O(1-3-10) | 46 | O(2-8-10) |
2 | I(2-3-14) | 17 | I(2-8-32) | 32 | O(1-5-55) | 47 | O(1-3-32) |
3 | I(1-3-58) | 18 | I(2-3-54) | 33 | O(1-5-25) | 48 | O(1-4-50) |
4 | I(1-5-26) | 19 | I(1-3-40) | 34 | O(2-4-8) | 49 | O(2-3-38) |
5 | I(1-5-30) | 20 | I(1-4-60) | 35 | O(2-2-18) | 50 | O(2-1-58) |
6 | I(1-2-55) | 21 | I(1-3-20) | 36 | O(2-1-16) | 51 | O(1-5-24) |
7 | I(1-5-24) | 22 | I(2-2-43) | 37 | O(2-3-51) | 52 | O(1-4-30) |
8 | I(1-4-40) | 23 | I(2-4-50) | 38 | O(1-5-6) | 53 | O(2-6-40) |
9 | I(1-5-40) | 24 | I(1-6-10) | 39 | O(2-5-3) | 54 | O(2-4-35) |
10 | I(1-5-35) | 25 | I(2-7-20) | 40 | O(1-6-12) | 55 | O(2-8-51) |
11 | I(2-5-23) | 26 | I(1-6-15) | 41 | O(2-6-13) | 56 | O(2-2-30) |
12 | I(1-7-43) | 27 | I(2-8-30) | 42 | O(2-7-49) | 57 | O(1-2-60) |
13 | I(1-3-48) | 28 | I(2-2-45) | 43 | O(1-7-57) | 58 | O(1-3-26) |
14 | I(1-8-50) | 29 | I(1-7-58) | 44 | O(1-5-25) | 59 | O(1-6-35) |
15 | I(1-6-21) | 30 | I(1-4-9) | 45 | O(2-6-18) | 60 | O(2-8-10) |
Min (s) | Max (s) | Avg (s) | Ite | |
---|---|---|---|---|
PSO | 6757.4 | 6854.9 | 6828.6 | 828 |
ABC | 6697.14 | 6905.64 | 6822.92 | 814 |
PfdABC | 6606.35 | 6630.49 | 6616.34 | 329 |
RmdABC | 6611.86 | 6621.11 | 6615.19 | 332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Su, M.; Xu, X.; Haasis, H.-D.; Zhao, R.; Wen, S.; Wang, Y. Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Appl. Sci. 2023, 13, 8750. https://doi.org/10.3390/app13158750
Wang H, Su M, Xu X, Haasis H-D, Zhao R, Wen S, Wang Y. Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Applied Sciences. 2023; 13(15):8750. https://doi.org/10.3390/app13158750
Chicago/Turabian StyleWang, Haiquan, Menghao Su, Xiaobin Xu, Hans-Dietrich Haasis, Ran Zhao, Shengjun Wen, and Yan Wang. 2023. "Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms" Applied Sciences 13, no. 15: 8750. https://doi.org/10.3390/app13158750
APA StyleWang, H., Su, M., Xu, X., Haasis, H.-D., Zhao, R., Wen, S., & Wang, Y. (2023). Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms. Applied Sciences, 13(15), 8750. https://doi.org/10.3390/app13158750