Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation of Fatty Acid Methyl Esters (FAMEs) and GC/FID Analysis
2.3. Validation of the GC/FID Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Data Collection
3.2. Validation of the Method
3.3. Determination of FAs in Vegetable Oils
3.4. Omega-6/Omega-3 Ratio in VOs
3.5. Cluster Analysis
3.6. Correlation Study
3.7. Principal Component Analysis
3.8. Artificial Neural Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [Green Version]
- Aung, W.P.; Bjertness, E.; Htet, A.S.; Stigum, H.; Chongsuvivatwong, V.; Soe, P.P.; Kjøllesdal, M.K.R. Fatty Acid Profiles of Various Vegetable Oils and the Association between the Use of Palm Oil vs. Peanut Oil and Risk Factors for Non-Communicable Diseases in Yangon Region, Myanmar. Nutrients 2018, 10, 1193. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Xiang, X.; Li, X.; Xu, N.; Zhang, W.; Mai, K.; Ai, Q. Effects of Dietary Vegetable Oils Replacing Fish Oil on Fatty Acid Composition, Lipid Metabolism and Inflammatory Response in Adipose Tissue of Large Yellow Croaker (Larimichthys crocea). J. Mar. Sci. Eng. 2022, 10, 1760. [Google Scholar] [CrossRef]
- Negash, Y.A.; Amare, D.E.; Bitew, B.D.; Dagne, H. Assessment of quality of edible vegetable oils accessed in Gondar City, Northwest Ethiopia. BMC Res. Notes 2019, 12, 793. [Google Scholar] [CrossRef]
- Covaciu, F.D.; Berghian-Grosan, C.; Feher, I.; Magdas, D.A. Edible Oils Differentiation Based on the Determination of Fatty Acids Profile and Raman Spectroscopy—A Case Study. Appl. Sci. 2020, 10, 8347. [Google Scholar] [CrossRef]
- Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Pignitter, M.; Hernler, N.; Zaunschirm, M.; Kienesberger, J.; Somoza, M.M.; Kraemer, K.; Somoza, V. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs. Nutrients 2016, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Sena, B.; Dhal, S.; Sahu, D.; Sarkar, P.; Mohanty, B.; Jarzębski, M.; Wieruszewski, M.; Behera, H.; Pal, K. Variations in Microstructural and Physicochemical Properties of Soy Wax/Soybean Oil-Derived Oleogels Using Soy Lecithin. Polymers 2022, 14, 3928. [Google Scholar] [CrossRef]
- Gharby, S.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; Ibourki, M.; Gagour, J.; Koubachi, J.; Sakar, E.H.; Majourhat, K.; Lee, L.-H.; et al. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022, 11, 3258. [Google Scholar] [CrossRef]
- World Health Organization Home Page. Available online: https://cdn.who.int/media/docs/default-source/healthy-diet/healthy-diet-fact-sheet-394.pdf (accessed on 1 November 2022).
- Wang, D.; Gao, G.; Li, R.; Toktarbek, S.; Jiakula, N.; Feng, Y. Limiting Factors and Environmental Adaptability for Staple Crops in Kazakhstan. Sustainability 2022, 14, 9980. [Google Scholar] [CrossRef]
- Kazhieva, Z.K.; Zhailaubayeva, S.D. The analysis of the state and development of the vegetable oil market of East Kazakhstan. Bull. “Turan” Univ. 2020, 3, 103–108. (In Russian) [Google Scholar] [CrossRef]
- Bureau of National Statistics of the Republic of Kazakhstan. Statistics of Agriculture, Forestry, Hunting and Fisheries. Available online: https://www.stat.gov.kz/official/industry/14/statistic/6 (accessed on 30 October 2022).
