A Review of Magnetoelectric Composites Based on ZnO Nanostructures
Abstract
1. Introduction
2. Magnetoelectric (ME) Effect
3. ZnO Magnetoelectric Composites
3.1. Thin Films
3.1.1. Pure ZnO Thin Films
3.1.2. Doped ZnO Thin Films
3.2. ZnO Micro- and Nano-Rods
3.3. ZnO Nanocomposites
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astrov, D.N. Magnetoelectric Effect in Chromium Oxide. Sov. Phys. JETP 1961, 13, 729–733. [Google Scholar]
- Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J.L.; Gerken, M.; Knöchel, R.; Quandt, E. Magnetoelectric Thin Film Composites with Interdigital Electrodes. Appl. Phys. Lett. 2013, 103, 032902. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Greve, H.; Quandt, E.; Knöchel, R.; Wagner, B. MEMS Magnetic Field Sensor Based on Magnetoelectric Composites. J. Micromech. Microeng. 2012, 22, 065024. [Google Scholar] [CrossRef]
- Polícia, R.; Lima, A.C.; Pereira, N.; Calle, E.; Vázquez, M.; Lanceros-Mendez, S.; Martins, P. Transparent Magnetoelectric Materials for Advanced Invisible Electronic Applications. Adv. Electron. Mater. 2019, 5, 1900280. [Google Scholar] [CrossRef]
- Pourhosseiniasl, M.; Gao, X.; Kamalisiahroudi, S.; Yu, Z.; Chu, Z.; Yang, J.; Lee, H.; Dong, S. Nano Energy Versatile Power and Energy Conversion of Magnetoelectric Composite Materials with High Efficiency via Electromechanical Resonance. Nano Energy 2020, 70, 104506. [Google Scholar] [CrossRef]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications. Meas. J. Int. Meas. Confed. 2018, 116, 230–238. [Google Scholar] [CrossRef]
- García-Arribas, A.; Gutiérrez, J.; Kurlyandskaya, G.V.; Barandiarán, J.M.; Svalov, A.; Fernández, E.; Lasheras, A.; de Cos, D.; Bravo-Imaz, I. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity. Sensors 2014, 14, 7602–7624. [Google Scholar] [CrossRef]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef]
- Salzer, S.; Jahns, R.; Piorra, A.; Teliban, I.; Reermann, J.; Höft, M.; Quandt, E.; Knöchel, R. Tuning Fork for Noise Suppression in Magnetoelectric Sensors. Sens. Actuators A Phys. 2016, 237, 91–95. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef]
- Li, M.; Matyushov, A.; Dong, C.; Chen, H.; Lin, H.; Nan, T.; Qian, Z.; Rinaldi, M.; Lin, Y.; Sun, N.X. Ultra-Sensitive NEMS Magnetoelectric Sensor for Picotesla DC Magnetic Field Detection. Appl. Phys. Lett. 2017, 110, 143510. [Google Scholar] [CrossRef]
- Marauska, S.; Dankwort, T.; Quenzer, H.J.; Wagner, B. Sputtered Thin Film Piezoelectric Aluminium Nitride as a Functional MEMS Material and CMOS Compatible Process Integration. Procedia Eng. 2011, 25, 1341–1344. [Google Scholar] [CrossRef]
- Sternickel, K.; Braginski, A.I. Biomagnetism Using SQUIDs: Status and Perspectives. Supercond. Sci. Technol. 2006, 19, S160. [Google Scholar] [CrossRef]
- MacKert, B.M. Magnetoneurography: Theory and Application to Peripheral Nerve Disorders. Clin. Neurophysiol. 2004, 115, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Liang, X.; Gao, J.; Chen, H.; He, Y.; Wei, Y.; Zaeimbashi, M.; Matyushov, A.; Sun, C.; Sun, N.X. Thin Film Magnetoelectric Sensors Toward Biomagnetism: Materials, Devices, and Applications. Adv. Electron. Mater. 2022, 8, 2200013. [Google Scholar] [CrossRef]
