A Review of Magnetoelectric Composites Based on ZnO Nanostructures
Abstract
:1. Introduction
2. Magnetoelectric (ME) Effect
3. ZnO Magnetoelectric Composites
3.1. Thin Films
3.1.1. Pure ZnO Thin Films
3.1.2. Doped ZnO Thin Films
3.2. ZnO Micro- and Nano-Rods
3.3. ZnO Nanocomposites
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astrov, D.N. Magnetoelectric Effect in Chromium Oxide. Sov. Phys. JETP 1961, 13, 729–733. [Google Scholar]
- Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J.L.; Gerken, M.; Knöchel, R.; Quandt, E. Magnetoelectric Thin Film Composites with Interdigital Electrodes. Appl. Phys. Lett. 2013, 103, 032902. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Greve, H.; Quandt, E.; Knöchel, R.; Wagner, B. MEMS Magnetic Field Sensor Based on Magnetoelectric Composites. J. Micromech. Microeng. 2012, 22, 065024. [Google Scholar] [CrossRef]
- Polícia, R.; Lima, A.C.; Pereira, N.; Calle, E.; Vázquez, M.; Lanceros-Mendez, S.; Martins, P. Transparent Magnetoelectric Materials for Advanced Invisible Electronic Applications. Adv. Electron. Mater. 2019, 5, 1900280. [Google Scholar] [CrossRef]
- Pourhosseiniasl, M.; Gao, X.; Kamalisiahroudi, S.; Yu, Z.; Chu, Z.; Yang, J.; Lee, H.; Dong, S. Nano Energy Versatile Power and Energy Conversion of Magnetoelectric Composite Materials with High Efficiency via Electromechanical Resonance. Nano Energy 2020, 70, 104506. [Google Scholar] [CrossRef]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications. Meas. J. Int. Meas. Confed. 2018, 116, 230–238. [Google Scholar] [CrossRef]
- García-Arribas, A.; Gutiérrez, J.; Kurlyandskaya, G.V.; Barandiarán, J.M.; Svalov, A.; Fernández, E.; Lasheras, A.; de Cos, D.; Bravo-Imaz, I. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity. Sensors 2014, 14, 7602–7624. [Google Scholar] [CrossRef] [Green Version]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef] [Green Version]
- Salzer, S.; Jahns, R.; Piorra, A.; Teliban, I.; Reermann, J.; Höft, M.; Quandt, E.; Knöchel, R. Tuning Fork for Noise Suppression in Magnetoelectric Sensors. Sens. Actuators A Phys. 2016, 237, 91–95. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Matyushov, A.; Dong, C.; Chen, H.; Lin, H.; Nan, T.; Qian, Z.; Rinaldi, M.; Lin, Y.; Sun, N.X. Ultra-Sensitive NEMS Magnetoelectric Sensor for Picotesla DC Magnetic Field Detection. Appl. Phys. Lett. 2017, 110, 143510. [Google Scholar] [CrossRef]
- Marauska, S.; Dankwort, T.; Quenzer, H.J.; Wagner, B. Sputtered Thin Film Piezoelectric Aluminium Nitride as a Functional MEMS Material and CMOS Compatible Process Integration. Procedia Eng. 2011, 25, 1341–1344. [Google Scholar] [CrossRef]
- Sternickel, K.; Braginski, A.I. Biomagnetism Using SQUIDs: Status and Perspectives. Supercond. Sci. Technol. 2006, 19, S160. [Google Scholar] [CrossRef]
- MacKert, B.M. Magnetoneurography: Theory and Application to Peripheral Nerve Disorders. Clin. Neurophysiol. 2004, 115, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Liang, X.; Gao, J.; Chen, H.; He, Y.; Wei, Y.; Zaeimbashi, M.; Matyushov, A.; Sun, C.; Sun, N.X. Thin Film Magnetoelectric Sensors Toward Biomagnetism: Materials, Devices, and Applications. Adv. Electron. Mater. 2022, 8, 2200013. [Google Scholar] [CrossRef]
