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Abstract: As a leading branch of deep learning, the convolutional neural network (CNN) is inspired
by the natural visual perceptron mechanism of living things, showing great application in image
recognition, language processing, and other fields. Photonics technology provides a new route for
intelligent signal processing with the dramatic potential of its ultralarge bandwidth and ultralow
power consumption, which automatically completes the computing process after the signal propa-
gates through the processor with an analog computing architecture. In this paper, we focus on the
key enabling technology of optical CNN, including reviewing the recent advances in the research
hotspots, overviewing the current challenges and limitations that need to be further overcome, and
discussing its potential application.

Keywords: convolutional neural networks; optical computing; photonics signal processing

1. Introduction

Convolutional neural networks (CNNs), as an important category of deep neural net-
works, are inspired by the natural visual perceptron mechanism of living things [1]. Since
the first modern sense framework of CNNs, known as LeNet-1 [2], emerged in 1989, numer-
ous representative CNN frameworks have been developed, including LeNet-5 (1998) [3],
AlexNet (2012) [4], ZFNet (2014) [5], VGGNet (2015) [6], GoogLeNet (2015) [7], and ResNet
(2016) [8]. Meanwhile, abundant progress has been made to deepen CNNs’ complexity
and reduce the number of parameters [9–11]. Owing to the continuous optimization of
network frames, CNNs have been widely used in image recognition [2–9,11–13], speech
recognition [14–16], gaming [17,18], medicine [19,20], autonomous driving [21,22], and
other fields.

The explosive increase in Internet data year by year has called for more intelligent and
effective data processing [23]. As is well-known, there is a positive correlation between the
accuracy of a CNN and the number of parameters [24]. Therefore, it has more stringent re-
quirements on the computing hardware due to the demands of massive data processing and
high-precision processing. For electrical hardware processors, performance improvements
have followed Moore’s Law over the past few decades [25,26]. As the chip manufacturing
process has gradually approached its physical limitations in recent years, the growth rate
of single-chip computing power has gradually slowed [27,28], and semiconductor tech-
nology has entered the post-Moore era. Additionally, using the Von Neumann computing
paradigm in the traditional computing hardware, such as CPU, GPU, FPGA, ASIC, etc.,
it is an indisputable fact that the discrete architecture of processor and memory makes it
inevitable to trade-off between bandwidth and power consumption [29–32]. Hence, it is an
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obvious sharp conflict with the ever-increasing demand for high-performance processing
and the slowing growth of computing power [28].

Optical devices, as an alternative, have been regarded as a competitive candidate in
the “more than Moore” era [33] with the superiority of ultralarge bandwidth and ultralow
power consumption. Compared with electrical vector-matrix multiplication (VMM), it is
able to achieve better performance using optical devices, with the computing speed increas-
ing by three orders of magnitude and the power consumption decreasing by two orders
of magnitude [34]. In recent years, optical computing solutions, because of their intrinsic
high computing speed [35], high computational density [36,37], and low power consump-
tion [38,39], have been massively demonstrated by means of both discrete systems and
integrated chips. Meanwhile, numerous review works have put more emphasis on optical
matrix multiplication [40,41], special-technology-based optical computing [42–49], and
optical neural networks [50–56]. CNNs, as one of the main branches, require more than 80%
of full calculations to execute the convolution operation [57]. Accelerating the convolution
process in the optical domain provides a subversive way to improve the computing speed
and decrease the power consumption, which has not been systematically reviewed. Here,
we focus on the key enabling technology of optical CNNs, review the recent advances
in optical CNNs, discuss the realization mechanism of optical convolution, and make a
prospect and an approach to further development toward the next generation of artificial
neural networks.

2. Development of Optical Convolution Neural Network

Generally, a CNN is composed of convolutional layers, pooling layers, fully connected
layers, and nonlinear activations. With the convolutional layer, convolution operations are
conducted to extract the features of input images. The typical CNN architecture of LeNet-5
is shown in Figure 1a. The convolutional layer with multiple kernels concurrently performs
the convolutional operations to extract various feature images. The pooling layer following
the convolutional layer is used to subsample and compress features, reduce the amount of
calculation, and alleviate overfitting. Immediately afterwards, the fully connected layers
are able to realize the full connection of parameters and generate the final classification
results. Additionally, various nonlinear activation functions are employed following the
convolutional layers and the fully connected layers, aiming to lead the nonlinear properties
to the network.
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Figure 1. Basics of convolutional neural networks. (a) Scheme of typical LeNet-5 [3]. (b) Principle of
one convolution operation. (a) Reprinted with permission from Ref. [3]. 1998, IEEE.

