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Abstract: Fortification programs are considered to be an effective strategy to mitigate vitamin A
deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were
shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized
that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin
A. Mildly (peroxide value: 1.0 meq O2/kg) and highly (peroxide value: 7.5 meq O2/kg) oxidized
palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L
transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 ˝C
for 57 days. An increase of the peroxide value by 15 meq O2/kg, which was also reflected by a
decrease of α-tocopherol congener by 15%–18%, was determined independent of the initial rancidity.
The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a
significant 46% decline of the vitamin A content. However, household storage of mildly oxidized
palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may
be recommended for vitamin A fortification programs, when other sources of essential fatty acids
are available.
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1. Introduction

Vitamin A is involved in maintaining the function of epithelia, mucous membranes, immune
and red blood cells and the visual system [1–4]. As vitamin A cannot be synthesized directly by the
human body, it needs to be consumed in the form of animal source foods, such as eggs, liver and
dairy products, or in the form of provitamin A from plant products rich in carotenoids, such as carrots,
kale, spinach and sweet potatoes. Despite the poor bioavailability, bioconversion and bioefficacy
of provitamin A, consumption of provitamin A rich plant foods alleviates vitamin A deficiency in
low-income populations [5–7]. Vitamin A deficiency leads to severe health impairments, such as
mortality and xerophthalmia [8,9]. The prevalence of vitamin A deficiency is generally associated
with a lower socioeconomic status of a population. In south-east Asia, 45%–55% preschool children
were affected by a severe vitamin A deficiency in 1995–2005 [8]. In Africa, a total of 2.55 million
preschool-age children suffer from vitamin A deficiency-induced night blindness [8].

To combat vitamin A deficiency, the three main strategies, diet diversification (1), vitamin A
supplementation (2) and food fortification (3), have been recommended, in addition to supporting
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other dietary approaches, such as home gardens and breastfeeding [10]. Dietary diversification (1)
aims at educating populations at risk to consume sufficient amounts of micronutrients [11]. While
nutrition education programs are a long-term approach, vitamin A supplementation (2) is considered
a very effective short-term strategy [12]. Consumption of biofortified staple food crops (3) has been
reported to improve the vitamin A status in children and women [13]. Fortification of staple foods with
vitamin A is also a well-accepted and promising strategy to reduce vitamin A malnutrition [14]. Sugar,
cereal-based products, margarine and edible oils have been commonly fortified with vitamin A [15–17].
To combat vitamin A malnutrition, vegetable oils are a good matrix, as vitamin A is fat-soluble and the
oil can easily be fortified at low cost. Recently, fortification of vegetable oils with vitamin A has been
suggested as an intervention strategy to increase the intake of vitamin A worldwide [18]; however,
previous studies have demonstrated limited stability of vitamin A in soybean oil [19,20]. Laillou
and colleagues [19] showed that storage of a mixture (1:1) of fortified sunflower and soybean oil
characterized by a peroxide value (POV) of 0.4 meq O2/kg and exposed to sunlight for one month
resulted in a 19.7% loss of vitamin A. The degradation of vitamin A was further enhanced, to 31.1%,
when the same oil mixture, but with a higher POV of 5.8 meq O2/kg, was used. Another study
reported a remarkable reduction of vitamin A of approximately 80% in soybean oil stored under
household-representative conditions for 56 days [20]. While the daily decrease of retinol was about
1.5% in mildly oxidized oil, it was almost doubled when highly oxidized soybean oil was fortified with
retinyl palmitate (RP).

The prominent loss of vitamin A during household storage of fortified vegetable oils prompted
us to reconsider the appropriateness of vegetable oils rich in polyunsaturated fatty acids as food
vehicle for vitamin A fortification. We hypothesized that edible oils that contain lower amounts of
polyunsaturated fatty acids compared to soybean or sunflower oil might be less prone to oxidation,
leading to an increased stability of vitamin A. Palm oil consists mainly of equivalent amounts of
palmitic and oleic acids. The objective of the current study was to investigate the stability of RP in
fortified palm oil stored under household conditions for 57 days. Mildly (POV < 2 meq O2/kg) and
highly (POV > 5 meq O2/kg) oxidized palm oil was used to evaluate the impact of the oxidative status
of the oil at the time of fortification on the stability of vitamin A. While storage of highly oxidized oil
fortified with RP led to a significant decline of vitamin A, storage of mildly oxidized oil fortified with
RP did not induce any significant losses of vitamin A.

