Shell Organic Matrix (Conchix) of the Mediterranean Mussel Mytilus galloprovincialis L. as the Medium for Assessment of Trace Metals in the Boka Kotorska Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sampling Sites
2.2. Sampling and Preparation
2.3. Isolation of Conchix
2.4. Size and Weight Measurements
2.5. Condition Index
2.6. Trace Metal Determination
2.7. Metal Pollution Index
2.8. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnakumar, P.K.; Qurban, M.A.; Sasikumar, G. Biomonitoring of trace metals in the coastal waters using bivalve molluscs. In Trace Elements—Human Health and Environment; IntechOpen: London, UK, 2018; Volume 153. [Google Scholar] [CrossRef] [Green Version]
- Spada, L.; Annicchiarico, C.; Cardellicchio, N.; Giandomenico, S.; Di Leo, A. Heavy Metals Monitoring in mussels Mytilus halloprovincialis from the Apulian Coasts (Southern Italy). Mediterr. Mar. Sci. 2013, 14, 99. [Google Scholar] [CrossRef]
- Ujević, I.; Vuletić, N.; Lušić, J.; Nazlić, N.; Kušpilić, G. Bioaccumulation of Trace Metals in Mussel (Mytilus galloprovincialis) from Mali Ston Bay during DSP Toxicity Episodes. Molecules 2015, 20, 13031–13040. [Google Scholar] [CrossRef] [PubMed]
- Yigit, M.; Celikkol, B.; Yilmaz, S.; Bulut, M.; Ozalp, B.; Dwyer, R.L.; Maita, M.; Kizilkaya, B.; Yigit, Ü.; Ergün, S.; et al. Bioaccumulation of Trace Metals in Mediterranean Mussels (Mytilus galloprovincialis) from a Fish Farm with Copper-Alloy Mesh Pens and Potential Risk Assessment. Hum. Ecol. Risk Assess. Int. J. 2017, 24, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Kouali, H.; Chaouti, A.; Achtak, H.; Elkalay, K.; Dahbi, A. Trace Metal Contents in the Mussel Mytilus galloprovincialis from Atlantic Coastal Areas in Northwestern Morocco: Levels of Contamination and Assessment of Potential Risks to Human Health. Mar. Pollut. Bull. 2022, 179, 113680. [Google Scholar] [CrossRef] [PubMed]
- IMAP Common Indicator Guidance Fact Sheets. Environment Programme Mediterranean Action Plan; Integrated Monitoring and Assessment Programme: Athens, Greece, 2017. [Google Scholar]
- Kadim, M.K.; Risjani, Y. Biomarker for Monitoring Heavy Metal Pollution in Aquatic Environment: An Overview toward Molecular Perspectives. Emerg. Contam. 2022, 8, 195–205. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Pandita, S.; Singh, S.; Bhardwaj, R.; Varol, M.; Rodrigo-Comino, J. A Global Meta-Analysis of Toxic Metals in Continental Surface Water Bodies. J. Environ. Chem. Eng. 2023, 11, 109964. [Google Scholar] [CrossRef]
- Kumar, A.; Cabral-Pinto, M.; Kumar, A.; Kumar, M.; Dinis, P.A. Estimation of Risk to the Eco-Environment and Human Health of Using Heavy Metals in the Uttarakhand Himalaya, India. Appl. Sci. 2020, 10, 7078. [Google Scholar] [CrossRef]
- Kumar, A.; Song, H.-W.; Mishra, S.; Zhang, W.; Zhang, Y.-L.; Zhang, Q.-R.; Yu, Z.-G. Application of Microbial-Induced Carbonate Precipitation (MICP) Techniques to Remove Heavy Metal in the Natural Environment: A Critical Review. Chemosphere 2023, 318, 137894. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Faganeli, J.; Klun, K.; Oliveri, P.; Covelli, S.; Adami, G. Distribution, Mobility and Fate of Trace Elements in an Estuarine System Under Anthropogenic Pressure: The Case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuaries Coasts 2021, 44, 1831–1847. [Google Scholar] [CrossRef]