- Aparicio, R.; Aparicio-Ruíz, R. Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A 2000, 881, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pancorbo, A.; Navas-Iglesias, N.; Cuadros-Rodrıguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. Trends Anal. Chem. 2009, 28, 263–278. [Google Scholar] [CrossRef]
- Tang, B.K.; Row, K.H. Development of Gas Chromatography Analysis of Fatty Acids in Marine Organisms. J. Chromatogr. Sci. 2013, 51, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godswill, N.; Frank, N.G.; Edson, M.J.; Emmanuel, Y.; Martin, B.J.; Hermine, N.; Kingsley, T.; Constant, L.B.; Armand, N.; This, C.; et al. GC-FID Method Development and Validation Parameters for Analysis of Palm Oil (Elaeis guineensis Jacq). Fat. Acids Compos. 2014, 2, 53–66. [Google Scholar] [CrossRef]
- Song, J.; Park, J.; Jung, J.; Lee, C.; Gim, S.Y.; Ka, H.; Yi, B.; Kim, M.J.; Kim, C.I.; Lee, J. Analysis of Trans Fat in Edible Oils with Cooking Process. Toxicol. Res. 2015, 31, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Andrawes, F.; Chang, T.; Scharrer, R. Analysis of volatiles in tall oil by gas chromatography, flame-photometric detection, flame-ionization detection and mass spectrometry. J. Chromatogr. A 1989, 468, 145–155. [Google Scholar] [CrossRef]
- Brondz, I. Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal. Chim. Acta 2002, 465, 1–37. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M. Comparison of fatty acid methyl esters of palm and palmist oils determined by GCxGC–ToF–MS and GC–MS/FID. S. Afr. J. Bot. 2017, 112, 483–488. [Google Scholar] [CrossRef]
- Muhammad Alinafiah, S.; Azlan, A.; Ismail, A.; Mahmud Ab Rashid, N.-K. Method Development and Validation for Omega-3 Fatty Acids (DHA and EPA) in Fish Using Gas Chromatography with Flame Ionization Detection (GC-FID). Molecules 2021, 26, 6592. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, R.; Byrdwell, W. GC Analysis of Seven Seed Oils Containing Conjugated Fatty Acids. Separations 2021, 8, 51. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Wang, F.; Zheng, N.; Wang, J. Simultaneous Determination of C18 Fatty Acids in Milk by GC-MS. Separations 2021, 8, 118. [Google Scholar] [CrossRef]
- Moloney, A.P.; McGettrick, S.; Dunne, P.G.; Shingfield, K.J.; Richardson, R.I.; Monahan, F.J.; Mulligan, F.J.; Ryan, M.; Sweeney, T. Supplementation with Sunflower/Fish Oil-Containing Concentrates in a Grass-Based Beef Production System: Influence on Fatty Acid Composition, Gene Expression, Lipid and Colour Stability and Sensory Characteristics of Longissimus Muscle. Foods 2022, 11, 4061. [Google Scholar] [CrossRef]
- Schött, H.-F.; Konings, M.C.J.M.; Schrauwen-Hinderling, V.B.; Mensink, R.P.; Plat, J. A Validated Method for Quantification of Fatty Acids Incorporated in Human Plasma Phospholipids by Gas Chromatography–Triple Quadrupole Mass Spectrometry. ACS Omega 2021, 6, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Jarukas, L.; Kuraite, G.; Baranauskaite, J.; Marksa, M.; Bezruk, I.; Ivanauskas, L. Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products. Appl. Sci. 2021, 11, 83. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Mariod, A.A.; Aroua, M.K.; Rahman, S.M.A.; Soudagar, M.E.M.; Fattah, I.M.R. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021, 11, 1121. [Google Scholar] [CrossRef]
- Narloch, I.; Wejnerowska, G. Comparison of the Effectiveness and Environmental Impact of Selected Methods for the Determination of Fatty Acids in Milk Samples. Molecules 2022, 27, 8242. [Google Scholar] [CrossRef]
- Horká, P.; Vrkoslav, V.; Kindl, J.; Schwarzová-Pecková, K.; Cvačka, J. Structural Characterization of Unusual Fatty Acid Methyl Esters with Double and Triple Bonds Using HPLC/APCI-MS2 with Acetonitrile In-Source Derivatization. Molecules 2021, 26, 6468. [Google Scholar] [CrossRef]
- Gala Marti, V.; Coenen, A.; Schörken, U. Synthesis of Linoleic Acid 13-Hydroperoxides from Safflower Oil Utilizing Lipoxygenase in a Coupled Enzyme System with In-Situ Oxygen Generation. Catalysts 2021, 11, 1119. [Google Scholar] [CrossRef]
- Agnew, M.P.; Craigie, C.R.; Weralupitiya, G.; Reis, M.M.; Johnson, P.L.; Reis, M.G. Comprehensive Evaluation of Parameters Affecting One-Step Method for Quantitative Analysis of Fatty Acids in Meat. Metabolites 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Aboelazayem, O.; Gadalla, M.; Saha, B. Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil. Energies 2022, 15, 3766. [Google Scholar] [CrossRef]
- Joensen, H.; Grahl-Nielsen, O. Discrimination of Sebastes viviparus, Sebastes marinus and Sebastes mentella from Faroe Islands by chemometry of the fatty acid profile in heart and gill tissues and in the skull oil. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 126, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Validation of Analytical Procedures: Text and Methodology. In ICH Harmonization Tripartite Guideline; European Medicines Agency: Geneva, Switzerland, 2005; pp. 1–13. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 12 February 2022).
- The FAO’s Crops and Livestock Products Statistics (FAOSTAT). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 3 November 2022).
