Mass–Energy Profiles Obtained by Quantum Chemical Computing Applied in Mass Spectrometry: A Case Study with Identification of a Group of Acetalized Monosaccharide Isomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculated Mass–Energy Profiles
2.2. Experimental Mass–Energy Profiles
2.2.1. Reference Standards and Mass Spectrometry
2.2.2. Experimental Energy Descriptors
2.3. The Matching Score of the Mass–Energy Profiles
2.4. Design of Experiments
- The quantum chemical methods, used in four variants for the calculation of enthalpies (ΔfH) and Gibbs energies (ΔfG): RM1, PM7, DFT (B3LYP/6-31G) ΔfH, and DFT (B3LYP/6-31G) ΔfG,
- The calculated energy descriptors, in two variants: (ΔfHion or ΔfGion) and (ΔfHfrag or ΔfGfrag), and two independent factors for the experimental profiles (Table 2):
- The descriptors of experimental energy in two variants: IC and ln IC,
- The impact energy of electrons on five levels: 5, 10, 15, 20, and 70 eV.
3. Results
3.1. Mass Spectra
3.2. Matching Scores of Mass–Energy Profiles
3.3. Scores Lists
3.4. Validation and Optimization Panel
- The ln IC descriptor from the mass spectrum at 5 eV and ΔfGfrag descriptor calculated using the DFT (B3LYP/6-31G) method (Rank S = 1 at Pmax = 84.52%),
- The ln IC descriptor from the mass spectrum at 5 eV and ΔfHfrag descriptor calculated using the RM1 method (Rank S = 1 at Pmax = 81.99%),
- The ln IC descriptor from the mass spectrum at 5 eV and ΔfHion descriptor calculated using the RM1 method (Rank S = 1 at Pmax = 79.20%).
- There is a tendency to increase the score with decreased electronic impact energy. The best match is performed above the ionization threshold in its vicinity.
- The ln IC descriptors offer better results than IC. For this reason, it can be assumed that Equation (A2) is more appropriate to describe the kinetics of dissociation under these optimal conditions.
- The DFT (B3LYP/6-31G) and RM1 quantum calculation methods provide useful values in the description of energy fragmentation profiles of acetalized monosaccharide isomers.
- The ΔfGfrag and ΔfHfrag descriptors provide better results than the ΔfHion and ΔfGion descriptors.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Structure → | DAF (4) | DAG (1) | DAGal (3) | DAM (2) | DAS (5) |
---|---|---|---|---|---|
ΔfH(M) | −283.1 | −287.1 | −282.6 | −288.1 | −286.7 |
ΔfH (ion) | |||||
m/z 245 | −96.6 | −99.6 | −97.3 | −102.0 | −101.8 |
m/z 229 | −46.8 | a | −42.4 | a | −33.0 |
m/z 187 | −34.2 | −39.4 | −36.4 | −40.2 | −4.1 |
m/z 171 | 34.5 | a | 9.6 | a | 37.0 |
m/z 159 | a | 11.7 | a | 8.8 | a |
m/z 127 | 103.7 | 105.1 | 87.2 | 79.4 | 134.0 |