2. Materials and Methods

2.1. Study Oil, Chemicals and Materials

Deodorized palm oil isolated from Elaeis guineensis was purchased from Natural Products &
Drugs, Spittal/Drau, Austria. Fully deuterated hexanal (98 atom% D) was obtained from C/D/N
Isotopes Inc., Quebec, Canada. All other chemicals were bought from Carl Roth, Karlsruhe, Germany,
and Sigma-Aldrich, Vienna, Austria. The oil samples were illuminated using Philips cold fluorescent
lamps (Philips, Amsterdam, Netherlands) with the following specifications: Tornado 1450 lumen,
103 W, spectrum from 400 to 650 nm. The oil was stored in 0.5 L transparent polyethylene
terephthalate (PET) bottles (Radlberger, Unterradlberg, Austria). The bottles were closed with screw
caps. The storage temperature was achieved with a radiator (AEG RA 5588, Electrolux Austria GmbH,
Brunn am Gebirge, Austria) equipped with a temperature sensor to maintain the set temperature to
the nearest of ˘1.0 ˝C.

2.2. Study Design

To evaluate the stability of RP in mildly (POV 1.0 meq O2/kg) and highly oxidized
(POV 7.5 meq O2/kg) palm oil, and the impact of RP fortification on the oxidative quality of the
study oil, the mildly and highly oxidized palm oil were stored in the absence and presence of RP at
32 ˘ 2 ˝C for 57 days (Figure 1). The highly oxidized palm oil was obtained by vigorously stirring the



Nutrients 2016, 8, 378 3 of 13

oil under oxygen at approximately 150 ˝C for 4 h. The study oil was fortified with RP (60 International
Units (IU)/g, 32.76 µg/mL) by preparing a premix, which was subsequently blended stepwise with
palm oil, to obtain a homogeneous distribution of RP in the oil. Each bottle was filled with 447.5˘ 0.5 g
of oil. During storage, the oil was exposed to cold fluorescent light for 12 h daily. The bottles were
placed next to each other with a distance between each other of 15 cm. The distance between the light
source and the bottles was 29 cm. To mimic consumer storage, the bottles were kept closed except
for weekly opening for sampling. Samples from day 1, 8, 15, 29 and 57 were used for the analyses.
A sample volume of 40 mL was drawn each week, thereby increasing the headspace. The samples
were stored at ´80 ˝C until analyses. Prior to analyses, the samples re-liquefied by gently heating at
approximately 55 ˝C.
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Figure 1. Study design. Four bottles filled with mildly (peroxide value (POV) < 2 meq O2/kg) or
highly (POV > 5 meq O2/kg) oxidized palm oil, either fortified or not with 60 International Units
(IU)/kg retinyl palmitate (RP), were stored under household-representative conditions under cold
fluorescent light for 12 h per day at 32 ˝C for 57 days. Samples (40 mL) were withdrawn on a weekly
basis, while samples from day 1, 8, 15, 29, and 57 were used for analyses.

2.3. Determination of the POV

The POV was determined to study the effects of storage on the formation of primary lipid
oxidation products in palm oil. The titrimetric measurement of the POV was performed as described
previously [21,22]. Briefly, a saturated solution of potassium iodide was oxidized by 5 g of oil sample
to yield iodine, which was titrated with a 0.1 N sodium thiosulfate solution in the presence of starch as
an indicator. The POV was calculated by considering the amount of oil used and the concentration and
the blank-corrected volume of sodium thiosulfate needed for discoloration of the solution. The POV
was expressed as meq O2/kg. Aliquots of frozen oil samples were used as quality control.

