Relationship between Pulp–Tooth Area Ratio and Chronological Age among Saudi Arabian Adults: A Cone Beam Computed Tomography Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Inclusion and Exclusion Criteria
2.3. Methods
2.3.1. CBCT Acquisition
2.3.2. Measurement
2.3.3. Examiner Calibration
2.4. Statistical Analysis
3. Results
4. Discussion
- -
- Future research studies with larger sample sizes regionally on indigenous populations should be targeted for generalization.
- -
- Different CBCT scanners and resolutions of the various image sections, planes, and tooth types should be warranted.
- -
- As forensic experts need precise validation, in addition to correlation coefficient, strength of association and error rates should be computed when assessing particular teeth as an age estimator in specific populations.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, M.; Verma, N.; Sharma, R.; Sharma, A. Dental age estimation methods in adult dentitions: An overview. J. Forensic Dent. Sci. 2019, 11, 57–63. [Google Scholar] [CrossRef] [PubMed]
- De Luca, S.; Bautista, J.; Alemán, I.; Cameriere, R. Age-at-death estimation by pulp/tooth area ratio in canines: Study of a 20th-century Mexican sample of prisoners to test Cameriere’s method. J. Forensic Sci. 2011, 56, 1302–1309. [Google Scholar] [CrossRef]
- Penaloza, T.Y.M.; Karkhanis, S.; Kvaal, S.I.; Nurul, F.; Kanagasingam, S.; Franklin, D.; Vasudavan, S.; Kruger, E.; Tennant, M. Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT). J. Forensic Leg. Med. 2016, 44, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Nagi, R.; Daga, M.; Shandilya, A.; Shukla, A.; Parakh, A.; Laheji, A.; Singh, R. Tooth coronal index and pulp/tooth ratio in dental age estimation on digital panoramic radiographs-A comparative study. Forensic Sci. Int. 2017, 277, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.G.; Rajesh, S.; Koshi, E.; Priya, L.E.; Nair, A.S.; Mohan, A. Adult forensic age estimation using mandibular first molar radiographs: A novel technique. J. Forensic Dent. Sci. 2013, 5, 56–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchbhai, A.S. Dental radiographic indicators, a key to age estimation. Dentomaxillofacial Radiol. 2011, 40, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravipati, S.; Guttikonda, V. Age estimation using pulp/tooth area ratio of permanent mandibular first premolar. J. Dr. NTR Univ. Health Sci. 2019, 8, 192. [Google Scholar] [CrossRef]
- Uğur Aydın, Z.; Bayrak, S. Relationship Between Pulp Tooth Area Ratio and Chronological Age Using Cone-beam Computed Tomography Images. J. Forensic Sci. 2019, 64, 1096–1099. [Google Scholar] [CrossRef]
- Ge, Z.P.; Ma, R.H.; Li, G.; Zhang, J.Z.; Ma, X.C. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci. Int. 2015, 253, 133.e1–133.e7. [Google Scholar] [CrossRef]
- Veera, S.; Kannabiran, J.; Suratkal, N.; Chidananada, D.; Gujjar, K.; Goli, S. Coronal pulp biomarker: A lesser known age estimation modality. J. Indian Acad. Oral Med. Radiol. 2014, 26, 398–404. [Google Scholar] [CrossRef]
- Karkhanis, S.; Mack, P.; Franklin, D. Age estimation standards for a Western Australian population using the dental age estimation technique developed by Kvaal et al. Forensic Sci. Int. 2014, 235, 104.e1–104.e6. [Google Scholar] [CrossRef] [PubMed]
- Nemsi, H.; Haj Salem, N.; Bouanene, I.; Ben Jomaa, S.; Belhadj, M.; Mosrati, M.A.; Aissaoui, A.; Ben Amor, F.; Chadly, A. Age assessment in canine and premolar by cervical axial sections of cone-beam computed tomography. Leg. Med. 2017, 28, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Pinchi, V.; Pradella, F.; Buti, J.; Baldinotti, C.; Focardi, M.; Norelli, G.A. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: A pilot study. J. Forensic Leg. Med. 2015, 36, 150–157. [Google Scholar] [CrossRef]