- David, F.; Sandra, P.; Vickers, A.K. Column selection for the analysis of fatty acid methyl esters. Food Anal. Appl. Palo Alto CA Agil. Technol. 2005, 19, 19. [Google Scholar]
- CODEXSTAN 210-1999; Codex Alimentarius Commission (2009/2015). Food Standards Programme Codex Standard for Named Vegetable Oils; Codex Standards for Fats and Oils from Vegetable Sources. FAO/WHO: 2005. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 17 November 2022).
- Grover, S.; Kumari, P.; Kumar, A.; Soni, A.; Sehgal, S.; Sharma, V. Preparation and quality evaluation of different oil blends. Lett. Appl. NanobBoSci 2021, 10, 2126–2137. [Google Scholar] [CrossRef]
- Kang, M.J.; Shin, M.S.; Park, J.N.; Lee, S.S. The effects of polyunsaturated: Saturated fatty acids ratios and peroxidisability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br. J. Nutr. 2005, 94, 526–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthaus, B.; Özcan, M.M.; Al Juhaimi, F.Y. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Nat. Prod. Res. 2015, 29, 193–196. [Google Scholar] [CrossRef]
- Gecgel, U.; Demirci, M.; Esendal, E.; Tasan, M. Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.). J. Am. Oil Chem. Soc. 2007, 84, 47–54. [Google Scholar] [CrossRef]
- Chowdhury, K.; Banu, L.A.; Khan, S.; Latif, A. Studies on the fatty acid composition of edible oil. Bangladesh J. Sci. Ind. Res. 2007, 42, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Sabzalian, M.R.; Saeidi, G.; Mirlohi, A. Oil content and fatty acid composition in seeds of three safflower species. J. Am. Oil Chem. Soc. 2008, 85, 717–721. [Google Scholar] [CrossRef]
- Mihaela, P.; Josef, R.; Monica, N.; Rudolf, Z. Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: Safflower, soybean and rapeseed). Fuel 2013, 111, 114–119. [Google Scholar] [CrossRef]
- Giakoumis, E.G. Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew. Energy 2018, 126, 403–419. [Google Scholar] [CrossRef]
- Lajara, J.R.; Diaz, U.; Quidiello, R.D. Definite influence of location and climatic conditions on the fatty acid composition of sunflower seed oil. J. Am. Oil Chem. Soc. 1990, 67, 618–623. [Google Scholar] [CrossRef]
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [Green Version]
- Vingering, N.; Oseredczuk, M.; du Chaffaut, L.; Ireland, J.; Ledoux, M. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. Oléagineux Corps Gras Lipides 2010, 17, 185–192. [Google Scholar] [CrossRef]
- Kim, N.H.; Jung, S.Y.; Park, Y.A.; Lee, Y.J.; Jo, J.Y.; Lee, S.M.; Oh, Y.H. Fatty acid composition and characterisation of commercial vegetable oils with chemometric approaches. Int. Food Res. J. 2020, 27, 270–279. [Google Scholar]
- Özogul, Y.; Durmus, M.; Ucar, Y.; Özogul, F.; Regenstein, J.M. Comparative study of nanoemulsions based on commercial oils (sunflower, canola, corn, olive, soybean, and hazelnut oils): Effect on microbial, sensory, and chemical qualities of refrigerated farmed sea bass. Innov. Food Sci. Emerg. Technol. 2016, 33, 422–430. [Google Scholar] [CrossRef]
- Yaqoob, N.; Bhatti, I.A.; Anwar, F.; Asi, M.R. Oil quality characteristics of irradiated sunflower and maize seed. Eur. J. Lipid Sci. Technol. 2010, 112, 488–495. [Google Scholar] [CrossRef]