- Kopyl, S.; Surmenev, R.; Surmeneva, M.; Fetisov, Y.; Kholkin, A. Magnetoelectric Effect: Principles and Applications in Biology and Medicine—A Review. Mater. Today Bio 2021, 12, 100149. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef] [Green Version]
- Maiz, J.; Loxq, P.; Fau, P.; Fajerwerg, K.; Kahn, M.L.; Fleury, G.; Hadziioannou, G.; Guegan, G.; Majimel, J.; Maglione, M.; et al. Ferroelectricity in Undoped ZnO Nanorods. J. Phys. Chem. C 2019, 123, 29436–29444. [Google Scholar] [CrossRef]
- Bhat, S.S.; Qurashi, A.; Khanday, F.A. ZnO Nanostructures Based Biosensors for Cancer and Infectious Disease Applications: Perspectives, Prospects and Promises. TrAC Trends Anal. Chem. 2017, 86, 1–13. [Google Scholar] [CrossRef]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef] [Green Version]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and Piezoelectric-Pyroelectric Composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Islam, R.A.; Rong, C.B.; Liu, J.P.; Priya, S. Effect of Gradient Composite Structure in Cofired Bilayer Composites of Pb(Zr0.56Ti0.44)O3-Ni0.6Zn0.2Cu0.2Fe2O4 System on Magnetoelectric Coefficient. J. Mater. Sci. 2008, 43, 6337–6343. [Google Scholar] [CrossRef]
- Shi, Z.; Nan, C.W.; Zhang, J.; Cai, N.; Li, J.F. Magnetoelectric Effect of Pb (Zr,Ti) O3 Rod Arrays in a (Tb,Dy) Fe2 Epoxy Medium. Appl. Phys. Lett. 2005, 87, 2003–2006. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.J.; Wagner, B.; Quandt, E. Giant Magnetoelectric Coefficients in (Fe90Co10)78Si12 B10-AlN Thin Film Composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Kaps, S.; Mishra, Y.K.; Hrkac, V.; Greve, H.; Kienle, L.; Quandt, E.; Adelung, R. High Aspect Ratio Free Standing ZnO-Magnetostrictive Mesoscale Cylindrical Magnetoelectric Core Shell Composite. MRS Online Proc. Libr. (OPL) 2012, 1398, mrsf11-1398-q09-01. [Google Scholar] [CrossRef]
- Röbisch, V.; Salzer, S.; Urs, N.O.; Reermann, J.; Yarar, E.; Piorra, A.; Kirchhof, C.; Lage, E.; Höft, M.; Schmidt, G.U.; et al. Pushing the Detection Limit of Thin Film Magnetoelectric Heterostructures. J. Mater. Res. 2017, 32, 1009–1019. [Google Scholar] [CrossRef]
- Özkale, B.; Shamsudhin, N.; Bugmann, T.; Nelson, B.J.; Pané, S. Magnetostriction in Electroplated CoFe Alloys. Electrochem. Commun. 2017, 76, 15–19. [Google Scholar] [CrossRef]
- Nicolenco, A.; Gómez, A.; Chen, X.Z.; Menéndez, E.; Fornell, J.; Pané, S.; Pellicer, E.; Sort, J. Strain Gradient Mediated Magnetoelectricity in Fe-Ga/P(VDF-TrFE) Multiferroic Bilayers Integrated on Silicon. Appl. Mater. Today 2020, 19, 100579. [Google Scholar] [CrossRef]
- Dong, C.; Li, M.; Liang, X.; Chen, H.; Zhou, H.; Wang, X.; Gao, Y.; McConney, M.E.; Jones, J.G.; Brown, G.J.; et al. Characterization of Magnetomechanical Properties in FeGaB Thin Films. Appl. Phys. Lett. 2018, 113, 262401. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Chen, H.; Wang, J.; Wei, Y.; Zaeimbashi, M.; He, Y.; Matyushov, A.; Sun, C.; Sun, N. A Review of Thin-Film Magnetoelastic Materials for Magnetoelectric Applications. Sensors 2020, 20, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, P.; Mandal, S.K.; Nath, A. NiFe2O4-ZnO Semiconducting Nanocomposites: Studies of Room Temperature Magnetoelectric Coupling and Electronic Transport. Mater. Chem. Phys. 2019, 234, 16–24. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Mahapatra, A.S.; Mitra, A.; Bhakta, N.; Das, S.; Mallick, A.; Banerjee, A.; Chatterjee, S.; Greneche, J.M.; Chakrabarti, P.K. Strong Modulation Effects on Magnetoelectric Behavior of Co-Ferrite Nanoparticles Incorporated in ZnO Medium in Nano-Regime Synthesized in Chemical Routes. Appl. Phys. A Mater. Sci. Process. 2023, 129, 68. [Google Scholar] [CrossRef]