- Mittal, S.; Nagendrareddy, S.G.; Sharma, M.L.; Agnihotri, P.; Chaudhary, S.; Dhillon, M. Age estimation based on Kvaal’s technique using digital panoramic radiographs. J. Forensic Dent. Sci. 2016, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Babshet, M.; Acharya, A.B.; Naikmasur, V.G. Age estimation in Indians from pulp/tooth area ratio of mandibular canines. Forensic Sci. Int. 2010, 197, 125.e1–125.e4. [Google Scholar] [CrossRef] [PubMed]
- Cameriere, R.; Ferrante, L.; Belcastro, M.G.; Bonfiglioli, B.; Rastelli, E.; Cingolani, M. Age estimation by pulp/tooth ratio in canines by peri-apical X-rays. J. Forensic Sci. 2007, 52, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Kvaal, S.I.; Kolltveit, K.M.; Thomsen, I.O.; Solheim, T. Age estimation of adults from dental radiographs. Forensic Sci. Int. 1995, 74, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Marroquin, T.Y.; Karkhanis, S.; Kvaal, S.I.; Vasudavan, S.; Kruger, E.; Tennant, M. Age estimation in adults by dental imaging assessment systematic review. Forensic Sci. Int. 2017, 275, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Salemi, F.; Farhadian, M.; Sabzkouhi, B.; Saati, S.; Nafisi, N. Age estimation by pulp to tooth area ratio in canine teeth using cone-beam computed tomography. Egypt. J. Forensic Sci. 2020, 10, 2. [Google Scholar] [CrossRef]
- Maret, D.; Peters, O.A.; Dedouit, F.; Telmon, N.; Sixou, M. Cone-Beam Computed Tomography: A useful tool for dental age estimation? Med. Hypotheses 2011, 76, 700–702. [Google Scholar] [CrossRef]
- Afify, M.; Zayet, M.; Mahmoud, N.; Ragab Ali, A.R. Age Estimation from Pulp/Tooth Area Ratio in Three Mandibular Teeth by Panoramic Radiographs: Study of an Egyptian Sample. Bull. Tokyo Dent. Coll. 2014, 51, 1–6. [Google Scholar] [CrossRef]
- Sasaki, T.; Kondo, O. Human age estimation from lower-canine pulp volume ratio based on Bayes’ theorem with modern Japanese population as prior distribution. J. Anthropol. 2014, 122, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Star, H.; Thevissen, P.; Jacobs, R.; Fieuws, S.; Solheim, T.; Willems, G. Human dental age estimation by calculation of pulp-tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth. J. Forensic Sci. 2011, 56 (Suppl. S1), S77–S82. [Google Scholar] [CrossRef]
- Vandevoort, F.M.; Bergmans, L.; Van Cleynenbreugel, J.; Bielen, D.J.; Lambrechts, P.; Wevers, M.; Peirs, A.; Willems, G. Age calculation using X-ray microfocus computed tomographical scanning of teeth: A pilot study. J. Forensic Sci. 2004, 49, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Cameriere, R.; Ferrante, L.; Belcastro, M.G.; Bonfiglioli, B.; Rastelli, E.; Cingolani, M. Age estimation by pulp/tooth ratio in canines by mesial and vestibular peri-apical X-rays. J. Forensic Sci. 2007, 52, 1151–1155. [Google Scholar] [CrossRef]
- Yang, F.; Jacobs, R.; Willems, G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci. Int. 2006, 159 (Suppl. S1), S78–S83. [Google Scholar] [CrossRef] [PubMed]