- Nikčević, J. Strengthening the Role of Local Government to Ensure Sustainable Development of the Cruise Sector: The Case of Kotor. Mar. Policy 2019, 109, 103693. [Google Scholar] [CrossRef]
- Joksimović, D.; Perošević, A.; Castelli, A.; Pestorić, B.; Šuković, D.; Đurović, D. Assessment of Heavy Metal Pollution in Surface Sediments of the Montenegrin Coast: A 10-Year Review. J. Soils Sediments 2019, 20, 2598–2607. [Google Scholar] [CrossRef]
- Joksimovic, D.; Stankovic, S. The Trace Metals Accumulation in Marine Organisms of the Southeastern Adriatic Coast, Montenegro. J. Serb. Chem. Soc. 2012, 77, 105–117. [Google Scholar] [CrossRef]
- Perošević, A.; Pezo, L.; Joksimović, D.; Đurović, D.; Milašević, I.; Radomirović, M.; Stanković, S. The Impacts of Seawater Physicochemical Parameters and Sediment Metal Contents on Trace Metal Concentrations in Mussels—A Chemometric Approach. Environ. Sci. Pollut. Res. 2018, 25, 28248–28263. [Google Scholar] [CrossRef] [PubMed]
- Zuykov, M.; Pelletier, E.; Harper, D.A.T. Bivalve Mollusks in Metal Pollution Studies: From Bioaccumulation to Biomonitoring. Chemosphere 2013, 93, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Protasowicki, M.; Dural, M.; Jaremek, J. Trace Metals in the Shells of Blue Mussels (Mytilus edulis) from the Poland Coast of Baltic Sea. Environ. Monit. Assess. 2007, 141, 329–337. [Google Scholar] [CrossRef] [PubMed]
- El-Sorogy, A.S.; Youssef, M. Assessment of Heavy Metal Contamination in Intertidal Gastropod and Bivalve Shells from Central Arabian Gulf Coastline, Saudi Arabia. J. Afr. Earth Sci. 2015, 111, 41–53. [Google Scholar] [CrossRef]
- Lyubas, A.A.; Tomilova, A.A.; Chupakov, A.V.; Vikhrev, I.V.; Travina, O.V.; Orlov, A.S.; Zubrii, N.A.; Kondakov, A.V.; Bolotov, I.N.; Pokrovsky, O.S. Iron, phosphorus and trace elements in mussels’ shells, water, and bottom sediments from the Severnaya Dvina and the Onega river basins (Northwestern Russia). Water 2021, 13, 3227. [Google Scholar] [CrossRef]
- Giusti, L.; Williamson, A.C.; Mistry, A. Biologically Available Trace Metals in Mytilus edulis from the Coast of Northeast England. Environ. Int. 1999, 25, 969–981. [Google Scholar] [CrossRef]
- Yap, C.K.; Sharifinia, M.; Cheng, W.H.; Al-Shami, S.A.; Wong, K.W.; Al-Mutairi, K.A. A Commentary on the Use of Bivalve Mollusks in Monitoring Metal Pollution Levels. Int. J. Environ. Res. Public Health 2021, 18, 3386. [Google Scholar] [CrossRef]
- Putten, E.V.; Dehairs, F.; Keppens, E.; Baeyens, W. High Resolution Distribution of Trace Elements in the Calcite Shell Layer of Modern Mytilus edulis: Environmental and Biological Controls. Geochim. Cosmochim. Acta 2000, 64, 997–1011. [Google Scholar] [CrossRef]
- Puente, X.; Villares, R.; Carral, E.; Carballeira, A. Nacreous Shell of Mytilus galloprovincialis as a Biomonitor of Heavy Metal Pollution in Galiza (NW Spain). Sci. Total Environ. 1996, 183, 205–211. [Google Scholar] [CrossRef]