Figure 1b shows the principle of one convolution operation with an m × n kernel.
One convolution operation can be divided into two processes: (1) multiplication between
elements in the kernel matrix and data matrix and (2) addition of all multiplication results,
which can be expressed as follows:

y =
m

∑
i=1

n

∑
j=1

wijxij, (1)
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where wij is the element of the convolution kernel, xij is the element of the input data, m is
the row count, and n is the column count in the convolutional kernel. From Equation (1), one
convolution operation is converted into vector-vector multiplication (VVM), and parallel
convolution of multiple kernels is represented as a VMM [58]. At the same time, the optical
matrix operation has been widely investigated [59], which makes it convenient to accelerate
the convolution operation process with optical methods.

The optical architecture enabling the convolution operation has been blooming. For
most of the reported optical CNNs, the convolution operations of CNNs are accelerated
in the optical domain, and the rest remain in the electrical domain, which absorbs both
the respective advantages for the ultra-bandwidth and low loss of light and the high
precision recognition of electricity. Optical CNNs based on the implementation principle
are generally divided into four categories: diffraction-based optical CNNs, interference-
based optical CNNs, wavelength division multiplexing-based (WDM-based) optical CNNs,
and tunable optical attenuation-based optical CNNs.

2.1. Optical CNN Based on Optical Diffraction

Optical computing with free-space optical diffraction has been demonstrated over
decades [60,61]. The basic scheme is the Fourier transform property of the lens [62].
When coherent light passes through the lens, a two-dimensional (2D) Fourier transform is
performed without power consumption, and the focal plane behind the lens (which is also
called the Fourier plane) presents the result of the Fourier transform. Since the convolution
operation in the spatial domain is able to transform into a multiplication operation in
the Fourier domain following the convolution theorem [63], the convolution operation is
implemented with a “4F system” by adding a specially designed mask to the Fourier plane
of the first lens.

As shown in Figure 2, the noted “4F system” is composed of two lenses placed coaxially
with a distance of 2F, and the distance between the input plane and output plane is 4F.
The Fourier transform of the input image g(x, y) is accomplished in the focal plane of the
first lens

G(u, v) = F{g(x, y)}, (2)

where F represents the Fourier transform and u, v are the coordinates in the frequency
domain. In the Fourier plane, the specially designed mask M(u, v) introduces additional
amplitude and phase modulation,

G′(u, v) = G(u, v)M(u, v). (3)

Then, the inverse Fourier transform is realized with the second lens, which can be
expressed as

go(x′, y′) = F−1{G′(u, v)}
= F−1{G(u, v)M(u, v)}
= g(x, y) ∗m(x, y),

(4)

where F−1 is the inversive Fourier transform, m(x, y) is the inverse Fourier transform of
M(u, v), and ∗ represents the convolution operation. From Equation (4), the convolution
operation of the input image is simultaneously achieved when passing through the “4F
system”, and then the feature maps are recorded by the camera sensor and converted into
digital electrical signals to conduct nonlinear activation, pooling, and final recognition in
the fully connected layer.