- Yue, C.; Ben, H.; Wang, J.; Li, T.; Yu, G. Ultrasonic Pretreatment in Synthesis of Caprylic-Rich Structured Lipids by Lipase-Catalyzed Acidolysis of Corn Oil in Organic System and Its Physicochemical Properties. Foods 2019, 8, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, J.; White, P.J.; Carpenter, M.P.; Schaefer, E.J.; Meydani, S.N.; Elson, C.E.; Woods, M.; Gorbach, S.L. Food uses and health effects of corn oil. J. Am. Coll. Nutr. 1990, 9, 438–470. [Google Scholar] [CrossRef]
- Lewinska, A.; Zebrowski, J.; Duda, M.; Gorka, A.; Wnuk, M. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils. Molecules 2015, 20, 22872–22880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruia, A.; Raba, D.N.; Dumbrava, D.; Moldovan, C.; Bordean, D.; Mateescu, C. Fatty acids composition and oil characteristics of linseed (Linum usitatissimum L.) from Romania. J. Agroaliment. Process. Technol. 2012, 18, 136–140. [Google Scholar]
- Bayrak, A.; Kiralan, M.; Ipek, A.; Arslan, N.; Cosge, B.; Khawar, K.M. Fatty acid compositions of linseed (Linum usitatissimum L.) genotypes of different origin cultivated in Turkey. Biotechnol. Biotechnol. Equip. 2010, 24, 1836–1842. [Google Scholar] [CrossRef] [Green Version]
- Wakjira, A.; Labuschagne, M.T.; Hugo, A. Variability in oil content and fatty acid composition of Ethiopian and introduced cultivars of linseed. J. Sci. Food Agric. 2004, 84, 601–607. [Google Scholar] [CrossRef]
- Matthäus, B.; Musazcan Özcan, M. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils. Antioxidants 2015, 4, 124–133. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Dowd, M.K.; Boykin, D.L.; Meredith Jr, W.R.; Campbell, B.T.; Bourland, F.M.; Gannaway, J.R.; Glass, J.R.; Kathryn, M.; Zhang, J. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J. Cotton Sci. 2010, 14, 64–73. [Google Scholar]
- Ivanov, D.S.; Lević, J.D.; Sredanović, S.A. Fatty acid composition of various soybean products. Food Feed Res. 2010, 37, 65–70. [Google Scholar]
- Li, C.; Yao, Y.; Zhao, G.; Cheng, W.; Liu, H.; Liu, C.; Chen, Y.; Wang, S. Comparison and analysis of fatty acids, sterols, and tocopherols in eight vegetable oils. J. Agric. Food Chem. 2011, 59, 12493–12498. [Google Scholar] [CrossRef]
- Fehr, W.R. Breeding for modified fatty acid composition in soybean. Crop Sci. 2007, 47, S-72–S-87. [Google Scholar] [CrossRef]
- Warner, D.J.; Lewis, K.A. Evaluation of the Risks of Contaminating Low Erucic Acid Rapeseed with High Erucic Rapeseed and Identification of Mitigation Strategies. Agriculture 2019, 9, 190. [Google Scholar] [CrossRef] [Green Version]
- Řezanka, T.; Řezanková, H. Characterization of fatty acids and triacylglycerols in vegetable oils by gas chromatography and statistical analysis. Anal. Chim. Acta 1999, 398, 253–261. [Google Scholar] [CrossRef]