- Bellotto, V.R.; Miekeley, N. Trace Metals in Mussel Shells and Corresponding Soft Tissue Samples: A Validation Experiment for the Use of Perna perna Shells in Pollution Monitoring. Anal. Bioanal. Chem. 2007, 389, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K. Distributions of Cu and Zn in the Shell Lipped Part Periostracum and Soft Tissues of Perna viridis: The potential of Periostracum as a Biomonitoring Material for Cu Contamination. Pertanika J. Trop. Agric. Sci. 2012, 35, 413–426. [Google Scholar]
- Yap, C.K.; Al-Mutairi, K.A. Byssus of Green-Lipped Mussel Perna viridis as a Biomonitoring Biopolymer for Zinc Pollution in Coastal Waters. Biology 2023, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Schöne, B.R.; Krause, R.A. Retrospective Environmental Biomonitoring—Mussel Watch Expanded. Glob. Planet. Chang. 2016, 144, 228–251. [Google Scholar] [CrossRef]
- Wilbur, K.M.; Saleuddin, A.S.M. Shell formation. In The Mollusca; Academic Press: Cambridge, MA, USA, 1983; pp. 235–287. [Google Scholar]
- Ehrlich, H.; Martinović, R.; Joksimović, D.; Petrenko, I.; Schiaparelli, S.; Wysokowski, M.; Tsurkan, D.; Stelling, A.L.; Springer, A.; Gelinsky, M.; et al. Conchixes: Organic Scaffolds Which Resemble the Size and Shapes of Mollusks Shells, Their Isolation and Potential Multifunctional Applications. Appl. Phys. A 2020, 126, 562. [Google Scholar] [CrossRef]
- Joksimović, D.; Castelli, A.; Perošević, A.; Djurović, D.; Stanković, S. Determination of Trace Metals in Mytilus galloprovincialis along the Boka Kotorska Bay, Montenegrin Coast. J. Trace Elem. Med. Biol. 2018, 50, 601–608. [Google Scholar] [CrossRef]
- Cravo, A.; Bebianno, M.J. Bioaccumulation of Metals in the Soft Tissue of Patella aspera: Application of Metal/Shell Weight Indices. Estuar. Coast. Shelf Sci. 2005, 65, 571–586. [Google Scholar] [CrossRef]
- ISO 6869:2000; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. Institute for Standardization of Serbia: Belgrade, Serbia, 2000. Available online: https://iss.rs/en/project/show/iso:proj:33707 (accessed on 28 March 2023).
- Tomović, V.M.; Petrović, L.S.; Tomović, M.S.; Kevrešan, Ž.S.; Džinić, N.R. Determination of Mineral Contents of Semimembranosus Muscle and Liver from Pure and Crossbred Pigs in Vojvodina (Northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar] [CrossRef]
- ISO 14082:2008; Determination of Trace Elements-Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing. Institute for Standardisation of Serbia: Belgrade, Serbia, 2008. Available online: https://iss.rs/en/project/show/iss:proj:20335 (accessed on 28 March 2023).
- Usero, J.; Morillo, J.; Gracia, I. Heavy Metal Concentrations in Molluscs from the Atlantic Coast of Southern Spain. Chemosphere 2005, 59, 1175–1181. [Google Scholar] [CrossRef]
- Rodríguez-Barroso, M.R.; Benhamou, Y.; El Moumni, B.; El Hatimi, I.; García-Morales, J.L. Evaluation of Metal Contamination in Sediments from North of Morocco: Geochemical and Statistical Approaches. Environ. Monit. Assess. 2008, 159, 169–181. [Google Scholar] [CrossRef]
- Uluturhan, E. Heavy Metal Concentrations in Surface Sediments from Two Regions (Saros and Gökova Gulfs) of the Eastern Aegean Sea. Environ. Monit. Assess. 2009, 165, 675–684. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Data Science Workbench, Version 14. 2020. Available online: http://tibco.com (accessed on 4 February 2023).
