Optical Convolutional Neural Networks: Methodology and Advances (Invited)
Abstract
:1. Introduction
2. Development of Optical Convolution Neural Network
2.1. Optical CNN Based on Optical Diffraction
2.2. Optical CNN Based on Optical Interference
2.3. Optical CNN Based on Wavelength Division Multiplexing
2.4. Optical CNN Based on Tunable Optical Attenuation of Coherent Light
3. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukushima, K.; Miyake, S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition. Compet. Coop. Neural Nets 1982, 36, 267–285. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision—ECCV 2014, Cham, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Lee, H.; Pham, P.; Largman, Y.; Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 7–10 December 2009; pp. 1–9. [Google Scholar]
- Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Penn, G. Applying Convolutional Neural Networks concepts to hybrid NN-HMM model for speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 4277–4280. [Google Scholar]
- Sainath, T.N.; Mohamed, A.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 8614–8618. [Google Scholar]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Lakhani, P.; Sundaram, B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017, 284, 574–582. [Google Scholar] [CrossRef]
- Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Rob. 2020, 37, 362–386. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 722–739. [Google Scholar] [CrossRef]
- Data Is Giving Rise to a New Economy. Available online: https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy (accessed on 6 May 2017).
- Kawatsu, C.; Koss, F.; Gillies, A.; Zhao, A.; Crossman, J.; Purman, B.; Stone, D.; Dahn, D. Gesture recognition for robotic control using deep learning. In Proceedings of the NDIA Ground Vehicle Systems Engineering and Technology Symposium, Detroit, MI, USA, 15–17 August 2017; pp. 1–7. [Google Scholar]
- Schaller, R.R. Moore’s law: Past, present and future. IEEE Spectr. 1997, 34, 52–59. [Google Scholar] [CrossRef]
- Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 82–85. [Google Scholar] [CrossRef]
- Theis, T.N.; Wong, H.S.P. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci. Eng. 2017, 19, 41–50. [Google Scholar] [CrossRef]
- Leiserson, C.E.; Thompson, N.C.; Emer, J.S.; Kuszmaul, B.C.; Lampson, B.W.; Sanchez, D.; Schardl, T.B. There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 2020, 368, eaam9744. [Google Scholar] [CrossRef]
- Stone, H.S. A Logic-in-Memory Computer. IEEE Trans. Comput. 1970, 100, 73–78. [Google Scholar] [CrossRef]
- Patterson, D.; Anderson, T.; Cardwell, N.; Fromm, R.; Keeton, K.; Kozyrakis, C.; Thomas, R.; Yelick, K. Intelligent RAM (IRAM): Chips that remember and compute. In Proceedings of the IEEE International Solids-State Circuits Conference (ISSCC), San Francisco, CA, USA, 8 February 1997; pp. 224–225. [Google Scholar]
- Sengupta, B.; Stemmler, M.B. Power Consumption During Neuronal Computation. Proc. IEEE 2014, 102, 738–750. [Google Scholar] [CrossRef]
- Miller, D.A.B. Attojoule Optoelectronics for Low-Energy Information Processing and Communications. J. Light. Technol. 2017, 35, 346–396. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, K.-I.; Notomi, M.; Naruse, M.; Inoue, K.; Kawakami, S.; Uchida, A. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 2019, 4, 090901. [Google Scholar] [CrossRef] [Green Version]