m/z 101 | a | 98.8 | a | 98.8 | a |
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) | |||||
M → m/z 245 | 211.4 | 212.4 | 210.1 | 211.0 | 209.7 |
M → m/z 229 | 214.9 | a | 218.8 | a | 232.3 |
M → m/z 187 | 221.1 | 219.9 | 218.3 | 220.1 | 254.7 |
M → m/z 171 | 243.5 | a | 218.1 | a | 249.6 |
M → m/z 159 | a | 220.0 | a | 218.2 | a |
M → m/z 127 | 284.1 | 289.5 | 267.1 | 264.9 | 318.0 |
M → m/z 101 | a | 221.1 | a | 219.8 | a |
Structure → | DAF (4) | DAG (1) | DAGal (3) | DAM (2) | DAS (5) |
---|---|---|---|---|---|
ΔfH(M) | −277.1 | −280.8 | −277.7 | −281.7 | −281.6 |
ΔfH (ion) | |||||
m/z 245 | −99.4 | −102.0 | −96.2 | −102.1 | −100.7 |
m/z 229 | −54.3 | a | −41.6 | a | −34.0 |
m/z 187 | −37.5 | −33.4 | −37.7 | −38.2 | −11.5 |
m/z 171 | 13.2 | a | 40.4 | a | 36.5 |
m/z 159 | a | 14.3 | a | 14.6 | a |
m/z 127 | 109.7 | 155.7 | 118.8 | 87.9 | 161.6 |
m/z 101 | a | 89.9 | a | 89.9 | a |
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) | |||||
M → m/z 245 | 205.6 | 206.7 | 209.5 | 207.6 | 208.8 |
M → m/z 229 | 201.5 | a | 214.8 | a | 226.2 |
M → m/z 187 | 212.1 | 219.8 | 212.5 | 216.0 | 242.6 |
M → m/z 171 | 213.5 | a | 241.4 | a | 241.3 |
M → m/z 159 | a | 220.5 | a | 221.6 | a |
M → m/z 127 | 283.0 | 332.8 | 292.9 | 265.9 | 339.5 |
M → m/z 101 | a | 215.6 | a | 213.5 | a |
Structure → | DAF (4) | DAG (1) | DAGal (3) | DAM (2) | DAS (5) |
---|---|---|---|---|---|
ΔfH(M) | −1559.5 | −1565.4 | −1562.9 | −1564.0 | −1566.7 |
ΔfH (ion) | |||||
m/z 245 | −1264.7 | −1266.0 | −1263.3 | −1267.8 | −1273.3 |
m/z 229 | −1239.6 | a | −1227.6 | a | −1237.7 |
m/z 187 | −867.0 | −873.4 | −870.4 | −865.2 | −830.3 |
m/z 171 | −827.6 | a | −835.4 | a | −815.7 |
m/z 159 | a | −728.9 | a | −726.2 | a |
m/z 127 | −522.8 | −531.4 | −534.6 | −554.1 | −494.5 |
m/z 101 | a | −465.7 | a | −465.7 | a |
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) | |||||
M → m/z 245 | 206.3 | 211.0 | 211.0 | 207.8 | 204.9 |
M → m/z 229 | 213.5 | a | 228.8 | a | 222.6 |
M → m/z 187 | 210.5 | 210.0 | 210.5 | 216.8 | 254.4 |
M → m/z 171 | 232.0 | a | 227.5 | a | 251.1 |
M → m/z 159 | a | 229.4 | a | 230.7 | a |
M → m/z 127 | 266.2 | 263.5 | 257.8 | 239.4 | 301.8 |
M → m/z 101 | a | 227.8 | a | 223.2 | a |
Structure → | DAF (4) | DAG (1) | DAGal (3) | DAM (2) | DAS (5) |
---|---|---|---|---|---|
ΔfG (M) | −1886.7 | −1892.7 | −1892.1 | −1891.0 | −1895.0 |
ΔfG (ion) | |||||
m/z 245 | −1557.9 | −1557.4 | −1557.3 | −1559.4 | −1567.4 |
m/z 229 | −1523.3 | a | −1510.7 | a | −1519.8 |
m/z 187 | −1072.4 | −1076.9 | −1075.9 | −1070.0 | −1032.0 |
m/z 171 | −1019.7 | a | −1031.1 | a | −1005.5 |
m/z 159 | a | −913.0 | a | −911.2 | a |