- Gagour, J.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; El Moudden, H.; Sakar, E.H.; Koubachi, J.; Laknifli, A.; Gharby, S. Physicochemical characterization, kinetic parameters, shelf life and its prediction models of virgin olive oil from two cultivars (“Arbequina” and “Moroccan Picholine”) grown in Morocco. OCL 2022, 29, 39. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, Q.; Sui, X.; Wang, Z.; Li, Y.; Jiang, L. Differential scanning calorimetry study—Assessing the influence of composition of vegetable oils on oxidation. Food Chem. 2016, 194, 601–607. [Google Scholar] [CrossRef]
- Xu, T.T.; Li, J.; Fan, Y.W.; Zheng, T.W.; Deng, Z.Y. Comparison of oxidative stability among edible oils under continuous frying conditions. Int. J. Food Prop. 2015, 18, 1478–1490. [Google Scholar] [CrossRef]
- Sakar, E.H.; Khtira, A.; Aalam, Z.; Zeroual, A.; Gagour, J.; Gharby, S. Variations in Physicochemical Characteristics of Olive Oil (cv ‘Moroccan Picholine’) According to Extraction Technology as Revealed by Multivariate Analysis. AgriEngineering 2022, 4, 922–938. [Google Scholar] [CrossRef]
- Lee, D.S.; Noh, B.S.; Bae, S.Y.; Kim, K. Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Anal. Chim. Acta 1998, 358, 163–175. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Andersson, R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997, 74, 375–380. [Google Scholar] [CrossRef]
- Yun, J.M.; Surh, J. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Prev. Nutr. Food Sci. 2012, 17, 158. [Google Scholar] [CrossRef] [Green Version]
- Su, N.; Pan, F.; Wang, L.; Weng, S. Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods. Biosensors 2021, 11, 261. [Google Scholar] [CrossRef]
- Rajendra, M.; Jena, P.C.; Raheman, H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 2009, 88, 868–875. [Google Scholar] [CrossRef]
Type of Oil | Total Volume Produced in Kazakhstan, Thousand Tons | |
---|---|---|
2015 | 2020 | |
Cottonseed | 11.6 | 10.6 |
Rapeseed | 31.3 | 68.8 |
Soybean | 12.3 | 23.2 |
Sunflower | 217.3 | 320.1 |
Safflower | 2.3 | 6.0 |
Linseed | 6.2 | 29.1 |
Maize | 0.04 | 0.3 |
Total | 225.7 | 484.8 |
# | Fatty Acid Components | RT (Mean) | R2 | Calibration Curve Equation | Range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|---|---|
1 | C4:0 | 7.086 | 0.9972 | y = 0.0039x + 29.719 | 40.4–404 | 1.22 | 3.73 |
2 | C6:0 | 8.800 | 0.9958 | y = 0.0033x + 23.897 | 40.4–404 | 1.73 | 3.27 |
3 | C8:0 | 11.905 | 0.9996 | y = 0.0036x + 21.439 | 40.4–404 | 0.88 | 2.67 |
4 | C10:0 | 15.971 | 0.9998 | y = 0.0038x + 1.8014 | 40.8–408 | 0.60 | 2.81 |
5 | C11:0 | 18.356 | 0.9998 | y = 0.0039x − 0.1529 | 20.4–204 | 0.45 | 2.36 |
6 | C12:0 | 20.112 | 0.9985 | y = 0.0033x + 14.09 | 40.4–404 | 0.82 | 2.50 |
7 | C13:0 | 22.28 | 0.9991 | y = 0.0033x + 1.6595 | 20.3–203 | 0.87 | 2.65 |
8 | C14:0 | 23.83 | 0.9985 | y = 0.0029x + 15.744 | 40.4–404 | 1.63 | 3.95 |
9 | C14:1 | 25.412 | 0.9880 | y = 0.004x + 12.928 | 20.4–204 | 1.29 | 2.97 |
10 | C15:0 | 25.731 | 0.9997 | y = 0.0024x + 0.1732 | 20.3–203 | 0.54 | 2.64 |
11 | C15:1 | 27.043 | 0.9997 | y = 0.0039x + 15.084 | 20.4–204 | 0.48 | 2.46 |
12 | C16:0 | 27.214 | 0.9999 | y = 0.0026x − 3.5892 | 61.2–612 | 1.49 | 2.48 |
13 | C16:1 | 28.597 | 0.9971 | y = 0.0031x + 10.884 | 20.4–204 | 1.60 | 2.87 |
14 | C17:0 | 29.07 | 0.9999 | y = 0.0027x + 1.9941 | 21.0–210 | 0.26 | 2.79 |