- Nahmias, M.A.; de Lima, T.F.; Tait, A.N.; Peng, H.T.; Shastri, B.J.; Prucnal, P.R. Photonic Multiply-Accumulate Operations for Neural Networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7701518. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Hicks, D.G.; Morandotti, R.; et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 2021, 589, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Yang, Q.; Shu, H.; Chang, L.; Yang, F.; Shen, B.; Tao, Z.; Wang, J.; Xu, S.; Xie, W.; et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 2023, 14, 66. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, G.; Shi, N.; Li, G.; Azaña, J.; Capmany, J.; Yao, J.; Shen, Y.; Li, W.; Zhu, N.; et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 2023, 14, 3000. [Google Scholar] [CrossRef]
- Sludds, A.; Bandyopadhyay, S.; Chen, Z.; Zhong, Z.; Cochrane, J.; Bernstein, L.; Bunandar, D.; Dixon, P.B.; Hamilton, S.A.; Streshinsky, M.; et al. Delocalized Photonic Deep Learning on the Internet’s Edge. Science 2022, 378, 270–276. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, H.; Dong, J. Photonic Matrix Computing: From Fundamentals to Applications. Nanomaterials 2021, 11, 1683. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, J.; Cheng, J.; Dong, W.; Huang, C.; Shen, Y.; Zhang, Q.; Gu, M.; Qian, C.; Chen, H.; et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 2022, 11, 30. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 2020, 9, 4075–4095. [Google Scholar] [CrossRef]
- Bogaerts, W.; Perez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef]
- Gupta, P.; Li, S. 4F Optical Neural Network Acceleration: An Architecture Perspective; SPIE: Bellingham, WA, USA, 2022; Volume 12019. [Google Scholar]
- Lima, T.F.d.; Peng, H.T.; Tait, A.N.; Nahmias, M.A.; Miller, H.B.; Shastri, B.J.; Prucnal, P.R. Machine Learning With Neuromorphic Photonics. J. Light. Technol. 2019, 37, 1515–1534. [Google Scholar] [CrossRef]
- Pérez, D.; Gasulla, I.; Capmany, J. Programmable multifunctional integrated nanophotonics. Nanophotonics 2018, 7, 1351–1371. [Google Scholar] [CrossRef]
- Pérez, D.; Gasulla, I.; Das Mahapatra, P.; Capmany, J. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photonics 2020, 12, 709–786. [Google Scholar] [CrossRef]
- Xu, X.; Han, W.; Tan, M.; Sun, Y.; Li, Y.; Wu, J.; Morandotti, R.; Mitchell, A.; Xu, K.; Moss, D.J. Neuromorphic computing based on wavelength-division multiplexing. IEEE J. Sel. Top. Quantum Electron. 2022, 29, 7400112. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Barbiero, M.; Wang, B.; Gu, M. Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 2019, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Xu, X.; Tan, M.; Sun, Y.; Li, Y.; Wu, J.; Morandotti, R.; Mitchell, A.; Xu, K.; Moss, D.J. Photonic multiplexing techniques for neuromorphic computing. Nanophotonics 2023, 12, 795–817. [Google Scholar] [CrossRef]
- Huang, C.; Sorger, V.J.; Miscuglio, M.; Al-Qadasi, M.; Mukherjee, A.; Lampe, L.; Nichols, M.; Tait, A.N.; Ferreira de Lima, T.; Marquez, B.A.; et al. Prospects and applications of photonic neural networks. Adv. Phys. X 2022, 7, 1981155. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Sui, X.; Chen, Q.; Gu, G.; Wang, L.; Li, S. Research progress in optical neural networks: Theory, applications and developments. PhotoniX 2021, 2, 5. [Google Scholar] [CrossRef]
- Marinis, L.D.; Cococcioni, M.; Castoldi, P.; Andriolli, N. Photonic Neural Networks: A Survey. IEEE Access 2019, 7, 175827–175841. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A Review of Optical Neural Networks. IEEE Access 2020, 8, 70773–70783. [Google Scholar] [CrossRef]