2.4. Quantitation of the Fatty Acid Composition

The fatty acid composition was quantitated to characterize the palm oil, as well as to study
the potential effect of storage of fortified and non-fortified palm oil on its fatty acid profile.
The measurement of fatty acids was conducted as reported previously [22]. Briefly, the oil samples
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(100 mg) were spiked with 5 mg methylheptadecanoate and subjected to a base-catalyzed methylation
before fatty acid methyl esters were extracted. The fatty acid methyl esters were analyzed by gas
chromatography/flame ionization detection system (GC-2010 Plus, Shimadzu, Vienna, Austria) using a
ZB-Wax Zebron capillary column (30 mˆ 0.25 mmˆ 0.25 µm, Phenomenex, Aschaffenburg, Germany).
Quantitation of the fatty acid methyl esters were done by internal calibration. The recovery was
determined to be 97.9% ˘ 2.89%. The limit of detection (LOD) and limit of quantitation (LOQ) values
were determined according to the German Institute for Standardization (DIN 32645) and are listed in
Table 1. Aliquots of frozen oil samples were used as quality control samples.

Table 1. Limit of detection and limit of quantitation values for the determination of methylated fatty
acids in palm oil.

LOD (µg/mL) LOQ (µg/mL)

Methyl myristate 0.004 0.013
Methyl palmitate 0.072 0.240

Methyl palmitoleate 0.005 0.017
Methyl stearate 0.028 0.093
Methyl oleate 0.098 0.327

Methyl linoleate 0.013 0.043
Methyl linolenate 0.005 0.017

2.5. Quantitation of Hexanal

Hexanal was quantitated to investigate the impact of storage of non-fortified and fortified palm oil
on the late stage of lipid oxidation. Measurement of hexanal was performed as described recently [22].
Briefly, the oil samples (2.5 g) were analyzed by static headspace gas chromatography-mass
spectrometry (GCMS-QP 2010 Ultra, Shimadzu, Vienna, Austria) using the same column as for the
fatty acid analyses. Quantitation of hexanal was performed applying stable isotope dilution analysis
using hexanal-d12. The characteristic fragment ions of hexanal, m/z 72 and 56, and of hexanal-d12,
m/z 80 and 64, were used for identification while, for quantitative purposes, m/z 72 and 80 were used
for unlabeled and labeled hexanal, respectively. The response factor was calculated to be 1.45 ˘ 0.75.
The recovery was determined to be 77.6% ˘ 17.9%. The LOD and LOQ values were determined
according to the DIN 32645 and were 0.07 and 0.23 µg/mL, respectively. Aliquots of frozen oil samples
were used as quality control samples.

2.6. Quantitation of Vitamin E

Vitamin E content was determined to study the impact of storage and retinol addition on its
stability. Quantitation of vitamin E in palm oil was performed with slight modifications as described
recently [22]. A sample amount of 0.05 g was dissolved in 1 mL isopropanol and analyzed by ultra high
performance liquid chromatography (Dionex Ultimate 3000, Thermo Fisher Scientific, Vienna, Austria)
at 295 nm using a C18 column (Kinetex EVO, 150 mm ˆ 4.6 mm; 5 µm particle diameter, Phenomenex,
Aschaffenburg, Germany). Quantitation of the tocopherol congeners were performed by external
calibration. The recovery was determined to be 105% and 106% for α-tocopherol and γ-tocopherol,
respectively. The LOD and LOQ values for α- and γ-tocopherol were determined according to the DIN
32645 and amounted 0.08 and 0.27 mg/kg for α-tocopherol, and 0.06 and 0.18 mg/kg for γ-tocopherol.
In the oil samples, the δ-tocopherol concentration was below the LOD. Total tocopherols represent the
sum of all detectable homologs. Aliquots of frozen oil samples were used as quality control samples.

