Effects of Wind Barrier Porosity and Inclination on Wind Speed Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wind Experimental Design
2.2. Wind Experimental Materials
2.3. Measurements
2.4. Statistical Analyses
3. Results
3.1. Case A (Porosity of 0% with Inclinations of 90°, 80°, and 70°)
3.2. Case B (Porosity of 25% with Inclinations of 90°, 80°, and 70°)
3.3. Case C (Porosity of 50% with Inclinations of 90°, 80°, and 70°)
3.4. Effects of Porosity and Inclination on Wind Speed
4. Discussion
5. Conclusions
- The wind barriers tested in this study, which varied in porosity and inclination, exhibited different effects on wind speed reduction at various distances. This suggests that both the porosity and inclination of wind barriers play important roles in providing wind protection.
- All wind barriers provided up to six times more wind protection on the leeward side than on the windward side. However, the wind velocity reduction ratio varied at each distance for all wind barriers, indicating different levels of wind protection.
- Among the evaluated wind barriers, a wind barrier with a porosity of 0% and an inclination of 90° demonstrated the highest reduction in wind velocity. However, this wind barrier had a very limited wind protection range and could potentially cause wind flow recirculation on the leeward side, posing a risk of sapling damage.
- In contrast, a wind barrier with a porosity of 50% and an inclination of 70° sufficiently decreased wind velocity and prevented the recirculation of wind flow, thereby improving sapling protection and reducing material costs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Hua, J.; Kang, M.; Wang, X.; Fan, X.-R.; Fourcaud, T.; de Reffye, P. Stronger wind, smaller tree: Testing tree growth plasticity through a modling approach. Front. Plan Sci. 2022, 13, 971690. [Google Scholar] [CrossRef] [PubMed]
- Ancelin, P.; Courbaud, B.I.T.; Fourcaud, T. Development of an individual tree-based mechanical model to predict wind damage within forest stands. For. Ecol. Manag. 2004, 203, 101–121. [Google Scholar] [CrossRef]
- de Langre, E. Effects of wind on plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, B.; Peltola, H.; Kellomäki, S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol. Model. 2000, 129, 1–23. [Google Scholar] [CrossRef]
- Niklas, K.J.; Spatz, H.-C. Wind-induced stresses in cherry trees: Evidence against the hypothesis of constant stress level. Trees-Struct. Funct. 2000, 14, 230–237. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Jo, H.K.; Park, H.M. Effects of windbreak planting on crop productivity for agroforestry practices in a semi-arid region. J. For. Environ. Sci. 2017, 33, 348–354. [Google Scholar] [CrossRef]
- Wu, X.; Guo, Z.; Wang, R.; Fan, P.; Xiang, H.; Zuo, X.; Yin, J.; Fang, H. Optimal design for wind fence based on 3D numerical simulation. Agric. For. Meteorol. 2022, 323, 109072. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.-B.; Shin, M.-H.; Hong, S.-W.; Hwang, S.-H.; Seo, I.-H.; Yoo, J.-I.; Kwon, K.-S.; Kim, Y.-H.; Han, J.-W. Numerical simulation of an array of fences in Saemangeum reclaimed land. Atmos. Environ. 2009, 43, 4612–4621. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, S.-H. Effects of windbreak forest according to tree species and planting methods based on wind tunnel experiments. For. Sci. Technol. 2020, 16, 188–194. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, C.M.; Mason, M.S. Review of models for predicting wind characteristics behind windbreaks. J. Wind Eng. Ind. Aerodyn. 2020, 199, 104117. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Mostafa, E.; Pang, Z. A wind tunnel study on aerodynamic porosity and windbreak drag. For. Sci. Technol. 2011, 7, 8–16. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Kwon, K.-S.; Mostafa, E.; Pang, Z. Numerical simulation study of a tree windbreak. Biosyst. Eng. 2012, 111, 40–48. [Google Scholar] [CrossRef]