- Wetzstein, G.; Ozcan, A.; Gigan, S.; Fan, S.; Englund, D.; Soljačić, M.; Denz, C.; Miller, D.A.B.; Psaltis, D. Inference in artificial intelligence with deep optics and photonics. Nature 2020, 588, 39–47. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Huang, H.H.; Wang, Z.; Zheng, W. Performance Analysis of GPU-Based Convolutional Neural Networks. In Proceedings of the International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016; pp. 67–76. [Google Scholar]
- Vasudevan, A.; Anderson, A.; Gregg, D. Parallel Multi Channel convolution using General Matrix Multiplication. In Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Seattle, WA, USA, 10–12 July 2017; pp. 19–24. [Google Scholar]
- Abushagur, M.A.G.; Caulfield, H.J. 7—Optical Matrix Computations. In Optical Processing and Computing; Arsenault, H.H., Szoplik, T., Macukow, B., Eds.; Academic Press: Cambridge, MA, USA, 1989; pp. 223–249. [Google Scholar]
- Cutrona, L.; Leith, E.; Palermo, C.; Porcello, L. Optical data processing and filtering systems. IRE Trans. Inf. Theory 1960, 6, 386–400. [Google Scholar] [CrossRef]
- Ambs, P. Optical Computing: A 60-Year Adventure. Adv. Opt. Technol. 2010, 2010, 372652. [Google Scholar] [CrossRef] [Green Version]
- Ozaktas, H.M.; Mendlovic, D. Fractional Fourier optics. J. Opt. Soc. Am. A 1995, 12, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Introduction to Fourier Optics; W. H. Freeman: New York, NY, USA, 2005. [Google Scholar]
- Chang, J.; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 2018, 8, 12324. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jin, W.; Guo, C.; Zhao, N.; Rodrigues, S.P.; Fan, S. Design of Compact Meta-Crystal Slab for General Optical Convolution. ACS Photonics 2022, 9, 1358–1365. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Q.; Zhou, Y.; Kravchenko, I.I.; Huo, Y.; Valentine, J. Meta-optic accelerators for object classifiers. Sci Adv 2022, 8, eabo6410. [Google Scholar] [CrossRef]
- Burgos, C.M.V.; Yang, T.; Zhu, Y.; Vamivakas, A.N. Design framework for metasurface optics-based convolutional neural networks. Appl. Opt. 2021, 60, 4356–4365. [Google Scholar] [CrossRef]
- Colburn, S.; Chu, Y.; Shilzerman, E.; Majumdar, A. Optical frontend for a convolutional neural network. Appl. Opt. 2019, 58, 3179–3186. [Google Scholar] [CrossRef]
- Miscuglio, M.; Hu, Z.; Li, S.; George, J.K.; Capanna, R.; Dalir, H.; Bardet, P.M.; Gupta, P.; Sorger, V.J. Massively parallel amplitude-only Fourier neural network. Optica 2020, 7, 1812–1819. [Google Scholar] [CrossRef]
- Hu, Z.; Li, S.; Schwartz, R.L.T.; Solyanik-Gorgone, M.; Miscuglio, M.; Gupta, P.; Sorger, V.J. High-Throughput Multichannel Parallelized Diffraction Convolutional Neural Network Accelerator. Laser Photonics Rev. 2022, 16, 2200213. [Google Scholar] [CrossRef]
- Ma, G.; Yu, J.; Zhu, R.; Zhou, C. Optical multi-imaging-casting accelerator for fully parallel universal convolution computing. Photonics Res. 2023, 11, 299–312. [Google Scholar] [CrossRef]
- Shi, W.; Huang, Z.; Huang, H.; Hu, C.; Chen, M.; Yang, S.; Chen, H. LOEN: Lensless opto-electronic neural network empowered machine vision. Light Sci. Appl. 2022, 11, 121. [Google Scholar] [CrossRef]
- Zhu, H.H.; Zou, J.; Zhang, H.; Shi, Y.Z.; Luo, S.B.; Wang, N.; Cai, H.; Wan, L.X.; Wang, B.; Jiang, X.D.; et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 2022, 13, 1044. [Google Scholar] [CrossRef]
- Ong, J.R.; Ooi, C.C.; Ang, T.Y.L.; Lim, S.T.; Png, C.E. Photonic Convolutional Neural Networks Using Integrated Diffractive Optics. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7702108. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, H.; Wong, C.W.; Sorger, V.J.; Gupta, P. PhotoFourier: A Photonic Joint Transform Correlator-Based Neural Network Accelerator. In Proceedings of the 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Montreal, QC, Canada, 25 February–1 March 2023. [Google Scholar] [CrossRef]