- Shirneshan, G.; Riyahi Bakhtiari, A. Accumulation and Distribution of Cd, Cu, Pb and Zn in the Soft Tissue and Shell of Oysters Collected from the Northern Coast of Qeshm Island, Persian Gulf, Iran. Chem. Speciat. Bioavailab. 2012, 24, 129–138. [Google Scholar] [CrossRef]
- Forleo, T.; Zappi, A.; Melucci, D.; Ciriaci, M.; Griffoni, F.; Bacchiocchi, S.; Siracusa, M.; Tavoloni, T.; Piersanti, A. Inorganic Elements in Mytilus galloprovincialis Shells: Geographic Traceability by Multivariate Analysis of ICP-MS Data. Molecules 2021, 26, 2634. [Google Scholar] [CrossRef] [PubMed]
- Azizi, G.; Layachi, M.; Akodad, M.; Baghour, M.; Ghalit, M.; Gharibi, E.; Ngadi, H.; Moumen, A. The Accumulation of Al, As, Li, Mg, Mn, S, Si, Ti, and V in the Mussel Mytilus galloprovincialis from the Moroccan Mediterranean Coastal Areas: Trends Pertaining to Seasons and Levels. Ocean Sci. J. 2020, 55, 405–418. [Google Scholar] [CrossRef]
- Savari, A.; Lockwood, A.P.M.; Sheader, M. Effects of Season and Size (Age) on Heavy Metal Concentrations of the Common Cockle (Cerastoderma edule (L.)) from Southampton Water. J. Molluscan Stud. 1991, 57, 45–57. [Google Scholar] [CrossRef]
- Yap, C.K.; Ismail, A.; Tan, S.G.; Abdul Rahim, I. Can the Shell of the Green-Lipped Mussel Perna viridis from the West Coast of Peninsular Malaysia Be a Potential Biomonitoring Material for Cd, Pb and Zn? Estuar. Coast. Shelf Sci. 2003, 57, 623–630. [Google Scholar] [CrossRef]
- Andral, B.; Stanisiere, J.Y.; Sauzade, D.; Damier, E.; Thebault, H.; Galgani, F.; Boissery, P. Monitoring Chemical Contamination Levels in the Mediterranean Based on the Use of Mussel Caging. Mar. Pollut. Bull. 2004, 49, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Demina, L.L.; Galkin, S.V.; Dara, O.M. Trace Metal Bioaccumulation in the Shells of Mussels and Clams at Deep-Sea Hydrothermal Vent Fields. Geochem. Int. 2012, 50, 133–147. [Google Scholar] [CrossRef]
- Dunca, E.; Mutvei, H.; Göransson, P.; Mörth, C.-M.; Schöne, B.R.; Whitehouse, M.J.; Elfman, M.; Baden, S.P. Using Ocean Quahog (Arctica islandica) Shells to Reconstruct Palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. Int. J. Earth Sci. 2008, 98, 3–17. [Google Scholar] [CrossRef]
- Swinehart, J.H.; Smith, K.W. Iron and Manganese Deposition in the Periostraca of Several Bivalve Molluscs. Biol. Bull. 1979, 156, 369–381. [Google Scholar] [CrossRef]
- Soldati, A.L.; Jacob, D.E.; Glatzel, P.; Swarbrick, J.C.; Geck, J. Element Substitution by Living Organisms: The Case of Manganese in Mollusc Shell Aragonite. Sci. Rep. 2016, 6, 22514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöne, B.R.; Huang, X.; Zettler, M.L.; Zhao, L.; Mertz-Kraus, R.; Jochum, K.P.; Walliser, E.O. Mn/Ca in Shells of Arctica islandica (Baltic Sea)—A Potential Proxy for Ocean Hypoxia? Estuar. Coast. Shelf Sci. 2021, 251, 107257. [Google Scholar] [CrossRef]