2.7. Quantitation and Decomposition of Vitamin A

To investigate the stability of vitamin A palmitate in fortified palm oil, the oil samples were
hydrolyzed prior to quantitation of retinol. Sample preparation for analysis of vitamin A were done
as described elsewhere [23]. Briefly, 1 g oil sample was hydrolyzed at approximately 160 ˝C under
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reflux and nitrogen atmosphere for 30 min. The hydrolysate was extracted with hexane and dried
before being diluted with methanol. The samples were analyzed with a triple quadrupole liquid
chromatography-mass spectrometry system (LCMS-8040, Shimadzu, Vienna, Austria) using a C18
column (Kinetex EVO, 150 mm ˆ 4.6 mm; 5 µm particle diameter, Phenomenex, Aschaffenburg,
Germany). Retinol eluted at 7 min and was identified by applying multiple reaction monitoring
transitions m/z 269.1 to 144.9 and m/z 269.1 to 133.0, while the latter transition was used for quantitation
of retinol. External calibration was used for quantitation of retinol. The recovery was determined to be
72.3% ˘ 17.6%. The LOD and LOQ values were determined according to the DIN 32645 and amounted
to 2.54 and 8.46 µg/mL, respectively. Mass scans in the range of m/z 100 to 2000 were used to determine
the pseudo molecular ion of one of the main decomposition products from retinyl palmitate in palm
oil. Aliquots of frozen fortified oil samples were used as quality control samples.

2.8. Statistical Analyses

All experiments were performed with four independent replicates. For the determination of fatty
acids, tocopherols and vitamin A, two technical replicates were used. The results were expressed as
mean ˘ standard error of mean (SEM) or as mean ˘ standard deviation (SD). Outliers were detected
and removed from further analyses according to the results of the Nalimov outlier test. To identify
statistically significant differences between day 1 and 57, a two-sided, paired t-test was applied.
The impact of the oxidative status on the stability of RP as well as the effect of RP on the oxidative
status of the palm oil was evaluated by one-way analysis of variance followed by the Holm-Sidak
post hoc test using SigmaPlot 11 (Systat Software Inc., Chicago, IL, USA). Pearson product correlation
coefficient was calculated between retinol concentration and tocopherol content. A p-value ď 0.05
described a statistically significant difference or correlation.

3. Results

3.1. Oxidative Stability of Mildly and Highly Oxidized Palm Oil Fortified with RP as Determined by the Fatty
Acid Profile

The palm oil was characterized by quantitation of the most abundant fatty acids. The assay
precision was calculated by the coefficient of variation of the quality control (QC) samples ranging from
5.2% to 7.1%. Table 2 shows the major fatty acids of the study oil on day 1 and 57. The most abundant
fatty acids were oleic acid and palmitic acid with a proportion of approximately 85%. No change in the
fatty acid profile was observed after storage of palm oil under household-representative conditions for
two months.

Table 2. Fatty acid composition in non-fortified palm oil with different initial oxidation levels.

Fatty Acid Peroxide value < 2 Peroxide value > 5
Day 1 (mg/mL) Day 57 (mg/mL) Change (%) Day 1 (mg/mL) Day 57 (mg/mL) Change (%)