- Kopyl, S.; Surmenev, R.; Surmeneva, M.; Fetisov, Y.; Kholkin, A. Magnetoelectric Effect: Principles and Applications in Biology and Medicine—A Review. Mater. Today Bio 2021, 12, 100149. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef]
- Maiz, J.; Loxq, P.; Fau, P.; Fajerwerg, K.; Kahn, M.L.; Fleury, G.; Hadziioannou, G.; Guegan, G.; Majimel, J.; Maglione, M.; et al. Ferroelectricity in Undoped ZnO Nanorods. J. Phys. Chem. C 2019, 123, 29436–29444. [Google Scholar] [CrossRef]
- Bhat, S.S.; Qurashi, A.; Khanday, F.A. ZnO Nanostructures Based Biosensors for Cancer and Infectious Disease Applications: Perspectives, Prospects and Promises. TrAC Trends Anal. Chem. 2017, 86, 1–13. [Google Scholar] [CrossRef]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and Piezoelectric-Pyroelectric Composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Islam, R.A.; Rong, C.B.; Liu, J.P.; Priya, S. Effect of Gradient Composite Structure in Cofired Bilayer Composites of Pb(Zr0.56Ti0.44)O3-Ni0.6Zn0.2Cu0.2Fe2O4 System on Magnetoelectric Coefficient. J. Mater. Sci. 2008, 43, 6337–6343. [Google Scholar] [CrossRef]
- Shi, Z.; Nan, C.W.; Zhang, J.; Cai, N.; Li, J.F. Magnetoelectric Effect of Pb (Zr,Ti) O3 Rod Arrays in a (Tb,Dy) Fe2 Epoxy Medium. Appl. Phys. Lett. 2005, 87, 2003–2006. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.J.; Wagner, B.; Quandt, E. Giant Magnetoelectric Coefficients in (Fe90Co10)78Si12 B10-AlN Thin Film Composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Kaps, S.; Mishra, Y.K.; Hrkac, V.; Greve, H.; Kienle, L.; Quandt, E.; Adelung, R. High Aspect Ratio Free Standing ZnO-Magnetostrictive Mesoscale Cylindrical Magnetoelectric Core Shell Composite. MRS Online Proc. Libr. (OPL) 2012, 1398, mrsf11-1398-q09-01. [Google Scholar] [CrossRef]
- Röbisch, V.; Salzer, S.; Urs, N.O.; Reermann, J.; Yarar, E.; Piorra, A.; Kirchhof, C.; Lage, E.; Höft, M.; Schmidt, G.U.; et al. Pushing the Detection Limit of Thin Film Magnetoelectric Heterostructures. J. Mater. Res. 2017, 32, 1009–1019. [Google Scholar] [CrossRef]
- Özkale, B.; Shamsudhin, N.; Bugmann, T.; Nelson, B.J.; Pané, S. Magnetostriction in Electroplated CoFe Alloys. Electrochem. Commun. 2017, 76, 15–19. [Google Scholar] [CrossRef]
- Nicolenco, A.; Gómez, A.; Chen, X.Z.; Menéndez, E.; Fornell, J.; Pané, S.; Pellicer, E.; Sort, J. Strain Gradient Mediated Magnetoelectricity in Fe-Ga/P(VDF-TrFE) Multiferroic Bilayers Integrated on Silicon. Appl. Mater. Today 2020, 19, 100579. [Google Scholar] [CrossRef]
- Dong, C.; Li, M.; Liang, X.; Chen, H.; Zhou, H.; Wang, X.; Gao, Y.; McConney, M.E.; Jones, J.G.; Brown, G.J.; et al. Characterization of Magnetomechanical Properties in FeGaB Thin Films. Appl. Phys. Lett. 2018, 113, 262401. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Chen, H.; Wang, J.; Wei, Y.; Zaeimbashi, M.; He, Y.; Matyushov, A.; Sun, C.; Sun, N. A Review of Thin-Film Magnetoelastic Materials for Magnetoelectric Applications. Sensors 2020, 20, 1532. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Mandal, S.K.; Nath, A. NiFe2O4-ZnO Semiconducting Nanocomposites: Studies of Room Temperature Magnetoelectric Coupling and Electronic Transport. Mater. Chem. Phys. 2019, 234, 16–24. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Mahapatra, A.S.; Mitra, A.; Bhakta, N.; Das, S.; Mallick, A.; Banerjee, A.; Chatterjee, S.; Greneche, J.M.; Chakrabarti, P.K. Strong Modulation Effects on Magnetoelectric Behavior of Co-Ferrite Nanoparticles Incorporated in ZnO Medium in Nano-Regime Synthesized in Chemical Routes. Appl. Phys. A Mater. Sci. Process. 2023, 129, 68. [Google Scholar] [CrossRef]