- Peserico, N.; Schwartz, R.; Yang, H.; Ma, X.; Hosseini, M.; Gupta, P.; Dalir, H.; Sorger, V.J. FFT-based Convolution Neural Network on Silicon Photonics Platform. In Proceedings of the IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 13–17 November 2022; pp. 1–2. [Google Scholar]
- Gu, Z.; Huang, Z.; Gao, Y.; Liu, X. Training optronic convolutional neural networks on an optical system through backpropagation algorithms. Opt. Express 2022, 30, 19416–19440. [Google Scholar] [CrossRef]
- Gu, Z.; Gao, Y.; Liu, X. Position-robust optronic convolutional neural networks dealing with images position variation. Opt. Commun. 2022, 505, 127505. [Google Scholar] [CrossRef]
- Fei, Y.; Sui, X.; Gu, G.; Chen, Q. Zero-power optical convolutional neural network using incoherent light. Opt. Lasers Eng. 2023, 162, 107410. [Google Scholar] [CrossRef]
- Ibadulla, R.; Chen, T.M.; Reyes-Aldasoro, C.C. FatNet: High-Resolution Kernels for Classification Using Fully Convolutional Optical Neural Networks. AI 2023, 4, 361–374. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Koohi, S. High-Speed Multi-Layer Convolutional Neural Network Based on Free-Space Optics. IEEE Photonics J. 2022, 14, 8835312. [Google Scholar] [CrossRef]
- Clements, W.R.; Humphreys, P.C.; Metcalf, B.J.; Kolthammer, W.S.; Walmsley, I.A. Optimal design for universal multiport interferometers. Optica 2016, 3, 1460–1465. [Google Scholar] [CrossRef]
- Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994, 73, 58–61. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Bagherian, H.; Skirlo, S.; Shen, Y.; Meng, H.; Ceperic, V.; Soljacic, M. On-Chip Optical Convolutional Neural Networks. arXiv 2018, arXiv:1808.03303. [Google Scholar]
- De Marinis, L.; Cococcioni, M.; Liboiron-Ladouceur, O.; Contestabile, G.; Castoldi, P.; Andriolli, N. Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators. Appl. Sci. 2021, 11, 6232. [Google Scholar] [CrossRef]
- Xiaofeng, X.; Lianqing, Z.; Wei, Z. Convolutional neural networks with coherent nanophotonic circuits. In Proceedings of the 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Intelligent Sensing Technologies and Applications, Chengdu, China, 15–17 June 2021; pp. 1–7. [Google Scholar]
- Xu, S.; Wang, J.; Shu, H.; Zhang, Z.; Yi, S.; Bai, B.; Wang, X.; Liu, J.; Zou, W. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci. Appl. 2021, 10, 221. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, L.; Zhuang, W.; Lu, L.; Yuan, P. A Convolution Neural Network Implemented by Three 3 × 3 Photonic Integrated Reconfigurable Linear Processors. Photonics 2022, 9, 80. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, L.; Zhuang, W.; Zhang, D.; Yuan, P.; Lu, L. Photoelectric hybrid convolution neural network with coherent nanophotonic circuits. Opt. Eng. 2021, 60, 117106. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, W.M.; Zhang, T.J.; Chen, C.D.; Wang, Z.X.; Mao, Y.; Ma, C.X.; Lin, Q.; Bi, W.J.; Yu, F.; et al. MXene-Based Broadband Ultrafast Nonlinear Activator for Optical Computing. Adv. Opt. Mater. 2022, 10, 2200714. [Google Scholar] [CrossRef]
- Lawson, C.L.; Richard, J.H. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Feng, C.; Gu, J.; Zhu, H.; Ying, Z.; Zhao, Z.; Pan, D.Z.; Chen, R.T. A Compact Butterfly-Style Silicon Photonic–Electronic Neural Chip for Hardware-Efficient Deep Learning. ACS Photonics 2022, 9, 3906–3916. [Google Scholar] [CrossRef]