C14:0 8.61 ˘ 0.41 8.34 ˘ 0.45 2.97 ˘ 5.04 8.56 ˘ 0.27 8.71 ˘ 0.40 ´1.86 ˘ 5.69

C16:0 484 ˘ 25.0 464 ˘ 24.6 3.98 ˘ 5.75 479 ˘ 23.8 489 ˘ 23.3 ´4.12 ˘ 6.25

C16:1 2.08 ˘ 0.08 2.05 ˘ 0.07 1.62 ˘ 3.74 2.08 ˘ 0.04 2.13 ˘ 0.09 ´2.54 ˘ 4.85

C18:0 62.9 ˘ 3.25 60.5 ˘ 3.03 3.55 ˘ 5.54 62.2 ˘ 2.45 63.6 ˘ 2.93 ´2.30 ˘ 6.13

C18:1 535 ˘ 26.6 514 ˘ 26.1 3.88 ˘ 5.77 529 ˘ 21.6 540 ˘ 25.9 ´2.15 ˘ 6.32

C18:2 108 ˘ 5.20 102 ˘ 4.97 5.54 ˘ 5.27 105 ˘ 4.78 106 ˘ 5.06 ´2.93 ˘ 5.88

C18:3 3.13 ˘ 0.10 2.86 ˘ 0.11 8.45 ˘ 6.22 2.93 ˘ 0.10 2.92 ˘ 0.13 0.20 ˘ 5.28

No statistically significant differences were detected. Results were expressed as mean ˘ standard deviation.
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3.2. Oxidative Stability of Mildly and Highly Oxidized Palm Oil Fortified with RP as Determined by the POV

The assay precision was calculated by the coefficient of variation of the QC samples ranging
from 5.1% to 6.2%. Figure 2A shows a distinct increase of the POV in the palm oil after storage at
32 ˘ 2 ˝C for up to 57 days. While at the beginning of the study (day 1), the POV was determined to be
1.0 meq O2/kg, it increased to approximately 16 meq O2/kg after 57 days of storage. Figure 2B shows
the results obtained from the highly oxidized palm oil. The POV of the highly oxidized oil increased
from 7.5 meq O2/kg to approximately 22 meq O2/kg after household storage for 57 days. Although
the POV of the highly oxidized palm oil (22 meq O2/kg) was higher at day 57 compared to the mildly
oxidized palm oil (16 meq O2/kg), the average increase of the POV after 57 days was similar for both
study oils, amounting approximately to 15 meq O2/kg. The POV of neither the mildly nor the highly
oxidized palm oil was affected by the addition of 60 IU/g RP (Figure 2A,B).
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Figure 2. POV of mildly (A) and highly (B) oxidized palm oil and hexanal formation in mildly (C) and
highly (D) oxidized palm oil in the presence or absence of RP after household-representative storage
for up to 57 days. Data are expressed as mean ˘ standard deviation (SD) (n = 4). Asterisks (*) indicate
a statistically significant difference vs. day 1 (p < 0.05).

3.3. Oxidative Stability of Mildly and Highly Oxidized Palm Oil Fortified with RP as Determined by a
Secondary Lipid Oxidation Marker

Figure 2C demonstrates a significant increase of the hexanal formation from approximately
0.3 µg/mL on day 14 to 0.7 µg/mL on day 57. To verify an acceptable assay precision, the coefficient
of variation of the QC samples were calculated to range between 5.9% and 7.6%. On the first two
sampling days, the hexanal concentration was below the LOD of 0.07 µg/mL. Even storage of highly
oxidized palm oil under household conditions revealed a significant increase of the hexanal formation
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only after 57 days (Figure 2D). Fortification of the mildly or highly oxidized palm oil with RP did not
lead to any changes of the storage-induced generation of hexanal. As for the primary lipid oxidation
products, vitamin A did not exhibit any antioxidant activities on the linoleic acid-derived hexanal.

3.4. Oxidative Stability of Mildly and Highly Oxidized Palm Oil Fortified with RP as Determined by the
Vitamin E Content

For the vitamin E quantitation, the precision of the QC samples ranged from 8.0% to 10.4%.
Figure 3A shows a slight decrease of the α-tocopherol concentration of approximately 18% in mildly
oxidized palm oil stored under household-representative conditions for 57 days. The concentration of
the other detectable tocopherol congener, γ-tocopherol, remained almost stable with a decline of only
8% after 57 days of storage.
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In the present study, the marginal decrease of tocopherol congeners in palm oil during storage was
not affected by the addition of RP on day 1, suggesting the absence of antioxidant activity of vitamin
A (Figure 3B). Figure 3C depicts the effect of the oxidative status of the oil at day 1 on the stability
of vitamin E. Similar to the results obtained by the two other lipid oxidation markers, the storage of
the highly oxidized palm oil did cause a significant change in the vitamin E stability. Storage of the
highly oxidized oil diminished the concentration of α-tocopherol by 15%, while the concentration of
γ-tocopherol was reduced by 8%. A tocopherol-preserving effect of vitamin A, which was reported in
soybean oil after household-representative storage [24], was hardly observed in highly oxidized palm
oil during storage (Figure 3D).