- Wu, T.; Yu, M.; Wang, G.; Wang, Z.; Duan, X.; Dong, Y.; Cheng, X. Effects of stand structure on wind speed reduction in a Metasequoia Glyptostroboides shelterbelt. Agrofor. Syst. 2013, 87, 51–257. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, J.H.; Seo, K.W.; Jeong, Y.H. Effect of wind break on the early growth of Pinus thunbergii at Saemangeum sea-wall. Korean J. Agric. For. Meteorol. 2013, 15, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Heisler, G.M.; Dewalle, D.R. 2. Effects of windbreak structure on wind flow. Agric. Ecosyst. Environ. 1988, 22–23, 41–69. [Google Scholar] [CrossRef]
- Li, B.; Sherman, D.J. Aerodynamics and morphodynamics of sand fences: A review. Aeolian Res. 2015, 17, 33–48. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. Urban For. Urban Green. 2018, 35, 230–239. [Google Scholar] [CrossRef]
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lu, Q.; Wu, B.; Yang, H.; Zhang, J.; Lin, Y. Vegetation diversity and its application in sandy desert revegetation on Tibetan Plateau. J. Arid Environ. 2006, 65, 619–631. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, P.; Zhang, L.; Wang, J.; Yu, M.; Zhou, X.; Wang, G.G. Relationship between shelter effects of optical porosity: A meta-analysis for tree windbreaks. Agric. For. Meteorol. 2018, 259, 75–81. [Google Scholar] [CrossRef]
- Chen, G.; Wang, W.; Sun, C.; Li, J. 3D numerical simulation of wind flow behind a new porous fence. Powder Technol. 2012, 230, 118–126. [Google Scholar] [CrossRef]
- Lee, S.J.; Lim, H.C. A numerical study on flow around a triangular prism located behind a porous fence. Fluid Dyn. Res. 2001, 28, 209–221. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, K.C.; Park, C.W. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements. Atmos. Environ. 2002, 36, 1453–1463. [Google Scholar] [CrossRef]
- Perera, M.D.A.E.S. Shelter behind two-dimensional solid and porous fences. J. Wind Eng. Ind. Aerodyn. 1981, 8, 93–104. [Google Scholar] [CrossRef]
- Raine, J.K.; Stevenson, D.C. Wind protection by model fences in a simulated atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 1977, 2, 159–180. [Google Scholar] [CrossRef]
- Ranga Raju, K.G.; Garde, R.J.; Singh, S.K.; Singh, N. Experimental study on characteristics of flow past porous fences. J. Wind Eng. Ind. Aerodyn. 1988, 29, 155–163. [Google Scholar] [CrossRef]
- Wang, T.; Qu, J.; Ling, Y.; Xie, S.; Xiao, J. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China. J. Arid Land. 2017, 9, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhang, T.; Ma, W.; Quan, Y.; Gu, M.; Kang, L.; Yang, Y. CFD simulation of snow redistribution on a bridge deck: Effect of barriers with different porosities. Cold Reg. Sci. Technol. 2021, 181, 103174. [Google Scholar] [CrossRef]
- Yu, Y.P.; Zhang, K.C.; An, Z.S.; Wang, T.; Hu, F. The blocking effect of the sand fences quantified using wind tunnel simulations. J. Mt. Sci. 2020, 17, 2485–2496. [Google Scholar] [CrossRef]
- Kang, K. Wind-tunnel simulation on the wind fence effect. J. Korean Environ. Sci. Soc. 1998, 7, 20–26, (In Korean with English Abstract). [Google Scholar]
- Naaim-Bouvet, F.; Naaim, M.; Michaux, J.L. Snow fences on slopes at high wind speed: Physical modelling in the CSTB cold wind tunnel. Nat. Hazards Earth Syst. Sci. 2002, 2, 137–145. [Google Scholar] [CrossRef]
- Chen, T.Y.; Liou, L.R. Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines. Exp. Therm. Fluid Sci. 2011, 35, 565–569. [Google Scholar] [CrossRef]
- He, R.; Sun, H.; Gao, X.; Yang, H. Wind tunnel tests for wind turbines: A state-of-the-art review. Renew. Sust. Energy Rev. 2022, 166, 112675. [Google Scholar] [CrossRef]
- Jeong, U.Y.; Park, T.K. Experimental Investigation of the Shelter Effect of Porous Wind Fences. KSCE 2002, 22, 1481–1490, (In Korea with English Abstract). [Google Scholar]
- Jeong, H.; Lee, S.; Kwon, S.D. Blockage corrections for wind tunnel tests conducted on a Darrieus wind turbine. J. Wind Eng. Ind. Aerodyn. 2018, 179, 229–239. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Open MET Data Portal. Available online: https://data.kma.go.kr/resources/html/en/aowdp.html (accessed on 4 January 2023). (In Korean).