15 | C17:1 | 30.136 | 0.9999 | y = 0.003x + 8.7811 | 20.4–204 | 0.31 | 2.95 |
16 | C18:0 | 30.464 | 0.9999 | y = 0.0025x + 10.246 | 40.8–408 | 0.44 | 2.34 |
17 | C18:1n9t | 31.149 | 0.9978 | y = 0.003x + 16.506 | 20.2–202 | 1.39 | 3.22 |
18 | C18:1n9c | 31.403 | 0.9999 | y = 0.0022x + 22.074 | 40.4–404 | 0.47 | 2.43 |
19 | C18:2n6t | 32.306 | 0.9903 | y = 0.0025x + 14.645 | 20.2–202 | 1.95 | 2.94 |
20 | C18:2n6c | 32.993 | 0.9951 | y = 0.0024x + 20.107 | 20.2–202 | 1.11 | 3.40 |
21 | C20:0 | 33.491 | 0.9999 | y = 0.0025x + 18.09 | 40.8–408 | 0.35 | 2.06 |
22 | C18:3n6c | 34.002 | 0.9999 | y = 0.0027x + 17.388 | 20.3–203 | 0.32 | 2.98 |
23 | C20:1n9c | 34.512 | 0.9933 | y = 0.0043x + 8.5154 | 20.2–202 | 1.44 | 2.41 |
24 | C18:3n3c | 34.693 | 0.9993 | y = 0.0021x + 20.688 | 20.4–204 | 0.77 | 2.35 |
25 | C21:0 | 35.159 | 0.9986 | y = 0.0022x + 10.468 | 20.3–203 | 1.12 | 3.41 |
26 | C20:2 | 36.134 | 0.9983 | y = 0.0033x + 4.2141 | 20.4–204 | 1.25 | 3.80 |
27 | C22:0 | 36.835 | 0.9975 | y = 0.0026x + 9.5838 | 40.5–405 | 1.11 | 2.40 |
28 | C20:3 | 37.412 | 0.9948 | y = 0.0031x + 6.2057 | 20.4–204 | 1.16 | 2.56 |
29 | C22:1 | 38.04 | 0.9999 | y = 0.0059x + 12.565 | 20.4–204 | 0.29 | 2.88 |
30 | C20:3 | 38.175 | 0.9997 | y = 0.0023x + 18.341 | 20.4–204 | 0.56 | 2.70 |
31 | C23:0 | 38.455 | 0.9931 | y = 0.0027x + 14.205 | 20.3–203 | 1.48 | 2.53 |
32 | C20:4 | 38.903 | 0.9947 | y = 0.0022x + 11.377 | 20.2–202 | 1.17 | 2.60 |
33 | C22:2 | 40.02 | 0.9981 | y = 0.0035x + 14.392 | 20.4–204 | 1.29 | 2.91 |
34 | C24:0 | 41.09 | 0.9998 | y = 0.0023x + 39.734 | 40.4–404 | 0.58 | 2.75 |
35 | C20:5 | 41.403 | 0.9994 | y = 0.0091x + 29.666 | 20.4–204 | 0.75 | 2.28 |
36 | C24:1 | 42.207 | 0.9961 | y = 0.0026x + 41.385 | 20.4–204 | 1.58 | 2.79 |
37 | C22:6 | 45.503 | 0.9995 | y = 0.0087x + 34.921 | 20.3–203 | 0.55 | 2.69 |
Fatty Acid | FA Content, %, Mean ± SD | |||||||
---|---|---|---|---|---|---|---|---|
Safflower (n = 3) | Sunflower (n = 9) | Maize (n = 4) | Linseed (n = 7) | Cottonseed (n = 3) | Soybean (n = 6) | Rapeseed (n = 3) | ||
C14:0 | Myristic | ND | ND | ND | ND | 0.68 ± 0.05 d | ND | ND |
C16:0 | Palmitic | 6.90 ± 0.24 c | 7.24 ± 0.18 c | 8.33 ± 1.27 c | 5.84 ± 0.24 c | 21.66 ± 0.58 b | 11.45 ± 0.51 c | 4.37 ± 0.8 c |
C16:1 | Palmitoleic | 0.09 ± 0.01 d | 0.06 ± 0.01 d | 0.05 ± 0.01 d | 0.08 ± 0.00 d | 0.46 ± 0.03 d | ND | ND |
C18:0 | Stearic | 2.50 ± 0.16 c | 5.26 ± 0.75 c | 3.72 ± 0.78 c | 4.26 ± 0.07 c | 2.98 ± 0.22 c | 6.34 ± 0.81 c | 2.60 ± 0.34 c |
C18:1n9t | Oleic trans | ND | ND | ND | ND | 0.30 ± 0.01 d | ND | ND |
C18:1n9c | Oleic | 15.50 ± 0.28 c | 18.46 ± 0.53 bc | 23.36 ± 4.37 bc | 17.52 ± 0.49 c | 16.82 ± 0.21 c | 25.35 ± 0.64 bc | 66.31 ± 2.03 a |
C18:2n6t | Linoleic trans | 0.07 ± 0.01 d | 1.26 ± 0.02 d | 0.69 ± 0.55 d | 0.04 ± 0.00 d | 0.22 ± 0.01 d | ND | ND |
C18:2n6c | Linoleic | 74.25 ± 0.63 a | 66.32 ± 0.64 a | 62.36 ± 4.60 a | 15.54 ± 0.15 c | 55.93 ± 0.01 a | 50.91 ± 1.34 a | 18.62 ± 1.3 bc |
C20:0 | Arachidic | 0.23 ± 0.02 d | 0.23 ± 0.04 d | 0.32 ± 0.13 d | 0.11 ± 0.00 d | 0.25 ± 0.01 d | 0.21 ± 0.03 d | 0.31 ± 0.06 d |
C20:1n9c | Gondoic | 0.08 ± 0.02 d | ND | 0.19 ± 0.05 d | ND | 0.13 ± 0.01 d | ND | ND |