The slight decline of the tocopherol homologs in mildly (Figure 4A) and highly (Figure 4B)
oxidized palm oil was associated with an increase of the POV. The total tocopherol concentrations in
the mildly oxidized palm oil stored for 57 days were negatively correlated with the POV (r = ´0.749;
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p < 0.001). A correlation coefficient of´0.827 (p < 0.001) was also obtained between the total tocopherol
concentrations and the POV in the highly oxidized palm oil.
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Figure 4. Correlation between the POV and the tocopherol content in mildly (A) and highly (B)
oxidized palm oil stored under household-representative conditions in the presence of RP for 57 days.

3.5. Effect of the Oxidative Status of Palm Oil on the Stability of Vitamin A

Figure 5 shows the stability of RP in mildly and highly oxidized fortified palm oil during storage
for 57 days. The assay precision was calculated by the coefficient of variation of the QC samples
ranging from 11.5% to 15.7%. The storage-induced vitamin A loss was inhibited when mildly oxidized
palm oil was used for fortification. Although vitamin A tended (p = 0.095) to decrease during storage,
the decline was not significant. However, using highly oxidized palm oil for fortification with RP
resulted in a marked vitamin A loss, approximately 46%, after 57 days of storage. It could be shown
that the loss of vitamin A during the storage of highly oxidized palm oil correlated with the tocopherol
decay (Figure 6A; r = 0.537; p < 0.05), as well as with the rise of the POV (Figure 6B; r =´0.648; p < 0.01).
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Figure 5. Vitamin A stability in mildly and highly oxidized palm oil stored under
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Asterisks (*) indicate a statistically significant difference vs. day 1 (p < 0.05).

In the current study, we also provide first hints of the potential chemical identity of one of the
degradation products of vitamin A in fortified, highly oxidized palm oil stored under household
conditions for up to two months. Mass spectrometric analyses revealed the appearance of m/z 642 and
321, which were absent on day 1, in palm oil stored for eight days.
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4. Discussion

The present study evaluated the suitability of palm oil as food vehicle for vitamin A fortification.
Palm oil was chosen as vehicle as it contains a considerable amount of saturated fatty acids. Oleic acid
and palmitic acid, the most abundant fatty acids in palm oil, are known to be less prone to oxidation
compared to, e.g. linoleic and linolenic acid in soybean oil [25]. Thus, palm oil might be more resistant
to oxidative rancidity than soybean oil, which consists of approximately 60% polyunsaturated fatty
acids [22]. Nevertheless, the palm oil contained 111 mg/mL polyunsaturated fatty acids, requiring an
intake of approximately 4 tablespoons of palm oil per day to achieve the recommended daily intake
of 2 energy% linoleic acid [26]. As the fatty acids of the unfortified and fortified palm oil remained
unchanged during storage, it might be conceivable that the oxidative quality of the palm oil is stable
throughout the study. However, a recent study demonstrated that non-detectable changes in the fatty
acid profile might not exclude oxidative deterioration of a vegetable oil [22]. This might be explained
by the high sensitivity of the methods targeting lipid oxidation products [27]. Another reason might
be the rather small proportion of fatty acids subjected to oxidation under household-representative
storage condition compared to the total amount of fatty acids, leading to little or no detectable changes
of the fatty acid profile but to a remarkable increase of lipid oxidation products.

To determine oxidative deterioration of the palm oil stored under household-representative
conditions for 57 days, the POV was determined at the beginning, during and at the end of the present
study. According to the Codex Alimentarius International Food Standards published by the World
Health Organization and Food and Agriculture Organization of the United Nations, edible oils with a
POV > 10 meq O2/kg are not recommended for dietary intake [28]. Therefore, based on the results
from the current study, storage of palm oil under household conditions for more than one month may
not be advisable. Another study on soybean oil identified cold fluorescent light as a more important
factor in promoting lipid oxidation than high ambient temperature [22]. Thus, decreasing the storage
temperature from 32 to 22 ˝C might not have led to an acceptable POV below 10 meq O2/kg in the
present study. However, the oxidative stability of palm oil (POV of 16 meq O2/kg) was higher than
that of soybean oil (POV of 28 meq O2/kg) stored under similar household conditions in the presence
of cold fluorescent light at 32 ˝C for two months [20].