m/z 127 | −654.9 | −663.0 | −665.1 | −686.7 | −624.9 |
m/z 101 | a | −591.7 | a | −591.7 | a |
ΔfG (M frag) = ΔfG (ion) + ΣΔfG (F) − ΔfG (M) | |||||
M → m/z 245 | 219.4 | 225.9 | 225.4 | 222.2 | 218.3 |
M → m/z 229 | 226.6 | A | 244.6 | a | 238.4 |
M → m/z 187 | 238.7 | 240.2 | 240.7 | 245.5 | 287.4 |
M → m/z 171 | 264.1 | A | 258.1 | a | 286.6 |
M → m/z 159 | a | 245.2 | a | 245.4 | a |
M → m/z 127 | 309.1 | 306.9 | 304.3 | 281.6 | 347.3 |
M → m/z 101 | a | 244.7 | a | 239.6 | a |
Ion | DAF 70 eV | DAG 70 eV | DAGal 70 eV | DAM 70 eV | DAS 70 eV |
---|---|---|---|---|---|
m/z 245 | 846,208 | 552,640 | 813,440 | 703,872 | 619,840 |
m/z 229 | 211,264 | 1227 | 6740 | 3596 | 75,632 |
m/z 187 | 46,528 | 246,784 | 155,456 | 177,984 | 125,816 |
m/z 171 | 314,560 | 775 | 38,872 | 1329 | 197,952 |
m/z 159 | 815 | 41,928 | 1171 | 11,662 | 134,144 |
m/z 127 | 341,120 | 231,872 | 185,664 | 122,176 | 96,888 |
m/z 101 | 53,168 | 613,952 | 54,928 | 547,136 | 117,048 |
Ion | DAF 20 eV | DAG 20 eV | DAGal 20 eV | DAM 20 eV | DAS 20 eV |
m/z 245 | 282,816 | 403,072 | 211,520 | 419,392 | 638,528 |
m/z 229 | 64,576 | 332 | 1401 | 1486 | 78,920 |
m/z 187 | 12,985 | 179,456 | 40,480 | 102,544 | 106,456 |
m/z 171 | 105,728 | 560 | 11,025 | 585 | 199,744 |
m/z 159 | 194 | 32,104 | 325 | 7702 | 161,472 |
m/z 127 | 118,432 | 158,784 | 49,808 | 64,896 | 79,624 |
m/z 101 | 18,488 | 503,040 | 16,568 | 362,240 | 101,728 |
Ion | DAF 15 eV | DAG 15 eV | DAGal 15 eV | DAM 15 eV | DAS 15 eV |
m/z 245 | 16,9152 | 129,848 | 131,328 | 186,560 | 338,880 |
m/z 229 | 37,448 | a | 984 | a | 39,928 |
m/z 187 | 7193 | 53,656 | 23,832 | 42,736 | 47,264 |
m/z 171 | 55,600 | a | 6233 | a | 96,712 |
m/z 159 | 138 | 11,515 | 176 | 3849 | 96,440 |
m/z 127 | 58,848 | 51,576 | 24,688 | 26,824 | 37,648 |
m/z 101 | 8954 | 240,512 | 9001 | 209,344 | 55,768 |
Ion | DAF 10 eV | DAG 10 eV | DAGal 10 eV | DAM 10 eV | DAS 10 eV |
m/z 245 | 30,072 | 26,792 | 41,240 | 35,904 | 77,624 |
m/z 229 | 6135 | a | 243 | a | 8035 |
m/z 187 | 894 | 9062 | 6175 | 6425 | 6633 |
m/z 171 | 6110 | a | 1637 | a | 13,461 |
m/z 159 | a | 1964 | 50 | 667 | 18,224 |
m/z 127 | 5320 | 5395 | 4504 | 2574 | 4274 |
m/z 101 | 663 | 39,784 | 1730 | 28,120 | 6267 |
Ion | DAF 5 eV | DAG 5 eV | DAGal 5 eV | DAM 5 eV | DAS 5 eV |
m/z 245 | 4520 | 4604 | 4083 | 5921 | 7360 |
m/z 229 | 825 | a | a | a | 749 |
m/z 187 | a | 659 | 305 | 523 | 152 |
m/z 171 | 189 | a | 65 | a | 319 |
m/z 159 | a | 116 | a | 93 | 873 |
m/z 127 | 96 | 67 | a | 71 | a |
m/z 101 | a | 1989 | 56 | 1616 | 60 |
References