- Ye, J.; Ma, J.; Ma, J.; Hu, J.; Li, Z.; Feng, M.; Zhang, Q.M.; Nan, C.W. Temperature Dependence of Magnetoelectric Coupling in FeBSiC/PZT/FeBSiC Laminates. J. Appl. Phys. 2014, 116, 074103. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E. Inverse Bilayer Magnetoelectric Thin Film Sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Gröttrup, J.; Kaps, S.; Carstensen, J.; Smazna, D.; Mishra, Y.K.; Piorra, A.; Kirchhof, C.; Quandt, E.; Adelung, R. Piezotronic-Based Magnetoelectric Sensor: Fabrication and Response. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 2208–2215. [Google Scholar] [CrossRef]
- Chacko, S.K.; Rahul, M.T.; Raneesh, B.; Kalarikkal, N. Enhanced Magnetoelectric Coupling and Dielectric Constant in Flexible Ternary Composite Electrospun Fibers of PVDF-HFP Loaded with Nanoclay and NiFe2O4 Nanoparticles. New J. Chem. 2020, 44, 11356–11364. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-Based MEMS Magnetoelectric Sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Djurišić, A.B.; Chen, X.; Leung, Y.H.; Man Ching Ng, A. ZnO Nanostructures: Growth, Properties and Applications. J. Mater. Chem. 2012, 22, 6526–6535. [Google Scholar] [CrossRef]
- Hwang, D.K.; Oh, M.S.; Lim, J.H.; Park, S.J. ZnO Thin Films and Light-Emitting Diodes. J. Phys. D Appl. Phys. 2007, 40, R387. [Google Scholar] [CrossRef]
- Stramarkou, M.; Bardakas, A.; Krokida, M.; Tsamis, C. ZnO-Based Chemi-Resistive Sensors for CO2 Detection: A Review. Sens. Rev. 2022, 42, 682–706. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.; Al-Dossary, O.; Umar, A. ZnO Nanostructured Thin Films: Depositions, Properties and Applications—A Review. Mater. Express 2015, 5, 3–23. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoҫ, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Viswan, R.; Gray, D.; Wang, Y.; Li, Y.; Berry, D.; Li, J.; Viehland, D. Strong Magnetoelectric Coupling in Highly Oriented ZnO Films Deposited on Metglas Substrates. Phys. Status Solidi—Rapid Res. Lett. 2011, 5, 391–393. [Google Scholar] [CrossRef]
- Klokholm, E. The Measurement of Magnetostriction in Ferromagnetic Thin Films. IEEE Trans. Magn. 1976, 12, 819–821. [Google Scholar] [CrossRef]
- du Trémolet de Lacheisserie, E.; Peuzin, J.C. Magnetostriction and Internal Stresses in Thin Films: The Cantilever Method Revisited. J. Magn. Magn. Mater. 1994, 136, 189–196. [Google Scholar] [CrossRef]
- Länge, K.; Rapp, B.E.; Rapp, M. Surface Acoustic Wave Biosensors: A Review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, X.; Cai, H.; Mohammad, M.A.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface Acoustic Wave Devices for Sensor Applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef]
- Alekseev, S.; Polzikova, N.; Kotelyanskii, I.; Fetisov, Y. Tunable HBAR Based on Magnetoelectric YIG/ZnO Structure. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2481–2484. [Google Scholar] [CrossRef]