- Yap, C.K.; Tan, S.G. A study on the potential of the periostracum of Perna viridis as a biomonitoring material for Pb in tropical coastal waters based on correlation analysis. Sains Malays. 2011, 40, 809–819. [Google Scholar]
- Dermott, R.M.; Lum, K.R. Metal Concentrations in the Annual Shell Layers of the Bivalve Elliptio complanata. Environ. Pollut. Ser. B Chem. Phys. 1986, 12, 131–143. [Google Scholar] [CrossRef]
Trace Metals | Medium/ Site | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(µg g−1) | KS | KC | KI | TS | TC | TI | OS | OC | OI | ES | EC | EI |
Zn | 11.6 | 11.6 | 11.0 | 125 | 135 | 104 | 7.85 | 13.6 | 7.59 | 5.3 | 12.7 | 4.15 |
Cu | 2.09 | 3.91 | 2.74 | 2.93 | 3.39 | 3.53 | 15.8 | 11.0 | 12.6 | 2.02 | 1.05 | 2.14 |
Fe | 0.69 | 0.81 | 0.64 | 21.0 | 11.0 | 35.4 | 68.3 | 21.6 | 40.8 | 3.92 | 4.82 | 3.86 |
Mn | 2.44 | 2.57 | 2.31 | 2.78 | 3.63 | 3.62 | 2.07 | 1.60 | 2.80 | 1.51 | 1.48 | 1.62 |
Pb | <0.25 | <0.25 | 0.31 | 0.54 | 1.16 | 1.06 | 1.22 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 |
Cd | <0.03 | <0.03 | <0.03 | 0.69 | 0.73 | 0.41 | 0.06 | 0.067 | <0.03 | <0.03 | <0.03 | <0.03 |
Hg | <0.001 | <0.001 | <0.001 | 0.077 | 0.065 | 0.095 | 0.168 | 0.100 | 0.145 | <0.001 | <0.001 | <0.001 |
MPI | 0.258 | 0.291 | 0.297 | 2.319 | 2.711 | 2.929 | 2.158 | 1.214 | 1.163 | 0.275 | 0.291 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinović, R.; Joksimović, D.; Perošević-Bajčeta, A.; Čabarkapa, I.; Ehrlich, H. Shell Organic Matrix (Conchix) of the Mediterranean Mussel Mytilus galloprovincialis L. as the Medium for Assessment of Trace Metals in the Boka Kotorska Bay. Appl. Sci. 2023, 13, 7582. https://doi.org/10.3390/app13137582
Martinović R, Joksimović D, Perošević-Bajčeta A, Čabarkapa I, Ehrlich H. Shell Organic Matrix (Conchix) of the Mediterranean Mussel Mytilus galloprovincialis L. as the Medium for Assessment of Trace Metals in the Boka Kotorska Bay. Applied Sciences. 2023; 13(13):7582. https://doi.org/10.3390/app13137582
Chicago/Turabian StyleMartinović, Rajko, Danijela Joksimović, Ana Perošević-Bajčeta, Ivana Čabarkapa, and Hermann Ehrlich. 2023. "Shell Organic Matrix (Conchix) of the Mediterranean Mussel Mytilus galloprovincialis L. as the Medium for Assessment of Trace Metals in the Boka Kotorska Bay" Applied Sciences 13, no. 13: 7582. https://doi.org/10.3390/app13137582
APA StyleMartinović, R., Joksimović, D., Perošević-Bajčeta, A., Čabarkapa, I., & Ehrlich, H. (2023). Shell Organic Matrix (Conchix) of the Mediterranean Mussel Mytilus galloprovincialis L. as the Medium for Assessment of Trace Metals in the Boka Kotorska Bay. Applied Sciences, 13(13), 7582. https://doi.org/10.3390/app13137582