- Biuki, N.; Razi, T.; Faramarzi, M. Relationship between pulp-tooth volume ratios and chronological age in different anterior teeth on CBCT. J. Clin. Exp. Dent. 2017, 9, e688–e693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, D.; Gaudio, D.; Guercini, N.; Cipriani, F.; Gibelli, D.; Caputi, S.; Cattaneo, C. Age estimation from canine volumes. La Radiol. Medica 2015, 120, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.; Mânica, S.; Revie, G.; Shepherd, S.; Hector, M. Age estimation using canine pulp volumes in adults: A CBCT image analysis. Int. J. Leg. Med. 2019, 133, 1967–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Acharya, A.B.; Naikmasur, V.G. Age estimation by pulp-to-tooth area ratio using cone-beam computed tomography: A preliminary analysis. J. Forensic Dent. Sci. 2016, 8, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Tardivo, D.; Sastre, J.; Ruquet, M.; Thollon, L.; Adalian, P.; Léonetti, G.; Foti, B. Three-dimensional Modeling of the Various Volumes of Canines to Determine Age and Sex: A Preliminary Study. J. Forensic Sci. 2011, 56, 766–770. [Google Scholar] [CrossRef]
- Alharbi, H.S., Sr.; Alharbi, A.M.; Alenazi, A.O.; Kolarkodi, S.H.; Elmoazen, R. Age Estimation by Kvaal’s Method Using Digital Panoramic Radiographs in the Saudi Population. Cureus 2022, 14, e23768. [Google Scholar] [CrossRef]
- Akay, G.; Güngör, K.; Gürcan, S. The Applicability of Kvaal Methods and Pulp/Tooth Volume Ratio for Age Estimation of the Turkish Adult Population on Cone Beam Computed Tomography Images. Aust. J. Forensic Sci. 2017, 51, 251–265. [Google Scholar] [CrossRef]
- Nagarajappa, A.K.; Alruwaili, M.G.; Alrubiash, A.A.; Alam, M.K. Adult Age Estimation from Dental Pulp in Jouf Population: A Digital Radiographic Study. World J. Dent. 2018, 9, 476–480. [Google Scholar] [CrossRef]
- Igbigbi, P.S.; Nyirenda, S.K. Age estimation of Malawian adults from dental radiographs. West Afr. J. Med. 2005, 24, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameriere, R.; De Luca, S.; Alemán, I.; Ferrante, L.; Cingolani, M. Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci. Int. 2012, 214, 105–112. [Google Scholar] [CrossRef]
- Dehghani, M.; Shadkam, E.; Ahrari, F.; Dehghani, M. Age estimation by canines’ pulp/tooth ratio in an Iranian population using digital panoramic radiography. Forensic Sci. Int. 2018, 285, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Jeevan, M.B.; Kale, A.D.; Angadi, P.V.; Hallikerimath, S. Age estimation by pulp/tooth area ratio in canines: Cameriere’s method assessed in an Indian sample using radiovisiography. Forensic Sci. Int. 2011, 204, 209.e1–209.e5. [Google Scholar] [CrossRef] [PubMed]
- Cameriere, R.; Cunha, E.; Wasterlain, S.N.; De Luca, S.; Sassaroli, E.; Pagliara, F.; Nuzzolese, E.; Cingolani, M.; Ferrante, L. Age estimation by pulp/tooth ratio in lateral and central incisors by peri-apical X-ray. J. Forensic Leg. Med. 2013, 20, 530–536. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, C.; Battulga, B.; Na, J.Y.; Hwang, J.J.; Kim, Y.H.; Han, S.S. Morphological analysis of the lower second premolar for age estimation of Korean adults. Forensic Sci. Int. 2017, 281, 186.e1–186.e6. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.C.; Vargas de Sousa Santos, R.F.; Pereira, C.P. Dental age assessment by the pulp/tooth area proportion in cone beam computed tomography: Is medico-legal application for age estimation reliable? J. Forensic Odonto-Stomatol. 2021, 2, 2–14. [Google Scholar]
- Barbosa, M.G.; Franco, A.; de Oliveira, R.D.B.; Mamani, M.P.; Junqueira, J.L.C.; Soares, M.Q.S. Pulp volume quantification methods in cone-beam computed tomography for age estimation: A critical review and meta-analysis. J. Forensic Sci. 2023, 68, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Haghanifar, S.; Ghobadi, F.; Vahdani, N.; Bijani, A. Age estimation by pulp/tooth area ratio in anterior teeth using cone-beam computed tomography: Comparison of four teeth. J. Appl. Oral Sci. 2019, 27, e20180722. [Google Scholar] [CrossRef] [PubMed]
Parameter | Incisors | Canines | p Value |
---|---|---|---|
Age | 39.53 ± 10.99 | 39.53 ± 10.99 | |