- Ye, J.; Ma, J.; Ma, J.; Hu, J.; Li, Z.; Feng, M.; Zhang, Q.M.; Nan, C.W. Temperature Dependence of Magnetoelectric Coupling in FeBSiC/PZT/FeBSiC Laminates. J. Appl. Phys. 2014, 116, 074103. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E. Inverse Bilayer Magnetoelectric Thin Film Sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Gröttrup, J.; Kaps, S.; Carstensen, J.; Smazna, D.; Mishra, Y.K.; Piorra, A.; Kirchhof, C.; Quandt, E.; Adelung, R. Piezotronic-Based Magnetoelectric Sensor: Fabrication and Response. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 2208–2215. [Google Scholar] [CrossRef]
- Chacko, S.K.; Rahul, M.T.; Raneesh, B.; Kalarikkal, N. Enhanced Magnetoelectric Coupling and Dielectric Constant in Flexible Ternary Composite Electrospun Fibers of PVDF-HFP Loaded with Nanoclay and NiFe2O4 Nanoparticles. New J. Chem. 2020, 44, 11356–11364. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-Based MEMS Magnetoelectric Sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Chen, X.; Leung, Y.H.; Man Ching Ng, A. ZnO Nanostructures: Growth, Properties and Applications. J. Mater. Chem. 2012, 22, 6526–6535. [Google Scholar] [CrossRef]
- Hwang, D.K.; Oh, M.S.; Lim, J.H.; Park, S.J. ZnO Thin Films and Light-Emitting Diodes. J. Phys. D Appl. Phys. 2007, 40, R387. [Google Scholar] [CrossRef]
- Stramarkou, M.; Bardakas, A.; Krokida, M.; Tsamis, C. ZnO-Based Chemi-Resistive Sensors for CO2 Detection: A Review. Sens. Rev. 2022, 42, 682–706. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.; Al-Dossary, O.; Umar, A. ZnO Nanostructured Thin Films: Depositions, Properties and Applications—A Review. Mater. Express 2015, 5, 3–23. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoҫ, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Viswan, R.; Gray, D.; Wang, Y.; Li, Y.; Berry, D.; Li, J.; Viehland, D. Strong Magnetoelectric Coupling in Highly Oriented ZnO Films Deposited on Metglas Substrates. Phys. Status Solidi—Rapid Res. Lett. 2011, 5, 391–393. [Google Scholar] [CrossRef]
- Klokholm, E. The Measurement of Magnetostriction in Ferromagnetic Thin Films. IEEE Trans. Magn. 1976, 12, 819–821. [Google Scholar] [CrossRef]
- du Trémolet de Lacheisserie, E.; Peuzin, J.C. Magnetostriction and Internal Stresses in Thin Films: The Cantilever Method Revisited. J. Magn. Magn. Mater. 1994, 136, 189–196. [Google Scholar] [CrossRef]
- Länge, K.; Rapp, B.E.; Rapp, M. Surface Acoustic Wave Biosensors: A Review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, X.; Cai, H.; Mohammad, M.A.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface Acoustic Wave Devices for Sensor Applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef]
- Alekseev, S.; Polzikova, N.; Kotelyanskii, I.; Fetisov, Y. Tunable HBAR Based on Magnetoelectric YIG/ZnO Structure. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2481–2484. [Google Scholar] [CrossRef]