The CNN on optical diffraction was proposed and experimentally demonstrated in
2018 [64], and the schematic of the hybrid optoelectronic CNN as well as the experimental
setup is shown in Figure 3a. The optical convolution operation was accomplished using the
diffractive optical element (DOE) as the phase mask placed in the Fourier plane of the “4F
system”. The optical feature image was converted into a digital electrical signal with a cam-
era sensor, and the processes in terms of nonlinearity activation and full connection were
still addressed in the electrical domain. The parallel convolution of multiple kernels was
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realized via the optimization design of the phase mask. The experimental accuracy reached
44% on the grayscale CIFAR-10 dataset, which improved by approximately 50% relative
to the single digital fully connected layer (accuracy of 30%). Apart from the diffractive
optical element, the optical metasurface as the phase mask offered another approach using
multiple physical lays or wavelength-sensitive material to conduct multichannel free-space
convolution [65–68]. An amplitude-only weighting optical CNN in the Fourier plane was
proposed in 2020 using a digital micromirror device (DMD) as a reconfigurable amplitude
modulation device [69]. A typical schematic representation of a “4F system” on digital
micromirror devices is shown in Figure 3b. Benefitting from the large-scale and high-speed
properties of digital micromirror devices, classification tasks on two megapixel matrices
at 10 kHz rates were performed. The classification accuracies were up to 98% on the
MNIST database and 54% on the CIFAR-10 database. After that, multiple kernel parallel
convolution operations based on the optical diffraction orders (Figure 3c) were realized by
the same research group [70]. In 2023, using the two-dimensional Dammann grating as the
key element for generating multiple displaced images, massive parallelism convolution
acceleration was experimentally demonstrated with a computing accuracy of 8 bit [71]. A
spatial light modulator (SLM) was used for data input, and the distance between the data
input plane and Dammann grating corresponded to the kernel stride. The MNIST database
was classified with an accuracy of 97.3%. Figure 3d shows the lensless architecture of the
optical CNN [72]. In this scheme, the amplitude mask was placed close to the sensor. Differ-
ent pixels of the input image were transmitted through different portions of the amplitude
mask, underwent different attenuations, and finally focused on the camera sensor. The
image sensor performed a weighted sum of the beams, where the weights were determined
by the amplitude mask. The accuracy was up to 97.21% on the MNIST database.
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The on-chip Fourier transform scheme was also investigated to realize the optical
CNN [73–76]. The Fourier transform property of integrated star couplers was simulated
to realize the optical CNN in 2020 [74]. In 2022, the optical integrated diffractive neural
network (IDNN) chip in Figure 3e was fabricated on the silicon-on-insulator (SOI) plat-
form [73]. Two on-chip cascaded diffractive cells were used to conduct the operation
of the Fourier transform and inverse Fourier transform, where 10 Mach–Zehnder inter-
ferometers (MZIs) were used to load the input data and 10 MZIs were used for kernel
adjustment. A convolution operation was performed on the proposed integrated diffractive
neural network chip, and the recognition of 1D sequences and 2D images was carried out
experimentally. In addition to optical CNN, direct classifications of Iris flower, MNIST
dataset, and Fashion-MNIST dataset were conducted using the integrated diffractive neural
network chip with experimental accuracies of 98.0%, 91.4%, and 80.4%, respectively. In
addition to the above realization, other interesting schemes have also been reported, such as
in situ training [77], position robustness [78], incoherent light-based [79], and so on [80,81],
which contributed to the further development of optical CNNs.
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Figure 3. The realization of an optical CNN based on optical diffraction. (a) Phase-only modulation
implementation of optical CNN using a diffractive optical element (DOE) [64]. (b) Amplitude-only
modulation implementation of an optical CNN using a digital micromirror device (DMD) [69].
(c) Multichannel parallelized diffraction optical CNN [70]. (d) The lensless architecture of opti-
cal CNN [72]. (e) Integrated diffraction-based optical CNN structure [73]. (a–e) Reprinted with
permission from Refs. [64,69,70,72,73] under a CC BY 4.0 and CC BY-NC-ND 4.0 license.

2.2. Optical CNN Based on Optical Interference

Benefitting from the development of photonic integration technology, matrix multi-
plication has been extensively focused on light interference [82–84]. Since the convolution
operation can be mathematically converted to matrix multiplication, it has become a
very popular scheme to realize optical CNNs by exploiting the interference properties of
light [85–91]. As the basic unit to build a coherent unitary matrix for discrete convolution
operation, the structure diagram of the MZI is shown in Figure 4a, where the splitting ratio
of two optical couplers is fixed at 50:50, the internal phase shifter provides an additional
phase θ(0 ≤ θ ≤ π) to control the splitting ratio of the MZI, and the external phase shifter
adds a relative phase ϕ(0 ≤ ϕ ≤ 2π) to two output arms. Ignoring the optical propagation
loss, the transfer matrix T(θ, ϕ) for a single MZI unit is written as

T(θ, ϕ) = PϕCPθC

= 1
2

[
eiϕ 0
0 1

][
1 i
i 1

][
eiθ 0
0 1

][
1 i
i 1

]
= 1

2

[
eiϕ(eiθ − 1) ieiϕ(eiθ + 1)
i(eiθ + 1) 1− eiθ

]
=

[
t11 t12
t21 t22

]
,

(5)
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where Pϕ is the transfer matrix of the external phase shifter, C is the splitting ratio of the
optical coupler, Pθ represents the internal phase shifter, and t is a simplified representation
of the elements in the matrix.
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An arbitrary unitary matrix was formed by constructing an MZI-based special mesh
network. Two mainstream unitary matrix mesh networks (one was rectangular architec-
ture [82] and the other was triangular architecture [83]) are shown in Figure 4b,c. In both
architectures, N(N− 1)/2 MZIs were needed to make up an N-dimensional unitary matrix
mesh. The transfer matrix of a single MZI unit in the mesh network connecting channels m
and n(m = n− 1) can be written as