PAS | 14.64 ± 3.40 | 19.55 ± 22.58 | |
TAS | 115.15 ±12.90 | 133.65 ± 22.58 | |
PTRS | 0.12 ± 0.02 | 0.14 ± 0.02 | p < 0.001 ** |
PAA | 2.52 ± 0.88 | 2.40 ± 0.84 | |
TAA | 32.13 ± 4.42 | 38.27 ± 6.36 | |
PTRA | 0.08 ± 0.02 | 0.06 ± 0.02 | p < 0.001 ** |
Teeth | Plane | Females (n = 38) | Males (n = 62) | p Value |
---|---|---|---|---|
Incisors | PTRS | 0.12 ± 0.02 | 0.13 ± 0.02 | 0.18, NS |
PTRA | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.20, NS | |
Canines | PTRS | 0.15 ± 0.03 | 0.14 ± 0.02 | 0.20, NS |
PTRA | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.65, NS |
Tooth | Plane | Overall | Male | Female | |||
---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||
Incisor | PTRS | −0.42 | 0.001 ** | −0.42 | 0.001 ** | −0.44 | 0.005 * |
PTRA | −0.47 | 0.001 ** | −0.41 | 0.001 ** | −0.59 | 0.001 ** | |
Canine | PTRS | −0.18 | 0.09, NS | −0.08 | 0.58, NS | −0.32 | 0.07, NS |
PTRA | −0.30 | 0.004 * | −0.37 | 0.005 * | −0.22 | 0.22, NS |
Tooth | Plane | Equation | R2 | SEE | p-Value |
---|---|---|---|---|---|
Incisor | PTRS | Age = 64.082 − 189.696 (PTRS) | 0.17 | 10.12 | 0.001 ** |
Incisor | PTRA | Age = 57.667 − 223.549 (PTRA) | 0.22 | 9.82 | 0.001 ** |
Canine | PTRS | Age = 49.430 − 79.504 (PTRS) | 0.03 | 10.94 | 0.096, NS |
Canine | PTRA | Age = 48.534 − 173.857(PTRA) | 0.09 | 10.60 | 0.004 * |
Gender | Tooth | Plane | Linear Regression Equation | R2 | SEE | p Value |
---|---|---|---|---|---|---|
Males | Incisor | PTRS | Age = 67.530 − 207.669 (PTRS) | 0.18 | 9.80 | 0.001 ** |
PTRA | Age = 55.986 − 189.092 (PTRA | 0.17 | 9.84 | 0.002 * | ||
Canine | PTRS | Age = 42.508 − 32.975 (PTRS | 0.01 | 10.58 | 0.58, NS | |
PTRA | Age = 51.958 − 217.293 (PTRA) | 0.14 | 9.85 | 0.05 * | ||
Females | Incisor | PTRS | Age = 61.916 − 186.999 (PTRS) | 0.19 | 10.66 | 0.01 * |
PTRA | Age= 61.821 − 302.434 (PTRA) | 0.35 | 9.58 | 0.001 ** | ||
Canine | PTRS | Age = 60.335 − 159.303 (PTRS) | 0.10 | 11.59 | 0.07, NS | |
PTRA | Age= 45.999 − 142.759 (PTRA) | 0.05 | 11.93 | 0.21, NS |
Tooth | Plane | Predicted Value | SEE | ||
---|---|---|---|---|---|
Minimum | Maximum | Mean ± SD | |||
Incisor | PTRS | 29.94 | 52.70 | 39.98 ± 4.60 | 10.12 |
Incisor | PTRA | 26.37 | 50.96 | 39.98 ± 5.19 | 9.82 |
Canine | PTRS | 33.52 | 43.86 | 37.94 ± 1.98 | 10.94 |
Canine | PTRA | 25.93 | 46.79 | 37.94 ± 3.36 | 10.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqarni, A.; Ajmal, M.; Hakami, R.M.; Alassmi, A.A.; Chalikkandy, S.N.; Arem, S. Relationship between Pulp–Tooth Area Ratio and Chronological Age among Saudi Arabian Adults: A Cone Beam Computed Tomography Image Analysis. Appl. Sci. 2023, 13, 7945. https://doi.org/10.3390/app13137945
Alqarni A, Ajmal M, Hakami RM, Alassmi AA, Chalikkandy SN, Arem S. Relationship between Pulp–Tooth Area Ratio and Chronological Age among Saudi Arabian Adults: A Cone Beam Computed Tomography Image Analysis. Applied Sciences. 2023; 13(13):7945. https://doi.org/10.3390/app13137945
Chicago/Turabian StyleAlqarni, Abdullah, Muhammed Ajmal, Reem Mohammed Hakami, Abeer Abdullah Alassmi, Sandeepa Nuchilakath Chalikkandy, and Saeed Arem. 2023. "Relationship between Pulp–Tooth Area Ratio and Chronological Age among Saudi Arabian Adults: A Cone Beam Computed Tomography Image Analysis" Applied Sciences 13, no. 13: 7945. https://doi.org/10.3390/app13137945
APA StyleAlqarni, A., Ajmal, M., Hakami, R. M., Alassmi, A. A., Chalikkandy, S. N., & Arem, S. (2023). Relationship between Pulp–Tooth Area Ratio and Chronological Age among Saudi Arabian Adults: A Cone Beam Computed Tomography Image Analysis. Applied Sciences, 13(13), 7945. https://doi.org/10.3390/app13137945