- Vicidomini, C.; Roviello, V.; Roviello, G.N. In Silico Investigation on the Interaction of Chiral Phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry 2021, 13, 1041. [Google Scholar] [CrossRef]
- Vaniya, A.; Fiehn, O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt. Chem. 2015, 69, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Böcker, S.; Dührkop, K. Fragmentation trees reloaded. J. Cheminform. 2016, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasche, F.; Scheubert, K.; Hufsky, F.; Zichner, T.; Kai, M.; Svatoš, A.; Böcker, S. Identifying the Unknowns by Aligning Fragmentation Trees. Anal. Chem. 2012, 84, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Bojin, L.A.; Georgescu, M.; Cojocaru, C.; Pascariu, M.C.; Purcarea, V.L.; Ivan, M.V.; Puiu, M.; Dehelean, C.; Serb, A.F.; Sisu, E.; et al. Structural investigation of raw and modified glycans by MALDI-TOF mass spectrometry. Farmacia 2020, 68, 891–897. [Google Scholar] [CrossRef]
- Fedorova, E.; Stavrianidi, A.; Minenkova, I.; Buryak, A. Calculations of the Thermodynamic Characteristics and Physicochemical Properties of Symmetric and Asymmetric Isomeric Compounds for Identification in Chromatography-Mass Spectrometry. Symmetry 2021, 13, 1681. [Google Scholar] [CrossRef]
- Dinca, N.; Covaci, A. Structural identification by differential mass spectrometry as a criterion for selecting the best quantum chemical calculation of formation enthalpy for tetrachlorinated biphenyls. Rapid Commun. Mass Spectrom. 2012, 26, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Dinca, N.; Dragan, S.; Dinca, M.; Sisu, E.; Covaci, A. New quantitative structure-fragmentation relationship strategy for chemical structure identification using the calculated enthalpy of formation as a descriptor for the fragments produced in electron ionization mass spectrometry: A case study with tetrachlorinated biphenyls. Anal. Chem. 2014, 86, 4949–4955. [Google Scholar] [PubMed]
- Tripathi, A.; Bankaitis, V.A. Molecular Docking: From Lock and Key to Combination Lock. J. Mol. Med. Clin. Appl. 2017, 2, 1–19. [Google Scholar] [CrossRef]
- Rosenstock, H.M.; Wallenstein, M.B.; Wahrhaftig, A.L.; Eyring, H. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl. Acad. Sci. USA 1952, 38, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascariu, M.C.; Dinca, N.; Cojocariu, C.; Sisu, E.; Serb, A.; Birza, R.; Georgescu, M. Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry. Symmetry 2022, 14, 1074. [Google Scholar] [CrossRef]
- Hypercube, Inc. HyperChem™Professional, Version 8.0.10 for Windows; Hypercube, Inc.: Gainesville, FL, USA. Available online: http://www.hypercubeusa.com/?tabid=360 (accessed on 20 March 2021).