- Huang, L.; Lyu, Q.; Wen, D.; Zhong, Z.; Zhang, H.; Bai, F. Theoretical Investigation of Magnetoelectric Surface Acoustic Wave Characteristics of ZnO/Metglas Layered Composite. AIP Adv. 2016, 6, 015103. [Google Scholar] [CrossRef]
- Jahns, R.; Zabel, S.; Marauska, S.; Gojdka, B.; Wagner, B.; Knöchel, R.; Adelung, R.; Faupel, F. Microelectromechanical Magnetic Field Sensor Based on Δe Effect. Appl. Phys. Lett. 2014, 105, 103–106. [Google Scholar] [CrossRef]
- Liu, X.; Ou-Yang, J.; Tong, B.; Chen, S.; Zhang, Y.; Zhu, B.; Yang, X. Influence of the Delta-E Effect on a Surface Acoustic Wave Resonator. Appl. Phys. Lett. 2019, 114, 062903. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Das, S.; Kothari, P. Tunable Film Bulk Acoustic Wave Resonator Based on Magnetostrictive Fe65Co35 Thin Films. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 800–802. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Kumar, M. Highly Tunable Film Bulk Acoustic Wave Resonator Based on Pt/ZnO/Fe65Co35Thin Films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2130–2134. [Google Scholar] [CrossRef]
- Gojdka, B.; Jahns, R.; Meurisch, K.; Greve, H.; Adelung, R.; Quandt, E.; Knöchel, R.; Faupel, F. Fully Integrable Magnetic Field Sensor Based on Delta-E Effect. Appl. Phys. Lett. 2011, 99, 223502. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Kumar, R.; Kumar, A.; Das, S.; Kothari, P.; Arout, C. MEMS Magnetic Field Sensor Based on Magnetoelectric FeCo ZnO Thin Films. In Proceedings of the 4th IEEE International Conference on Emerging Electronics, Bengaluru, India, 16–19 December 2018. [Google Scholar]
- Zhou, Z.; Obi, O.; Nan, T.X.; Beguhn, S.; Lou, J.; Yang, X.; Gao, Y.; Li, M.; Rand, S.; Lin, H.; et al. Low-Temperature Spin Spray Deposited Ferrite/Piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling. J. Mater. Sci. Mater. Electron. 2014, 25, 1188–1192. [Google Scholar] [CrossRef]
- Abes, M.; Koops, C.T.; Hrkac, S.B.; Quandt, E.; Bouchenoire, L.; Murphy, B.M.; Magnussen, O.M. Direct Measurements of Field-Induced Strain in Magnetoelectric Composites by X-ray Diffraction Studies of Forbidden Reflections. J. Appl. Phys. 2013, 113, 124303. [Google Scholar] [CrossRef]
- Abes, M.; Koops, C.T.; Hrkac, S.B.; Greve, H.; Quandt, E.; Collins, S.P.; Murphy, B.M.; Magnussen, O.M. Direct Measurements of Field-Induced Strain at Magnetoelectric Interfaces by Grazing Incidence X-ray Diffraction. Appl. Phys. Lett. 2013, 102, 011601. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Schmidt, H.; Zhou, S.; Potzger, K.; Helm, M.; Hochmuth, H.; Lorenz, M.; Setzer, A.; Esquinazi, P.; Meinecke, C.; et al. Room Temperature Ferromagnetism in ZnO Films Due to Defects. Appl. Phys. Lett. 2008, 92, 082508. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Q.; Chen, G.; Kawazoe, Y.; Jena, P. Vacancy-Induced Magnetism in ZnO Thin Films and Nanowires. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 77, 205411. [Google Scholar] [CrossRef] [Green Version]
- Nagare, B.J.; Chacko, S.; Kanhere, D.G. Ferromagnetism in Carbon-Doped Zinc Oxide Systems. J. Phys. Chem. A 2010, 114, 2689–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.W.; Yi, J.B.; Ding, J.; Van, L.H.; Zhang, H.T.; Ng, C.M. Inducing Ferromagnetism in ZnO through Doping of Nonmagnetic Elements. Appl. Phys. Lett. 2008, 93, 042514. [Google Scholar] [CrossRef]