- Huang, Y.; Yue, H.; Ma, W.; Zhang, Y.; Xiao, Y.; Tang, Y.; Tang, H.; Chu, T. A highly parallel photonic acceleration processor for matrix-matrix multiplication. Opt. Lett. 2023, 48, 3231–3234. [Google Scholar] [CrossRef]
- Totovic, A.; Giamougiannis, G.; Tsakyridis, A.; Lazovsky, D.; Pleros, N. Programmable photonic neural networks combining WDM with coherent linear optics. Sci. Rep. 2022, 12, 5605. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, W.; Yang, F.; He, Z. Photonic Convolution Neural Network Based on Interleaved Time-Wavelength Modulation. J. Light. Technol. 2021, 39, 4592–4600. [Google Scholar] [CrossRef]
- Bangari, V.; Marquez, B.A.; Miller, H.; Tait, A.N.; Nahmias, M.A.; Lima, T.F.d.; Peng, H.T.; Prucnal, P.R.; Shastri, B.J. Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7701213. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhao, Y.; Zhang, W.; Zhou, H.; Huang, D.; Zhu, Q.; Guo, Y.; Xu, B.; Dong, J.; Zhang, X. A small microring array that performs large complex-valued matrix-vector multiplication. Front. Optoelectron. 2022, 15, 15. [Google Scholar] [CrossRef]
- Mehrabian, A.; Al-Kabani, Y.; Sorger, V.J.; El-Ghazawi, T. PCNNA: A Photonic Convolutional Neural Network Accelerator. In Proceedings of the IEEE International System-on-Chip Conference (SOCC), Arlington, VA, USA, 4–7 September 2018; pp. 169–173. [Google Scholar]
- Mehrabian, A.; Miscuglio, M.; Alkabani, Y.; Sorger, V.J.; El-Ghazawi, T. A Winograd-Based Integrated Photonics Accelerator for Convolutional Neural Networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 6100312. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, J.; Yi, S.; Zou, W. High-order tensor flow processing using integrated photonic circuits. Nat. Commun. 2022, 13, 7970. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Zou, W. Optical Convolutional Neural Network With WDM-Based Optical Patching and Microring Weighting Banks. IEEE Photonics Technol. Lett. 2021, 33, 89–92. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Zou, W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt. Lett. 2020, 45, 3689–3692. [Google Scholar] [CrossRef]
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 2021, 12, 96. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Yang, F.; Du, J.; He, Z. Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay. Opt Express 2019, 27, 20456–20467. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Shi, N.N.; Li, G.Y.; Zhang, G.J.; Li, W.; Zhu, N.H.; Li, M. On-Demand Reconfigurable Incoherent Optical Matrix Operator for Real-Time Video Image Display. J. Light. Technol. 2023, 41, 1637–1648. [Google Scholar] [CrossRef]
- Meng, X.; Shi, N.; Shi, D.; Li, W.; Li, M. Photonics-enabled spiking timing-dependent convolutional neural network for real-time image classification. Opt. Express 2022, 30, 16217–16228. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Tang, K.; Ji, X.; Sun, Z.; Wang, Y.; Hong, Z.; Dai, P.; Xiao, R.; Shi, Y.; Chen, X. Experimental demonstration of a photonic convolutional accelerator based on a monolithically integrated multi-wavelength distributed feedback laser. Opt. Lett. 2022, 47, 5977–5980. [Google Scholar] [CrossRef]
- Zang, Y.; Chen, M.; Yang, S.; Chen, H. Optoelectronic convolutional neural networks based on time-stretch method. Sci. China Inf. Sci. 2021, 64, 122401. [Google Scholar] [CrossRef]
- Huang, L.; Yao, J. Optical processor for a binarized neural network. Opt. Lett. 2022, 47, 3892–3895. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Zou, W. High-energy-efficiency integrated photonic convolutional neural networks. arXiv 2019, arXiv:1910.12635. [Google Scholar]