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, W.; Qian, G.; Wang, H. A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric. For. Meteorol. 2007, 146, 82–93. [Google Scholar] [CrossRef]
- Wang, T.; Qu, J.; Ling, Y.; Liu, B.; Xiao, J. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel. Aeolian Res. 2018, 30, 32–40. [Google Scholar] [CrossRef]
Porosity (%) | Inclination (°) | Distance (cm) | Height (cm) | Velocity (m/s) | Wind Reduction Ratio (%) |
---|---|---|---|---|---|
0% | 90° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 |
50 | 30, 60, 90 | 0.516 ± 0.120 a | 90 | ||
100 | 30, 60, 90 | 0.757 ± 0.756 a | 85 | ||
200 | 30, 60, 90 | 1.027 ± 0.989 a | 79 | ||
300 | 30, 60, 90 | 1.178 ± 0.365 ab | 76 | ||
400 | 30, 60, 90 | 1.412 ± 0.818 ab | 72 | ||
500 | 30, 60, 90 | 2.064 ± 1.340 b | 59 | ||
600 | 30, 60, 90 | 2.969 ± 1.400 c | 41 | ||
80° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 | |
50 | 30, 60, 90 | 0.486 ± 0.230 a | 90 | ||
100 | 30, 60, 90 | 0.618 ± 0.614 a | 88 | ||
200 | 30, 60, 90 | 1.057 ± 0.426 ab | 79 | ||
300 | 30, 60, 90 | 1.147 ± 0.614 ab | 77 | ||
400 | 30, 60, 90 | 1.393 ± 0.171 ab | 72 | ||
500 | 30, 60, 90 | 2.000 ± 0.720 b | 60 | ||
600 | 30, 60, 90 | 3.289 ± 1.498 c | 34 | ||
70° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 | |
50 | 30, 60, 90 | 0.390 ± 0.345 a | 90 | ||
100 | 30, 60, 90 | 0.602 ± 0.121 a | 88 | ||
200 | 30, 60, 90 | 1.036 ± 0.013 ab | 79 | ||
300 | 30, 60, 90 | 1.164 ± 0.091 ab | 77 | ||
400 | 30, 60, 90 | 1.434 ± 0.162 ab | 71 | ||
500 | 30, 60, 90 | 2.025 ± 0.807 b | 60 | ||
600 | 30, 60, 90 | 3.163 ± 1.495 c | 37 |
Porosity (%) | Inclination (°) | Distance (cm) | Height (cm) | Velocity (m/s) | Wind Reduction Ratio (%) |
---|---|---|---|---|---|
25% | 90° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 c | 0 |
50 | 30, 60, 90 | 3.077 ± 1.207 b | 38 | ||
100 | 30, 60, 90 | 2.180 ± 0.319 a | 56 | ||
200 | 30, 60, 90 | 1.673 ± 0.020 a | 67 | ||
300 | 30, 60, 90 | 1.570 ± 0.117 a | 69 | ||
400 | 30, 60, 90 | 1.603 ± 0.289 a | 68 | ||
500 | 30, 60, 90 | 1.675 ± 0.398 a | 66 | ||
600 | 30, 60, 90 | 1.801 ± 0.568 a | 64 | ||
80° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 | |
50 | 30, 60, 90 | 3.350 ± 1.114 c | 33 | ||
100 | 30, 60, 90 | 2.553 ± 0.284 b | 49 | ||
200 | 30, 60, 90 | 1.818 ± 0.065 ab | 64 | ||
300 | 30, 60, 90 | 1.695 ± 0.185 a | 66 | ||
400 | 30, 60, 90 | 1.644 ± 0.306 a | 67 | ||
500 | 30, 60, 90 | 1.695 ± 0.354 a | 66 | ||
600 | 30, 60, 90 | 1.852 ± 0.540 ab | 63 | ||
70° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 c | 0 | |
50 | 30, 60, 90 | 2.409 ± 1.101 ab | 52 | ||
100 | 30, 60, 90 | 2.883 ± 0.635 b | 42 | ||
200 | 30, 60, 90 | 1.992 ± 0.211 a | 60 | ||
300 | 30, 60, 90 | 1.902 ± 0.312 a | 62 | ||
400 | 30, 60, 90 | 1.886 ± 0.450 a | 62 | ||
500 | 30, 60, 90 | 1.939 ± 0.560 a | 61 | ||
600 | 30, 60, 90 | 1.997 ± 0.618 a | 60 |
Porosity (%) | Inclination (°) | Distance (cm) | Height (m) | Velocity (m/s) | Wind Reduction Ratio (%) |
---|---|---|---|---|---|
50% | 90° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 |
50 | 30, 60, 90 | 1.336 ± 0.209 bc | 73 | ||
100 | 30, 60, 90 | 1.151 ± 0.015 abc | 77 | ||
200 | 30, 60, 90 | 0.673 ± 0.306 a | 87 | ||
300 | 30, 60, 90 | 0.675 ± 0.429 a | 87 | ||
400 | 30, 60, 90 | 0.831 ± 0.666 ab | 83 | ||
500 | 30, 60, 90 | 1.224 ± 0.466 abc | 76 | ||
600 | 30, 60, 90 | 1.469 ± 0.611 c | 71 | ||
80° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 c | 0 | |
50 | 30, 60, 90 | 1.568 ± 0.070 b | 69 | ||
100 | 30, 60, 90 | 1.208 ± 0.059 ab | 76 | ||
200 | 30, 60, 90 | 0.678 ± 0.316 a | 86 | ||
300 | 30, 60, 90 | 0.768 ± 0.316 a | 85 | ||
400 | 30, 60, 90 | 0.773 ± 0.372 a | 85 | ||
500 | 30, 60, 90 | 1.036 ± 0.618 ab | 79 | ||
600 | 30, 60, 90 | 1.315 ± 0.661 ab | 74 | ||
70° | −10 (C) | 30, 60, 90 | 5.000 ± 0.000 d | 0 | |
50 | 30, 60, 90 | 1.735 ± 0.614 c | 65 | ||
100 | 30, 60, 90 | 1.395 ± 0.160 c | 72 | ||
200 | 30, 60, 90 | 0.710 ± 0.339 ab | 86 | ||
300 | 30, 60, 90 | 0.613 ± 0.306 a | 88 | ||
400 | 30, 60, 90 | 0.628 ± 0.432 a | 87 | ||
500 | 30, 60, 90 | 0.749 ± 0.397 ab | 85 | ||
600 | 30, 60, 90 | 1.325 ± 0.682 bc | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Kim, H.; Moon, H.; Kim, H.-S.; Han, S.-S.; Jeong, S. Effects of Wind Barrier Porosity and Inclination on Wind Speed Reduction. Appl. Sci. 2023, 13, 8310. https://doi.org/10.3390/app13148310
Lee S-H, Kim H, Moon H, Kim H-S, Han S-S, Jeong S. Effects of Wind Barrier Porosity and Inclination on Wind Speed Reduction. Applied Sciences. 2023; 13(14):8310. https://doi.org/10.3390/app13148310
Chicago/Turabian StyleLee, Sang-Hyun, Hyun Kim, Hyunshik Moon, Hyun-Soo Kim, Sang-Sub Han, and Seonghun Jeong. 2023. "Effects of Wind Barrier Porosity and Inclination on Wind Speed Reduction" Applied Sciences 13, no. 14: 8310. https://doi.org/10.3390/app13148310
APA StyleLee, S.-H., Kim, H., Moon, H., Kim, H.-S., Han, S.-S., & Jeong, S. (2023). Effects of Wind Barrier Porosity and Inclination on Wind Speed Reduction. Applied Sciences, 13(14), 8310. https://doi.org/10.3390/app13148310