- Can, M.M.; Frat, T.; Ismat Shah, S. Magnetoelectrical Properties of W Doped ZnO Thin Films. J. Magn. Magn. Mater. 2012, 324, 4054–4060. [Google Scholar] [CrossRef]
- Sharma, N.; Gaur, A.; Kumar, V.; Kotnala, R.K. Multiferroicity and Magnetoelectric Coupling in Doped ZnO. Superlattices Microstruct. 2014, 65, 299–308. [Google Scholar] [CrossRef]
- Aizu, K. Considerations of Partially Ferroelastic and Partially Antiferroelastic Crystals and Partially Ferroelectric and Partially Antiferroelectric Crystals. J. Phys. Soc. Jpn. 1970, 28, 717–722. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, B. A Review on Piezo-/Ferro-Electric Properties of Morphologically Diverse ZnO Nanostructures. J. Alloys Compd. 2020, 816, 152491. [Google Scholar] [CrossRef]
- Lin, Y.H.; Ying, M.; Li, M.; Wang, X.; Nan, C.W. Room-Temperature Ferromagnetic and Ferroelectric Behavior in Polycrystalline ZnO-Based Thin Films. Appl. Phys. Lett. 2007, 90, 11–14. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, Y.; Nan, C.W. Multiferroic Magnetoelectric Composite Nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; et al. Relaxor Ferroelectricity and Magnetoelectric Coupling in ZnO-Co Nanocomposite Thin Films: Beyond Multiferroic Composites. ACS Appl. Mater. Interfaces 2014, 6, 4737–4742. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cheng, C.L.; Liou, S.C.; Chen, Y.F. The Magnetoelectric Effect in Ni-Fe Alloy/ZnO Nanorod Array Composites. Nanotechnology 2008, 19, 485709. [Google Scholar] [CrossRef] [PubMed]
- Whitney, T.M.; Jiang, J.S.; Searson, P.C.; Chien, C.L. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science 1993, 261, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Praveena, M.G.; Kumar, A.S.; Kala, M.S.; Bhowmik, R.N.; Nair, S.S.; Thomas, S.; Anantharaman, M.R. Interface Assisted Strain-Induced Magnetoelectric Coupling in Core-Shell Nanostructures of CoFe2O4 @ZnO. J. Magn. Magn. Mater. 2020, 513, 167252. [Google Scholar] [CrossRef]
- Bryan, M.T.; Dean, J.; Allwood, D.A. Dynamics of Stress-Induced Domain Wall Motion. Phys. Rev. B–Condens. Matter Mater. Phys. 2012, 85, 144411. [Google Scholar] [CrossRef]
- Vinai, G.; Ressel, B.; Torelli, P.; Loi, F.; Gobaut, B.; Ciancio, R.; Casarin, B.; Caretta, A.; Capasso, L.; Parmigiani, F.; et al. Giant Magneto-Electric Coupling in 100 Nm Thick Co Capped by ZnO Nanorods. Nanoscale 2018, 10, 1326–1336. [Google Scholar] [CrossRef]
- Hrkac, S.B.; Abes, M.; Koops, C.T.; Krywka, C.; Müller, M.; Kaps, S.; Adelung, R.; McCord, J.; Lage, E.; Quandt, E.; et al. Local Magnetization and Strain in Single Magnetoelectric Microrod Composites. Appl. Phys. Lett. 2013, 103, 123111. [Google Scholar] [CrossRef] [Green Version]
- Hrkac, S.B.; Koops, C.T.; Abes, M.; Krywka, C.; Müller, M.; Burghammer, M.; Sztucki, M.; Dane, T.; Kaps, S.; Mishra, Y.K.; et al. Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces. ACS Appl. Mater. Interfaces 2017, 9, 25571–25577. [Google Scholar] [CrossRef]
- Reimer, T.; Paulowicz, I.; Röder, R.; Kaps, S.; Lupan, O.; Chemnitz, S.; Benecke, W.; Ronning, C.; Adelung, R.; Mishra, Y.K. Single Step Integration of ZnO Nano-and Microneedles in Si Trenches by Novel Flame Transport Approach: Whispering Gallery Modes and Photocatalytic Properties. ACS Appl. Mater. Interfaces 2014, 6, 7806–7815. [Google Scholar] [CrossRef]