To investigate whether the progress of lipid oxidation of the edible oil might be affected by its
initial degree of oxidative rancidity, the POV was also determined for the highly oxidized palm oil,
characterized by a POV of 7.5 meq O2/kg. We hypothesized that enhanced oxidative deterioration of
the vegetable oil might propagate and accelerate lipid oxidation due to the presence of lipid radicals.
However, the different oxidative status of the two study oils on day 1 did not affect the progress
of lipid oxidation as evident by an increase of the POV by 15 meq O2/kg after 57 days in both
oils. In both study oils, the POV exceeded the acceptable threshold of 10 meq O2/kg after only one
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month of storage. With regard to the highly oxidized palm oil, this threshold was even reached after
household-representative storage for eight days. According to our results, storage of mildly oxidized
palm oil for more than one month is not advisable due to the formation of potentially harmful primary
and secondary lipid oxidation products [29]. However, it can be assumed that consumers store edible
oils for more than one month. Besides household storage, the storage in the supermarket needs to be
considered as well. The expiry date does not take into account the formation of lipid oxidation products
during household-representative storage, which is characterized by periodical openings of the bottle
thereby facilitating oxidation. Although in the current study, the palm oil was purchased from the
retail market, consumption of the oil after one month of storage within the expiration date could not be
recommended. Consumption of oxidized lipids was associated with health-related implications [30].
For instance, feeding oxidized lipids was associated with a 100% increase in fatty streak lesions in the
aorta of rabbits, thereby being an important risk factor for arteriosclerosis [31]. Results from these
studies suggest that consumption of oxidized oil might promote cardiovascular diseases. Thus, it is of
interest to alleviate lipid oxidation by addition of antioxidants.

Recently, an antioxidant activity of RP has been demonstrated by a significantly lower POV
in fortified sunflower and soybean oil (6.18 ˘ 0.05 meq O2/kg) in comparison to unfortified oil
(7.30 ˘ 0.10 meq O2/kg) after 30 days of accelerated storage in a Schaal oven at 60 ˝C [19]. We did not
obtain any impact of the addition of RP to the study oils on the POV. The antioxidant activity of RP
might only be detectable after the harsh storage conditions with elevated storage temperature as in the
Schaal oven test [19].

To verify the effects of storage and vitamin A fortification on the oxidative stability of the mildly
and highly oxidized oil, not only POV, as a marker for primary lipid oxidation, but also the formation
of hexanal, which represents a marker for late stage lipid oxidation, was determined. Hexanal is
a decomposition product of linoleic acid [32], which is one of the most prominent fatty acids in
palm oil. As expected, the secondary lipid oxidation product hexanal only increased at a later stage
of lipid oxidation. While in linoleic acid-rich soybean oil, the hexanal generation was detected
during household-representative storage on day 1 and peaked on day 28 (approximately 3 µg/mL
hexanal) [20], palm oil was less affected to oxidation as evident by the late rise of hexanal and the lower
concentration detected compared to soybean oil. Thus, by comparing the results of the formation of the
primary and secondary lipid oxidation marker of the present and previous study, a higher oxidative
stability of palm oil compared to soybean oil could be confirmed, most likely due to the low amount of
polyunsaturated fatty acids compared to soybean oil [20].