- MOPAC2012; Stewart, J.J.P. Stewart Computational Chemistry, Colorado Springs, CO, USA. Version 15.027W. Available online: http://OpenMOPAC.net/ (accessed on 20 March 2021).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09. Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Robertson, J.; Stafford, P.M. Carbohydrates; Osborn, H.M.I., Ed.; Academic Press: London, UK, 2003; pp. 29–33. [Google Scholar]
- De Jongh, D.C.; Biemann, K. Mass Spectra of O-Isopropylidene Derivatives of Pentoses and Hexoses. J. Am. Chem. Soc. 1964, 86, 67. [Google Scholar] [CrossRef]
- Pascariu, M.C.; Sisu, E.; Ordodi, V.L.; Rusnac, L.M. Spectral Analysis of Diisopropylidenated Monosaccharides. Low Energy EI-MS Fragmentation Study. Bul. Stiint. Univ. Politeh. Timis. Ser. Chim. Ing. Mediu. 2011, 56, 6. [Google Scholar]
- Gross, J. Mass Spectrometry—A Textbook, 3rd ed.; Springer: Cham, Switzerland, 2011; pp. 36–40. [Google Scholar]
- Grimme, S. Towards first principles calculation of electron impact mass spectra of molecules. Angew. Chem. Int. Ed. Engl. 2013, 52, 6306–6312. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Grimme, S. How to Compute Electron Ionization Mass Spectra from First Principles. J. Phys. Chem. A 2016, 120, 3755–3766. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Han, L.F.; Yu, H.S.; Sang, M.M.; Liu, E.W.; Zhang, Y.; Fang, S.M.; Wang, T.; Gao, X.M. Analysis of the Constituents in “Zhu She Yong Xue Shuan Tong” by Ultra High-Performance Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry Combined with Preparative High Performance Liquid Chromatography. Molecules 2015, 20, 20518–20537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beynon, J.H.; Gilbert, J.R. Energetics and Mechanisms of Unimolecular Reactions of Positive Ions: Mass Spectrometric Methods. In Gas Phase Ion Chemistry; Bowers, M.T., Ed.; Academic Press: New York, NY, USA, 1979; Volume 2, Chapter 13; pp. 153–179. [Google Scholar]
- Wahrhaftig, A.L. Ion Dissociations in the Mass Spectrometer. In Advances in Mass Spectrometry; Waldron, J.D., Ed.; Pergamon: Oxford, UK, 1959; pp. 274–286. [Google Scholar]
Primary Ion | Fragmentation |
---|---|
m/z 245 | [M–CH3•]+ |
m/z 229 | See Figure 1 |
m/z 187 | [M–acetone–CH3•]+ |
m/z 171 | [M–acetone–HOCH2•]+ |
m/z 159 | See Figure 1 |
m/z 127 | [M–2×acetone–HO•]+ |
m/z 101 | See Figure 1 |
Mass–Energy Profile | Optimized by Independent Variable | Number of Levels | Levels |
---|---|---|---|
Calculated | Variants of quantum chemical method | 4 | RM1 |
PM7 | |||
DFT (B3LYP/6-31G) ΔfH | |||
DFT (B3LYP/6-31G) ΔfG | |||
Descriptors of calculated energy | 2 | Ionic energy (ΔfHion or ΔfGion) | |
Fragmentation energy (ΔfHfrag or ΔfGfrag) | |||
Experimental | The impact energy of electrons | 5 | 5 eV |
10 eV | |||
15 eV | |||
20 eV | |||
70 eV | |||
Descriptors of experimental energy | 2 | IC | |
ln IC |
Experimental Descriptors → | IC | ln IC | |||||||
---|---|---|---|---|---|---|---|---|---|