- Jordt, P.; Wolff, N.; Hrkac, S.B.; Shree, S.; Wang, D.; Harder, R.J.; Kübel, C.; Adelung, R.; Shpyrko, O.G.; Magnussen, O.M.; et al. Visualizing Intrinsic 3D-Strain Distribution in Gold Coated ZnO Microstructures by Bragg Coherent X-ray Diffraction Imaging and Transmission Electron Microscopy with Respect to Piezotronic Applications. Adv. Electron. Mater. 2021, 7, 2100546. [Google Scholar] [CrossRef]
- Jordt, P.; Hrkac, S.B.; Gröttrup, J.; Davydok, A.; Krywka, C.; Wolff, N.; Kienle, L.; Adelung, R.; Magnussen, O.M.; Murphy, B.M. Local Strain Distribution in ZnO Microstructures Visualized with Scanning Nano X-ray Diffraction and Impact on Electrical Properties. Adv. Eng. Mater. 2021, 23, 2100201. [Google Scholar] [CrossRef]
- Wang, Z.L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.L. Advances in Piezotronic Transistors and Piezotronics. Nano Today 2021, 37, 101108. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- PourhosseiniAsl, M.J.; Berbille, A.; Tian, J.; Du, F.; Yu, Z.; Li, Z.; Guo, S.; Ren, K.; Dong, S. A Highly Energy-Efficient Magnetoelectric–Photocatalytic Coupling for Water Remediation. Mater. Today Chem. 2023, 29, 101439. [Google Scholar] [CrossRef]
- Feng, W.; Huang, P.; Jiang, L. Preparation of Highly Ordered ZnO Nanowire Arrays by Paired-Cell Deposition. Ceram. Int. 2014, 40, 6383–6387. [Google Scholar] [CrossRef]
- Samanta, A.; Goswami, M.N.; Mahapatra, P.K. Structural, Optical, Dielectric, Magnetic and Magnetoelectric Properties of Co-Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 12271–12278. [Google Scholar] [CrossRef]
- Samanta, A.; Goswami, M.N.; Mahapatra, P.K. Multiferroicity in Mg-Doped ZnO Nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 245, 1–8. [Google Scholar] [CrossRef]
- Dutta, P.; Mandal, S.K. Tuning Electronic Transport through Magnetic Field and Magnetoelectric Coupling of Multiferroic Nanocomposites. Ferroelectrics 2021, 573, 179–194. [Google Scholar] [CrossRef]
- Salzer, S.; Durdaut, P.; Robisch, V.; Meyners, D.; Quandt, E.; Hoft, M.; Knochel, R. Generalized Magnetic Frequency Conversion for Thin-Film Laminate Magnetoelectric Sensors. IEEE Sens. J. 2017, 17, 1373–1383. [Google Scholar] [CrossRef]
- Hayes, P.; Schell, V.; Salzer, S.; Burdin, D.; Yarar, E.; Piorra, A.; Knöchel, R.; Fetisov, Y.K.; Quandt, E. Electrically Modulated Magnetoelectric AlN/FeCoSiB Film Composites for DC Magnetic Field Sensing. J. Phys. D Appl. Phys. 2018, 51, 354002. [Google Scholar] [CrossRef]
- Han, W.B.; Lee, J.H.; Shin, J.W.; Hwang, S.W. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv. Mater. 2020, 32, 2002211. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puspasari, V.; Ridhova, A.; Hermawan, A.; Amal, M.I.; Khan, M.M. ZnO-Based Antimicrobial Coatings for Biomedical Applications. Bioprocess Biosyst. Eng. 2022, 45, 1421–1445. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, R.; Basak, A.; Maity, P.C.; Badhulika, S. ZnO Nano-Structured Based Devices for Chemical and Optical Sensing Applications. Sens. Actuators Rep. 2022, 4, 100098. [Google Scholar] [CrossRef]
- Tripathy, N.; Kim, D.H. Metal Oxide Modified ZnO Nanomaterials for Biosensor Applications. Nano Converg. 2018, 5, 27. [Google Scholar] [CrossRef]
- Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Anal. Chim. Acta 2012, 737, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. ZnO Nanowire and Nanobelt Platform for Nanotechnology. Mater. Sci. Eng. R Rep. 2009, 64, 33–71. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Hwang, S.W.; Su, Y.; Kim, S.; Cheng, H.; Gur, O.; Haney, R.; Omenetto, F.G.; Huang, Y.; Rogers, J.A. Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO. Small 2013, 9, 3398–3404. [Google Scholar] [CrossRef]
- Song, F.; Wang, H.; Sun, J.; Gao, H.; Wu, S.; Yang, M.; Ma, X.; Hao, Y. ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein. IEEE Electron Device Lett. 2018, 39, 31–34. [Google Scholar] [CrossRef]
- Wang, S.; Dang, B.; Sun, J.; Zhao, M.; Yang, M.; Ma, X.; Wang, H.; Hao, Y. Physically Transient W/ZnO/MgO/W Schottky Diode for Rectifying and Artificial Synapse. IEEE Electron Device Lett. 2020, 41, 844–847. [Google Scholar] [CrossRef]
- Jamshidi, R.; Taghavimehr, M.; Chen, Y.; Hashemi, N.; Montazami, R. Transient Electronics as Sustainable Systems: From Fundamentals to Applications. Adv. Sustain. Syst. 2022, 6, 2100057. [Google Scholar] [CrossRef]
- Wang, Z.L. Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-Phototronics. Nano Today 2010, 5, 540–552. [Google Scholar] [CrossRef]
- Zhu, R.; Yang, R. Separation of the Piezotronic and Piezoresistive Effects in a Zinc Oxide Nanowire. Nanotechnology 2014, 25, 345702. [Google Scholar] [CrossRef] [PubMed]
Technology Process | Structure | Magnetostrictive Phase | Sensitivity * | Ref. | |
---|---|---|---|---|---|
ZnO thin film | PLD | Cantilever | Fe74.4Co21.6Si0.5B3.3Mn0.1C0.1 | 47 mV/cm Oe | [45] |
ZnO thin film | BAW | Yttrium iron garnet | Δf~0.25 MHz | [51] | |
Sputtering | FBAR | Fe65Co35 | Δf~7 MHz | [55] | |
Sputtering | FBAR | Fe65Co35 | Δf~106 MHz | [56] | |
Sputtering | MEMS Cantilevers | FeCo | 57.6 mV/Gauss (10.45 kHz) | [58] | |
Spin-spray | Thin film | Fe3O4 (spin-spray) | 1.5 × 10−4 Oe cm k/V | [59] | |
ZnO micro/nano rods | Electrochemical deposition | Nanorod Composite | Ni75Fe25 (DC sputtering) | 0.34–0.48 mV/cm Oe | [74] |
MVLS | Core-shell | FeCoBSi (RF sputtering) | - | [26] | |
FTS | Microrod Composite | (Fe90Co10)78Si12B10 | - | [80] | |
FTS | Microrod Composite | FeCoSiB (Metglas 260SA1) | 380 pT Hz1/2 | [36] | |
ZnO nanocomposite | ZnO NPs | Nanocomposite | Co doped | 8.65 mV/cm Oe | [89] |
ZnO NPs | Nanocomposite | Mg doped | 4.13 mV/cm Oe | [90] | |
ZnO NPs | Nanocomposite | NiFe2O4 NPs | 3.7–8 mV/cm Oe | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardakas, A.; Kaidatzis, A.; Tsamis, C. A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Appl. Sci. 2023, 13, 8378. https://doi.org/10.3390/app13148378
Bardakas A, Kaidatzis A, Tsamis C. A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Applied Sciences. 2023; 13(14):8378. https://doi.org/10.3390/app13148378
Chicago/Turabian StyleBardakas, Achilleas, Andreas Kaidatzis, and Christos Tsamis. 2023. "A Review of Magnetoelectric Composites Based on ZnO Nanostructures" Applied Sciences 13, no. 14: 8378. https://doi.org/10.3390/app13148378
APA StyleBardakas, A., Kaidatzis, A., & Tsamis, C. (2023). A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Applied Sciences, 13(14), 8378. https://doi.org/10.3390/app13148378