Vitamin E is also commonly considered as outcome measure of lipid oxidation in plant oils.
The electron-donating activity of vitamin E allows it to scavenge free lipid radicals, thereby impeding
propagation of lipid oxidation. Thus, vitamin E should protect the oil from oxidative deterioration
due to its antioxidant activity. The high stability of tocopherols in palm oil, as evident from the
current study, compared to the tocopherols in soybean oil, as demonstrated in one of our previous
studies [22] might be explained by a higher proportion of saturated and monounsaturated fatty acids
in palm oil, which makes it less prone to oxidation. As a consequence, the amount of lipid radicals
generated in palm oil during storage might be limited, leading to a reduced chain-breaking activity
of vitamin E. The higher degradation rate of α-tocopherol (0.32%/day) compared to γ-tocopherol
(0.14%/day) in the present study is in agreement with others [33,34]. Player et al. [33] determined
a degradation rate of 5.6 and 1.2%/day for α-tocopherol and γ-tocopherol, respectively, in soybean
oil during storage at 50 ˝C for ten days. As the bond dissociation enthalpy of the hydroxyl group at
the chromanol ring amounts to 76 and 78 kcal/mole for α-tocopherol and γ-tocopherol, respectively,
the hydrogen-donating ability of α-tocopherol is higher compared to γ-tocopherol [35]. Therefore,
α-tocopherol is preferably degraded in the presence of oxidizing compounds.

Due to the low oxidative rancidity of the fortified palm oil during storage under
household-representative conditions for two months, we hypothesized that vitamin A might also show
a high stability due to reduced exposure to lipid oxidation products compared to oils rich in unstable
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polyunsaturated fatty acids. In the present study, it was shown that the vitamin A stability in the palm
oil studied depends on the progress of lipid oxidation as evident by the significant correlation between
the lipid oxidation markers and the retinol concentration. The impact of the oxidative status of the
edible oil on the vitamin A stability was also reported earlier [20,36]. Andarwulan and colleagues [37]
observed a comparable loss of 43% of vitamin A in bulk, unbranded palm oils with initial oxidation
levels of 0, 4 and 9 meq O2/kg after 53, 25 and less than 14 days of accelerated storage in the dark at
60 ˝C under nitrogen atmosphere, respectively. The current study focused not on forced oxidation
conditions but rather on a household-representative storage environment at 32 ˝C, which might explain
the absence of significant changes in the vitamin A content of mildly oxidized palm oil stored for up to
57 days. Hemery and colleagues [36] reported a 60%–68% loss of vitamin A in three fortified soybean
oils, characterized by initial POV values of 1.63 ˘ 0.05, 2.75 ˘ 0.12 and 5.75 ˘ 0.04 meq O2/kg after
storage in the dark for one month followed by another month of storage in the semi-dark or presence
of sunlight. This discrepancy between the vitamin A stability in soybean oil rich in polyunsaturated
fatty acids and in palm oil rich in saturated and monounsaturated fatty acids is also corroborated by
one of our previous studies [20]. A vitamin A loss of more than 80% was reported after storage of
fortified soybean oil under household conditions for 56 days [20].

In the current study, one of the retinol degradation products was detected by mass spectrometry.
We hypothesize that m/z 642 and 321 might correspond to the dimeric retinol hydroperoxide and
the monomeric radical, respectively, which might be predominantly formed in highly oxidized
palm oil [38].

5. Conclusions

With regard to the nutritional value of vegetable oils, it is recommended to consume edible oils rich
in polyunsaturated fatty acids. Thus, soybean oil should be preferably used as a vehicle for fortification
with vitamin A. However, taking into account a successful delivery of vitamin A, vegetable oils rich
in saturated fatty acids, such as palm oil, are preferred vehicles for the fortification with vitamin A
compared to edible oils rich in polyunsaturated fatty acids. While household-representative storage of
fortified soybean oil for two months led to a substantial loss of vitamin A, similar storage conditions
of fortified palm oil did not induce statistically significant changes of the vitamin A concentration.
Thus, we conclude that palm oil is superior to soybean oil for vitamin A fortification programs to
deliver sufficient amounts of vitamin A. However, care needs to be taken not to store vegetable oils
longer than one month under household conditions, independent of the degree of saturation of the
fatty acids, as the peroxide value increases beyond the acceptable value of 10 meg O2/kg, and other
dietary sources of essential fatty acids should be sought for to meet their needs.
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