- Huang, L.; Lyu, Q.; Wen, D.; Zhong, Z.; Zhang, H.; Bai, F. Theoretical Investigation of Magnetoelectric Surface Acoustic Wave Characteristics of ZnO/Metglas Layered Composite. AIP Adv. 2016, 6, 015103. [Google Scholar] [CrossRef]
- Jahns, R.; Zabel, S.; Marauska, S.; Gojdka, B.; Wagner, B.; Knöchel, R.; Adelung, R.; Faupel, F. Microelectromechanical Magnetic Field Sensor Based on Δe Effect. Appl. Phys. Lett. 2014, 105, 103–106. [Google Scholar] [CrossRef]
- Liu, X.; Ou-Yang, J.; Tong, B.; Chen, S.; Zhang, Y.; Zhu, B.; Yang, X. Influence of the Delta-E Effect on a Surface Acoustic Wave Resonator. Appl. Phys. Lett. 2019, 114, 062903. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Das, S.; Kothari, P. Tunable Film Bulk Acoustic Wave Resonator Based on Magnetostrictive Fe65Co35 Thin Films. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 800–802. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Kumar, M. Highly Tunable Film Bulk Acoustic Wave Resonator Based on Pt/ZnO/Fe65Co35Thin Films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2130–2134. [Google Scholar] [CrossRef]
- Gojdka, B.; Jahns, R.; Meurisch, K.; Greve, H.; Adelung, R.; Quandt, E.; Knöchel, R.; Faupel, F. Fully Integrable Magnetic Field Sensor Based on Delta-E Effect. Appl. Phys. Lett. 2011, 99, 223502. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, R.; Kumar, A.; Das, S.; Kothari, P.; Arout, C. MEMS Magnetic Field Sensor Based on Magnetoelectric FeCo ZnO Thin Films. In Proceedings of the 4th IEEE International Conference on Emerging Electronics, Bengaluru, India, 16–19 December 2018. [Google Scholar]
- Zhou, Z.; Obi, O.; Nan, T.X.; Beguhn, S.; Lou, J.; Yang, X.; Gao, Y.; Li, M.; Rand, S.; Lin, H.; et al. Low-Temperature Spin Spray Deposited Ferrite/Piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling. J. Mater. Sci. Mater. Electron. 2014, 25, 1188–1192. [Google Scholar] [CrossRef]
- Abes, M.; Koops, C.T.; Hrkac, S.B.; Quandt, E.; Bouchenoire, L.; Murphy, B.M.; Magnussen, O.M. Direct Measurements of Field-Induced Strain in Magnetoelectric Composites by X-ray Diffraction Studies of Forbidden Reflections. J. Appl. Phys. 2013, 113, 124303. [Google Scholar] [CrossRef]
- Abes, M.; Koops, C.T.; Hrkac, S.B.; Greve, H.; Quandt, E.; Collins, S.P.; Murphy, B.M.; Magnussen, O.M. Direct Measurements of Field-Induced Strain at Magnetoelectric Interfaces by Grazing Incidence X-ray Diffraction. Appl. Phys. Lett. 2013, 102, 011601. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, H.; Zhou, S.; Potzger, K.; Helm, M.; Hochmuth, H.; Lorenz, M.; Setzer, A.; Esquinazi, P.; Meinecke, C.; et al. Room Temperature Ferromagnetism in ZnO Films Due to Defects. Appl. Phys. Lett. 2008, 92, 082508. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Q.; Chen, G.; Kawazoe, Y.; Jena, P. Vacancy-Induced Magnetism in ZnO Thin Films and Nanowires. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 77, 205411. [Google Scholar] [CrossRef]
- Nagare, B.J.; Chacko, S.; Kanhere, D.G. Ferromagnetism in Carbon-Doped Zinc Oxide Systems. J. Phys. Chem. A 2010, 114, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.W.; Yi, J.B.; Ding, J.; Van, L.H.; Zhang, H.T.; Ng, C.M. Inducing Ferromagnetism in ZnO through Doping of Nonmagnetic Elements. Appl. Phys. Lett. 2008, 93, 042514. [Google Scholar] [CrossRef]