C18:3n6c | γ-Linolenic | ND | 0.11 ± 0.01 d | ND | 0.18 ± 0.00 d | ND | ND | ND |
C18:3n3c | α-Linolenic | 0.07 ± 0.02 d | 0.09 ± 0.01 d | 0.55 ± 0.12 d | 56.01 ± 0.33 a | 0.05 ± 0.03 d | 5.24 ± 0.35 cd | 6.93 ± 1.33 c |
C20:2 | Eicosadienoic | ND | 0.34 ± 0.29 d | 0.05 ± 0.01 d | ND | 0.12 ± 0.02 d | ND | ND |
C22:2 | Docosadienoic | ND | 0.16 ± 0.01 d | ND | ND | ND | ND | ND |
C22:0 | Behenic | 0.12 ± 0.02 d | 0.43 ± 0.02 d | 0.37 ± 0.08 d | ND | ND | 0.26 ± 0.08 d | ND |
C24:0 | Lignoceric | 0.07 ± 0.01 d | 0.11 ± 0.01 d | 0.14 ± 0.04 d | ND | ND | ND | ND |
C22:1 | Erucic | ND | ND | ND | ND | ND | ND | 0.1 ± 0.02 d |
C22-6n3 | Docosahexaenoic | 0.07 ± 0.01 d | 0.06 ± 0.01 d | 0.05 ± 0.01 d | ND | 0.22 ± 0.05 d | ND | ND |
SFAs | 9.81 ± 0.44 | 13.27 ± 0.99 | 12.89 ± 2.25 | 10.20 ± 0.31 | 25.57 ± 0.81 | 18.28 ± 1.44 | 7.3 ± 1.2 | |
USFAs | 90.06 ± 0.21 | 85.11 ± 1.52 | 86.60 ± 4.57 | 89.16 ± 0.48 | 73.69 ± 0.31 | 81.52 ± 1.17 | 91.88 ± 2.34 | |
MUFAs | 15.67 ± 0.31 | 18.52 ± 0.54 | 23.60 ± 4.42 | 17.61 ± 0.49 | 17.42 ± 0.25 | 25.36 ± 0.65 | 66.32 ± 2.04 | |
PUFAs | 74.39 ± 0.09 | 66.59 ± 0.94 | 63.00 ± 4.72 | 71.55 ± 0.48 | 56.27 ± 0.06 | 56.16 ± 1.71 | 25.56 ± 2.65 | |
Omega-6 | 74.25 ± 0.66 | 66.43 ± 0.64 | 62.36 ± 4.60 | 15.72 ± 0.15 | 55.93 ± 0.01 | 50.91 ± 1.35 | 18.63 ± 1.31 | |
Omega-3 | 0.14 ± 0.02 | 0.15 ± 0.01 | 0.60 ± 0.12 | 56.01 ± 0.33 | 0.27 ± 0.03 | 5.24 ± 0.36 | 6.94 ± 1.34 | |
PUFA/SFA | 7.58 | 5.02 | 4.89 | 7.01 | 2.20 | 3.07 | 3.50 | |
Omega-6/Omega-3 | 530.35 | 442.86 | 103.93 | 0.28 | 207.14 | 9.70 | 2.68 |
Oil Type | Data Sources | Fatty Acids Contents, % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | C22:0 | C22:1 | C24:0 | ||
Safflower oil | Kazakhstan’s | - | 6.90 | 0.09 | 2.50 | 15.50 | 74.25 | 0.07 | 0.23 | 0.08 | 0.12 | - | 0.07 |
Giakoumis [47] | 0.12 | 7.41 | 0.04 | 2.36 | 14.37 | 75.17 | 0.05 | 0.08 | - | 0.10 | - | - | |
Mihaela et al. [46] | - | 11.07 | - | 4.37 | 12.76 | 69.65 | 0.49 | 0.78 | - | 0.59 | - | 0.29 | |
Sunflower oil | Kazakhstan’s | - | 7.24 | 0.06 | 5.26 | 18.46 | 66.32 | 0.09 | 0.23 | - | 0.43 | - | 0.11 |
Kim et al. [51] | - | 5.83 | - | 3.24 | 26.28 | 62.97 | 0.38 | 0.21 | 0.15 | 0.59 | - | 0.19 | |
Vingering et al. [50] | 0.1 | 6.0 | 0.1 | 3.6 | 29.4 | 54.5 | 0.1 | 0.3 | 0.2 | 0.7 | - | 0.2 | |
Giakoumis [47] | 0.04 | 6.35 | 0.07 | 3.92 | 20.91 | 67.58 | 0.17 | 0.22 | 0.11 | 0.66 | - | 0.26 | |
Özogul et al. [52] | - | 5.99 | 0.27 | 4.57 | 29.14 | 58.58 | 0.07 | - | - | - | - | - | |
Maize oil | Kazakhstan’s | - | 8.33 | 0.05 | 3.72 | 23.36 | 62.36 | 0.55 | 0.32 | 0.19 | 0.37 | - | 0.14 |
Kim et al. [51] | - | 10.85 | - | 1.74 | 29.48 | 55.80 | 1.07 | 0.41 | 0.20 | 0.13 | - | 0.17 | |
Giakoumis [47] | - | 11.88 | 0.13 | 2.10 | 27.23 | 57.74 | 0.64 | 0.32 | 0.35 | - | - | 0.14 | |
Özogul et al. [52] | - | 10.19 | 0.50 | 2.62 | 32.23 | 52.91 | 0.85 | - | - | - | - | - | |
Linseed oil | Kazakhstan’s | - | 5.84 | 0.08 | 4.26 | 17.52 | 15.54 | 56.01 | 0.11 | - | - | - | - |
Kim et al. [51] | - | 4.54 | - | 3.32 | 18.20 | 16.60 | 56.66 | 0.12 | 0.12 | 0.11 | - | - | |