- Xu, S.; Wang, J.; Wang, R.; Chen, J.; Zou, W. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express 2019, 27, 19778–19787. [Google Scholar] [CrossRef]
- Ashtiani, F.; Geers, A.J.; Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 2022, 606, 501–506. [Google Scholar] [CrossRef]
- Hamerly, R.; Bernstein, L.; Sludds, A.; Soljačić, M.; Englund, D. Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. Phys. Rev. X 2019, 9, 021032. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhao, Z.; Wang, K.; Dutt, A.; Wang, J.; Buddhiraju, S.; Wojcik, C.C.; Fan, S. Multidimensional Convolution Operation with Synthetic Frequency Dimensions in Photonics. Phys. Rev. Appl. 2022, 18, 034088. [Google Scholar] [CrossRef]
- Zhen, W.; Zhou, X.; Weng, S.; Zhu, W.; Zhang, C. Ultrasensitive, Ultrafast, and Gate-Tunable Two-Dimensional Photodetectors in Ternary Rhombohedral ZnIn2S4 for Optical Neural Networks. ACS Appl. Mater. Interfaces 2022, 14, 12571–12582. [Google Scholar] [CrossRef] [PubMed]
- Williamson, I.A.D.; Hughes, T.W.; Minkov, M.; Bartlett, B.; Pai, S.; Fan, S. Reprogrammable Electro-optic Nonlinear Activation Functions for Optical Neural Networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Li, B.H.; Zhao, Y.J.; Jiang, Y.; Chen, Y.C.; Chen, P.; Jo, G.B.; Liu, J.W.; Du, S.W. All-Optical neural network with nonlinear activation functions. Optica 2019, 6, 1132–1137. [Google Scholar] [CrossRef]
- Guo, X.; Barrett, T.D.; Wang, Z.M.; Lvovsky, A.I. Backpropagation through nonlinear units for the all-optical training of neural networks. Photonics Res. 2021, 9, B71–B80. [Google Scholar] [CrossRef]
- Filipovich, M.J.; Guo, Z.; Al-Qadasi, M.; Marquez, B.A.; Morison, H.D.; Sorger, V.J.; Prucnal, P.R.; Shekhar, S.; Shastri, B.J. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica 2022, 9, 1323–1332. [Google Scholar] [CrossRef]
- Wright, L.G.; Onodera, T.; Stein, M.M.; Wang, T.; Schachter, D.T.; Hu, Z.; McMahon, P.L. Deep physical neural networks trained with backpropagation. Nature 2022, 601, 549–555. [Google Scholar] [CrossRef]
- Zhou, T.; Lin, X.; Wu, J.; Chen, Y.; Xie, H.; Li, Y.; Fan, J.; Wu, H.; Fang, L.; Dai, Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 2021, 15, 367–373. [Google Scholar] [CrossRef]
- Zhou, T.; Fang, L.; Yan, T.; Wu, J.; Li, Y.; Fan, J.; Wu, H.; Lin, X.; Dai, Q. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res. 2020, 8, 940–953. [Google Scholar] [CrossRef]
- Hughes, T.W.; Minkov, M.; Shi, Y.; Fan, S.H. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 2018, 5, 864–871. [Google Scholar] [CrossRef]
Type | Parallelism | Computing Speed | Integration Density | Reconfigurability |
---|---|---|---|---|
Diffraction | high | high | low | low |
Interference | low | medium | medium | high |
WDM | high | high | high | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Shi, N.; Li, G.; Li, W.; Zhu, N.; Li, M. Optical Convolutional Neural Networks: Methodology and Advances (Invited). Appl. Sci. 2023, 13, 7523. https://doi.org/10.3390/app13137523
Meng X, Shi N, Li G, Li W, Zhu N, Li M. Optical Convolutional Neural Networks: Methodology and Advances (Invited). Applied Sciences. 2023; 13(13):7523. https://doi.org/10.3390/app13137523
Chicago/Turabian StyleMeng, Xiangyan, Nuannuan Shi, Guangyi Li, Wei Li, Ninghua Zhu, and Ming Li. 2023. "Optical Convolutional Neural Networks: Methodology and Advances (Invited)" Applied Sciences 13, no. 13: 7523. https://doi.org/10.3390/app13137523
APA StyleMeng, X., Shi, N., Li, G., Li, W., Zhu, N., & Li, M. (2023). Optical Convolutional Neural Networks: Methodology and Advances (Invited). Applied Sciences, 13(13), 7523. https://doi.org/10.3390/app13137523