Calculated Descriptors → | Fragmentation Energy (ΔfHfrag or ΔfGfrag) | Ionic Energy (ΔfHion or ΔfGion) | Fragmentation Energy (ΔfHfrag or ΔfGfrag) | Ionic Energy (ΔfHion or ΔfGion) | |||||
EI | QC | Rank S | Pmax | Rank S | Pmax | Rank S | Pmax | Rank S | Pmax |
5 eV | DFT ΔfG | 9 | 79.6 | 6 | 80.35 | 1 | 84.52 | 4 | 79.37 |
10 eV | DFT ΔfG | 5 | 74.38 | 102 | 75.89 | 19 | 69.69 | 113 | 72.57 |
15 eV | DFT ΔfG | 14 | 69.97 | 114 | 73.54 | 62 | 64.71 | 114 | 69.24 |
20 eV | DFT ΔfG | 17 | 66.98 | 114 | 70.3 | 15 | 59.37 | 78 | 59.62 |
70 eV | DFT ΔfG | 13 | 63.55 | 115 | 70.31 | 15 | 55.56 | 90 | 60.43 |
5 eV | DFT ΔfH | 7 | 78.67 | 6 | 80.27 | 2 | 84.25 | 4 | 79.29 |
10 eV | DFT ΔfH | 8 | 72.81 | 102 | 75.86 | 15 | 71.42 | 113 | 72.61 |
15 eV | DFT ΔfH | 30 | 68.61 | 113 | 73.53 | 45 | 66.18 | 114 | 69.28 |
20 eV | DFT ΔfH | 46 | 66.99 | 113 | 70.23 | 20 | 62.08 | 78 | 59.17 |
70 eV | DFT ΔfH | 33 | 66.95 | 113 | 70.24 | 26 | 61.8 | 86 | 60.43 |
5 eV | PM7 | 22 | 76.73 | 5 | 80.28 | 3 | 83.12 | 3 | 80.7 |
10 eV | PM7 | 3 | 69.28 | 86 | 72.95 | 5 | 64.77 | 106 | 69.44 |
15 eV | PM7 | 2 | 65.45 | 110 | 70.24 | 35 | 60.15 | 110 | 65.78 |
20 eV | PM7 | 4 | 62.36 | 110 | 70.11 | 1 | 55.45 | 92 | 60.23 |
70 eV | PM7 | 4 | 62.22 | 110 | 70.05 | 1 | 54.73 | 93 | 60.75 |
5 eV | RM1 | 3 | 76.79 | 2 | 79.71 | 1 | 81.99 | 1 | 79.2 |
10 eV | RM1 | 6 | 70.3 | 101 | 73.63 | 27 | 65.35 | 114 | 69.97 |
15 eV | RM1 | 17 | 66.18 | 115 | 70.99 | 94 | 61.09 | 115 | 66.22 |
20 eV | RM1 | 13 | 63.64 | 115 | 71.3 | 12 | 56.17 | 116 | 61.13 |
70 eV | RM1 | 13 | 63.55 | 115 | 71.15 | 15 | 55.56 | 116 | 61.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocariu, C.; Dinca, N.; Georgescu, M.; Sisu, E.; Serb, A.; Pascariu, M.-C. Mass–Energy Profiles Obtained by Quantum Chemical Computing Applied in Mass Spectrometry: A Case Study with Identification of a Group of Acetalized Monosaccharide Isomers. Appl. Sci. 2023, 13, 7530. https://doi.org/10.3390/app13137530
Cojocariu C, Dinca N, Georgescu M, Sisu E, Serb A, Pascariu M-C. Mass–Energy Profiles Obtained by Quantum Chemical Computing Applied in Mass Spectrometry: A Case Study with Identification of a Group of Acetalized Monosaccharide Isomers. Applied Sciences. 2023; 13(13):7530. https://doi.org/10.3390/app13137530
Chicago/Turabian StyleCojocariu, Carolina, Nicolae Dinca, Marius Georgescu, Eugen Sisu, Alina Serb, and Mihai-Cosmin Pascariu. 2023. "Mass–Energy Profiles Obtained by Quantum Chemical Computing Applied in Mass Spectrometry: A Case Study with Identification of a Group of Acetalized Monosaccharide Isomers" Applied Sciences 13, no. 13: 7530. https://doi.org/10.3390/app13137530
APA StyleCojocariu, C., Dinca, N., Georgescu, M., Sisu, E., Serb, A., & Pascariu, M.-C. (2023). Mass–Energy Profiles Obtained by Quantum Chemical Computing Applied in Mass Spectrometry: A Case Study with Identification of a Group of Acetalized Monosaccharide Isomers. Applied Sciences, 13(13), 7530. https://doi.org/10.3390/app13137530