- Can, M.M.; Frat, T.; Ismat Shah, S. Magnetoelectrical Properties of W Doped ZnO Thin Films. J. Magn. Magn. Mater. 2012, 324, 4054–4060. [Google Scholar] [CrossRef]
- Sharma, N.; Gaur, A.; Kumar, V.; Kotnala, R.K. Multiferroicity and Magnetoelectric Coupling in Doped ZnO. Superlattices Microstruct. 2014, 65, 299–308. [Google Scholar] [CrossRef]
- Aizu, K. Considerations of Partially Ferroelastic and Partially Antiferroelastic Crystals and Partially Ferroelectric and Partially Antiferroelectric Crystals. J. Phys. Soc. Jpn. 1970, 28, 717–722. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, B. A Review on Piezo-/Ferro-Electric Properties of Morphologically Diverse ZnO Nanostructures. J. Alloys Compd. 2020, 816, 152491. [Google Scholar] [CrossRef]
- Lin, Y.H.; Ying, M.; Li, M.; Wang, X.; Nan, C.W. Room-Temperature Ferromagnetic and Ferroelectric Behavior in Polycrystalline ZnO-Based Thin Films. Appl. Phys. Lett. 2007, 90, 11–14. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, Y.; Nan, C.W. Multiferroic Magnetoelectric Composite Nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar] [CrossRef]
- Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; et al. Relaxor Ferroelectricity and Magnetoelectric Coupling in ZnO-Co Nanocomposite Thin Films: Beyond Multiferroic Composites. ACS Appl. Mater. Interfaces 2014, 6, 4737–4742. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cheng, C.L.; Liou, S.C.; Chen, Y.F. The Magnetoelectric Effect in Ni-Fe Alloy/ZnO Nanorod Array Composites. Nanotechnology 2008, 19, 485709. [Google Scholar] [CrossRef] [PubMed]
- Whitney, T.M.; Jiang, J.S.; Searson, P.C.; Chien, C.L. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science 1993, 261, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Praveena, M.G.; Kumar, A.S.; Kala, M.S.; Bhowmik, R.N.; Nair, S.S.; Thomas, S.; Anantharaman, M.R. Interface Assisted Strain-Induced Magnetoelectric Coupling in Core-Shell Nanostructures of CoFe2O4 @ZnO. J. Magn. Magn. Mater. 2020, 513, 167252. [Google Scholar] [CrossRef]
- Bryan, M.T.; Dean, J.; Allwood, D.A. Dynamics of Stress-Induced Domain Wall Motion. Phys. Rev. B–Condens. Matter Mater. Phys. 2012, 85, 144411. [Google Scholar] [CrossRef]
- Vinai, G.; Ressel, B.; Torelli, P.; Loi, F.; Gobaut, B.; Ciancio, R.; Casarin, B.; Caretta, A.; Capasso, L.; Parmigiani, F.; et al. Giant Magneto-Electric Coupling in 100 Nm Thick Co Capped by ZnO Nanorods. Nanoscale 2018, 10, 1326–1336. [Google Scholar] [CrossRef]
- Hrkac, S.B.; Abes, M.; Koops, C.T.; Krywka, C.; Müller, M.; Kaps, S.; Adelung, R.; McCord, J.; Lage, E.; Quandt, E.; et al. Local Magnetization and Strain in Single Magnetoelectric Microrod Composites. Appl. Phys. Lett. 2013, 103, 123111. [Google Scholar] [CrossRef]
- Hrkac, S.B.; Koops, C.T.; Abes, M.; Krywka, C.; Müller, M.; Burghammer, M.; Sztucki, M.; Dane, T.; Kaps, S.; Mishra, Y.K.; et al. Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces. ACS Appl. Mater. Interfaces 2017, 9, 25571–25577. [Google Scholar] [CrossRef]
- Reimer, T.; Paulowicz, I.; Röder, R.; Kaps, S.; Lupan, O.; Chemnitz, S.; Benecke, W.; Ronning, C.; Adelung, R.; Mishra, Y.K. Single Step Integration of ZnO Nano-and Microneedles in Si Trenches by Novel Flame Transport Approach: Whispering Gallery Modes and Photocatalytic Properties. ACS Appl. Mater. Interfaces 2014, 6, 7806–7815. [Google Scholar] [CrossRef]