Giakoumis [47] | 0.04 | 5.18 | 0.10 | 3.26 | 19.04 | 16.12 | 54.59 | 0.09 | 0.07 | 0.10 | 0.20 | 0.03 | |
Cottonseed oil | Kazakhstan’s | 0.68 | 21.66 | 0.46 | 2.98 | 16.82 | 55.93 | 0.05 | 0.25 | 0.13 | - | - | - |
Giakoumis [47] | 0.72 | 25.19 | 0.36 | 1.79 | 16.47 | 54.83 | 0.19 | 0.22 | 0.07 | 0.11 | - | - | |
Soybean oil | Kazakhstan’s | - | 11.45 | - | 6.34 | 25.35 | 50.91 | 5.24 | 0.21 | - | 0.26 | - | - |
Kim et al. [51] | - | 10.10 | - | 3.94 | 22.47 | 55.17 | 6.51 | 0.31 | 0.27 | 0.34 | - | 0.11 | |
Giakoumis [47] | 0.12 | 11.50 | 0.16 | 4.11 | 23.50 | 53.33 | 6.76 | 0.32 | 0.22 | 0.27 | 0.07 | 0.13 | |
Rapeseed oil | Kazakhstan’s | - | 4.37 | - | 2.60 | 66.31 | 18.62 | 6.93 | 0.31 | - | - | 0.1 | - |
Vingering et al. [50] | 0.1 | 4.5 | 0.2 | 1.6 | 55.2 | 19.4 | 7.8 | 0.6 | 1.1 | 0.3 | 0.2 | - | |
Giakoumis [47] | 0.04 | 4.06 | 0.23 | 1.54 | 62.29 | 20.65 | 8.71 | 0.87 | 1.09 | 0.27 | 0.77 | 0.04 |
Safflower | Sunflower | Maize | Linseed | Cottonseed | Soybean | Rapeseed | |
---|---|---|---|---|---|---|---|
Safflower | 0.0 | 9.0 | 14.4 | 81.1 | 23.6 | 26.5 | 75.7 |
Sunflower | 9.0 | 0.0 | 6.6 | 75.6 | 18.1 | 18.2 | 68.0 |
Maize | 14.4 | 6.6 | 0.0 | 72.9 | 16.2 | 13.2 | 61.8 |
Linseed | 81.1 | 75.6 | 72.9 | 0.0 | 70.9 | 62.7 | 69.3 |
Cottonseed | 23.6 | 18.1 | 16.2 | 70.9 | 0.0 | 15.5 | 64.7 |
Soybean | 26.5 | 18.2 | 13.2 | 62.7 | 15.5 | 0.0 | 52.8 |
Rapeseed | 75.7 | 68.0 | 61.8 | 69.3 | 64.7 | 52.8 | 0.0 |
SFAs | USFA | MUFA | PUFA | Omega-6 | Omega-3 | PUFAs/SFAs | Omega-6/Omega-3 | |
---|---|---|---|---|---|---|---|---|
SFAs | 1.0000 | −0.9966 | −0.0393 | −0.9010 | 0.1063 | −0.3616 | −0.9369 | −0.4159 |
USFAs | *** | 1.0000 | 0.0301 | 0.9080 | −0.1053 | 0.3626 | 0.9502 | 0.4622 |
MUFAs | * | * | 1.0000 | −0.3915 | 0.0628 | −0.1698 | −0.2650 | −0.4448 |
PUFAs | ** | ** | * | 1.0000 | −0.1233 | 0.4050 | 0.9859 | 0.6120 |
Omega-6 | * | * | * | * | 1.0000 | −0.9573 | −0.1666 | 0.5022 |
Omega-3 | * | * | * | * | ** | 1.0000 | 0.4412 | −0.2847 |
PUFAs/SFAs | ** | ** | * | *** | * | * | 1.0000 | 0.5906 |
Omega-6/ Omega-3 | * | * | * | * | * | * | * | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toishimanov, M.; Nurgaliyeva, M.; Serikbayeva, A.; Suleimenova, Z.; Myrzabek, K.; Shokan, A.; Myrzabayeva, N. Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID. Appl. Sci. 2023, 13, 7910. https://doi.org/10.3390/app13137910
Toishimanov M, Nurgaliyeva M, Serikbayeva A, Suleimenova Z, Myrzabek K, Shokan A, Myrzabayeva N. Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID. Applied Sciences. 2023; 13(13):7910. https://doi.org/10.3390/app13137910
Chicago/Turabian StyleToishimanov, Maxat, Meruyet Nurgaliyeva, Assiya Serikbayeva, Zhulduz Suleimenova, Karima Myrzabek, Aksholpan Shokan, and Nurgul Myrzabayeva. 2023. "Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID" Applied Sciences 13, no. 13: 7910. https://doi.org/10.3390/app13137910
APA StyleToishimanov, M., Nurgaliyeva, M., Serikbayeva, A., Suleimenova, Z., Myrzabek, K., Shokan, A., & Myrzabayeva, N. (2023). Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID. Applied Sciences, 13(13), 7910. https://doi.org/10.3390/app13137910