- Jordt, P.; Wolff, N.; Hrkac, S.B.; Shree, S.; Wang, D.; Harder, R.J.; Kübel, C.; Adelung, R.; Shpyrko, O.G.; Magnussen, O.M.; et al. Visualizing Intrinsic 3D-Strain Distribution in Gold Coated ZnO Microstructures by Bragg Coherent X-ray Diffraction Imaging and Transmission Electron Microscopy with Respect to Piezotronic Applications. Adv. Electron. Mater. 2021, 7, 2100546. [Google Scholar] [CrossRef]
- Jordt, P.; Hrkac, S.B.; Gröttrup, J.; Davydok, A.; Krywka, C.; Wolff, N.; Kienle, L.; Adelung, R.; Magnussen, O.M.; Murphy, B.M. Local Strain Distribution in ZnO Microstructures Visualized with Scanning Nano X-ray Diffraction and Impact on Electrical Properties. Adv. Eng. Mater. 2021, 23, 2100201. [Google Scholar] [CrossRef]
- Wang, Z.L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.L. Advances in Piezotronic Transistors and Piezotronics. Nano Today 2021, 37, 101108. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- PourhosseiniAsl, M.J.; Berbille, A.; Tian, J.; Du, F.; Yu, Z.; Li, Z.; Guo, S.; Ren, K.; Dong, S. A Highly Energy-Efficient Magnetoelectric–Photocatalytic Coupling for Water Remediation. Mater. Today Chem. 2023, 29, 101439. [Google Scholar] [CrossRef]
- Feng, W.; Huang, P.; Jiang, L. Preparation of Highly Ordered ZnO Nanowire Arrays by Paired-Cell Deposition. Ceram. Int. 2014, 40, 6383–6387. [Google Scholar] [CrossRef]
- Samanta, A.; Goswami, M.N.; Mahapatra, P.K. Structural, Optical, Dielectric, Magnetic and Magnetoelectric Properties of Co-Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 12271–12278. [Google Scholar] [CrossRef]
- Samanta, A.; Goswami, M.N.; Mahapatra, P.K. Multiferroicity in Mg-Doped ZnO Nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 245, 1–8. [Google Scholar] [CrossRef]
- Dutta, P.; Mandal, S.K. Tuning Electronic Transport through Magnetic Field and Magnetoelectric Coupling of Multiferroic Nanocomposites. Ferroelectrics 2021, 573, 179–194. [Google Scholar] [CrossRef]
- Salzer, S.; Durdaut, P.; Robisch, V.; Meyners, D.; Quandt, E.; Hoft, M.; Knochel, R. Generalized Magnetic Frequency Conversion for Thin-Film Laminate Magnetoelectric Sensors. IEEE Sens. J. 2017, 17, 1373–1383. [Google Scholar] [CrossRef]
- Hayes, P.; Schell, V.; Salzer, S.; Burdin, D.; Yarar, E.; Piorra, A.; Knöchel, R.; Fetisov, Y.K.; Quandt, E. Electrically Modulated Magnetoelectric AlN/FeCoSiB Film Composites for DC Magnetic Field Sensing. J. Phys. D Appl. Phys. 2018, 51, 354002. [Google Scholar] [CrossRef]
- Han, W.B.; Lee, J.H.; Shin, J.W.; Hwang, S.W. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv. Mater. 2020, 32, 2002211. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Puspasari, V.; Ridhova, A.; Hermawan, A.; Amal, M.I.; Khan, M.M. ZnO-Based Antimicrobial Coatings for Biomedical Applications. Bioprocess Biosyst. Eng. 2022, 45, 1421–1445. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Sha, R.; Basak, A.; Maity, P.C.; Badhulika, S. ZnO Nano-Structured Based Devices for Chemical and Optical Sensing Applications. Sens. Actuators Rep. 2022, 4, 100098. [Google Scholar] [CrossRef]
- Tripathy, N.; Kim, D.H. Metal Oxide Modified ZnO Nanomaterials for Biosensor Applications. Nano Converg. 2018, 5, 27. [Google Scholar] [CrossRef]
- Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Anal. Chim. Acta 2012, 737, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. ZnO Nanowire and Nanobelt Platform for Nanotechnology. Mater. Sci. Eng. R Rep. 2009, 64, 33–71. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Hwang, S.W.; Su, Y.; Kim, S.; Cheng, H.; Gur, O.; Haney, R.; Omenetto, F.G.; Huang, Y.; Rogers, J.A. Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO. Small 2013, 9, 3398–3404. [Google Scholar] [CrossRef]
- Song, F.; Wang, H.; Sun, J.; Gao, H.; Wu, S.; Yang, M.; Ma, X.; Hao, Y. ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein. IEEE Electron Device Lett. 2018, 39, 31–34. [Google Scholar] [CrossRef]
- Wang, S.; Dang, B.; Sun, J.; Zhao, M.; Yang, M.; Ma, X.; Wang, H.; Hao, Y. Physically Transient W/ZnO/MgO/W Schottky Diode for Rectifying and Artificial Synapse. IEEE Electron Device Lett. 2020, 41, 844–847. [Google Scholar] [CrossRef]
- Jamshidi, R.; Taghavimehr, M.; Chen, Y.; Hashemi, N.; Montazami, R. Transient Electronics as Sustainable Systems: From Fundamentals to Applications. Adv. Sustain. Syst. 2022, 6, 2100057. [Google Scholar] [CrossRef]
- Wang, Z.L. Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-Phototronics. Nano Today 2010, 5, 540–552. [Google Scholar] [CrossRef]
- Zhu, R.; Yang, R. Separation of the Piezotronic and Piezoresistive Effects in a Zinc Oxide Nanowire. Nanotechnology 2014, 25, 345702. [Google Scholar] [CrossRef] [PubMed]
Technology Process | Structure | Magnetostrictive Phase | Sensitivity * | Ref. | |
---|---|---|---|---|---|
ZnO thin film | PLD | Cantilever | Fe74.4Co21.6Si0.5B3.3Mn0.1C0.1 | 47 mV/cm Oe | [45] |
ZnO thin film | BAW | Yttrium iron garnet | Δf~0.25 MHz | [51] | |
Sputtering | FBAR | Fe65Co35 | Δf~7 MHz | [55] | |
Sputtering | FBAR | Fe65Co35 | Δf~106 MHz | [56] | |
Sputtering | MEMS Cantilevers | FeCo | 57.6 mV/Gauss (10.45 kHz) | [58] | |
Spin-spray | Thin film | Fe3O4 (spin-spray) | 1.5 × 10−4 Oe cm k/V | [59] | |
ZnO micro/nano rods | Electrochemical deposition | Nanorod Composite | Ni75Fe25 (DC sputtering) | 0.34–0.48 mV/cm Oe | [74] |
MVLS | Core-shell | FeCoBSi (RF sputtering) | - | [26] | |
FTS | Microrod Composite | (Fe90Co10)78Si12B10 | - | [80] | |
FTS | Microrod Composite | FeCoSiB (Metglas 260SA1) | 380 pT Hz1/2 | [36] | |
ZnO nanocomposite | ZnO NPs | Nanocomposite | Co doped | 8.65 mV/cm Oe | [89] |
ZnO NPs | Nanocomposite | Mg doped | 4.13 mV/cm Oe | [90] | |
ZnO NPs | Nanocomposite | NiFe2O4 NPs | 3.7–8 mV/cm Oe | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardakas, A.; Kaidatzis, A.; Tsamis, C. A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Appl. Sci. 2023, 13, 8378. https://doi.org/10.3390/app13148378
Bardakas A, Kaidatzis A, Tsamis C. A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Applied Sciences. 2023; 13(14):8378. https://doi.org/10.3390/app13148378
Chicago/Turabian StyleBardakas, Achilleas, Andreas Kaidatzis, and Christos Tsamis. 2023. "A Review of Magnetoelectric Composites Based on ZnO Nanostructures" Applied Sciences 13, no. 14: 8378. https://doi.org/10.3390/app13148378
APA StyleBardakas, A., Kaidatzis, A., & Tsamis, C. (2023). A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Applied Sciences, 13(14), 8378. https://doi.org/10.3390/app13148378