T(k)
m,n(θ

(k), ϕ(k)) =



1
1

. . .
t11 t12
t21 t22

. . .
1

1


, (6)

where k is the serial number of the MZI. The transfer matrix of the entire mesh T can be
decomposed into

T = ∏
(m,n)∈S

T(k)
m,n(θ

(k), ϕ(k)), (7)

where S defines the specific ordered sequence. For the triangular unitary MZI mesh shown
in Figure 4c, according to Equation (6), the transfer matrix of four rows of MZIs can be
written as

Tk=1,3,6,10
2,1 =


t11 t12
t21 t22

1
1

1

, Tk=2,5,9
3,2 =


1

t11 t12
t21 t22

1
1

,

Tk=4,8
4,3 =


1

1
t11 t12
t21 t22

1

, Tk=7
5,4 =


1

1
1

t11 t12
t21 t22

.

(8)
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Sequentially, according to Equation (7), the entire transfer matrix of the unitary MZI mesh
can be inferred as

T = T10
2,1T9

3,2T8
4,3T7

5,4T6
2,1T5

3,2T4
4,3T3

2,1T2
3,2T1

2,1. (9)

Since the MZI mesh can represent any unitary matrix, it is worth using the MZI mesh
to represent any real-valued matrix through singular value decomposition (SVD) [92]. Any
real-valued matrix M with dimensions of p× q can be decomposed by SVD as

M = UΣV†, (10)

where U is a p × p unitary matrix, Σ is a p × q rectangular diagonal matrix with non-
negative real numbers on the diagonal, and V† is the complex conjugate of the q× q unitary
matrix V. From Equation (7), unitary matrices U and V† can be implemented with the MZI
mesh. The rectangular diagonal matrix Σ can be implemented with optical attenuators or
optical amplifiers. Therefore, any real-valued matrix can be realized with the dimension-
matched MZI mesh. Since any real-valued matrix M is realized, parallel convolution of
p real-valued kernels with q elements in each kernel can be performed with the MZI mesh.

The most representative optical interference-based CNN was proposed in 2018 [85].
The rectangular architecture MZI mesh in Figure 5a was used as the kernel matrices, and the
optical delay lines introduced different time delays to implement multiple convolutional
layers. The classification accuracy of the handwritten digits was simulated to 97% in the
MNIST database. Then, 4 × 4 MZI-based linear optical processors were experimentally
demonstrated in multiple material platforms, such as silicon-on-insulator (SOI) and silicon
nitride (SiN) [86]. The triangular architecture MZI mesh has also been proposed to realize
optical CNNs [87]. The fabricated SOI chip of the triangular architecture MZI mesh network
is shown in Figure 5b [89] to realize three 3 × 3 kernels. Recognition accuracies of 86.9%
for the MNIST database and 79.3% for Fashion-MNIST were experimentally demonstrated.

Apart from the MZI-based unitary matrix realizing the convolution operation, the
optical coherent dot-product chip (OCDC) realized by the interference principle was also
an important implementation of optical CNN [88]. The schematic of the chip is shown in
Figure 5c, where the light wave is first divided into several branches and then sent into the
dot-product chip with one as the reference and the rest to perform the dot-product operation.
In each computing branch of Figure 5c, double modulators are cascaded to accomplish the
dot-product. The reference branch was utilized to introduce an amplitude bias to perform
real-valued computing. By reusing the chip, the AUTOMAP neural network, including
matrix multiplication and convolution computing, was experimentally demonstrated and
achieved image reconstruction quality comparable to that of a 32 bit digital computer.

In addition to the interference of coherent light with the MZI, the combination of WDM
technology and interference was another important realization of optical CNN [37,93,94].
Figure 5d shows the application of WDM technology in a simplified butterfly-style MZI
mesh [93]. In this scheme, incoherent light was utilized to avoid additional hardware
costs for phase control between input channels and the influence of phase fluctuations of
optical signals in off-chip fibers when using coherent light. In their experimental demon-
stration, a handwritten digit recognition accuracy of 94.16% was realized. As shown in
Figure 5e, a compact optical convolution processing unit (OCPU) was realized by com-
bining a multimode interference mechanism and WDM technology [37]. In this work,
the process of multiplication was accomplished with multimode interference, and the
process of addition was realized with square-law detection of multiple wavelengths with
photodetectors. With two 4 × 4 multimode interference regions and four phase shifters,
three correlated 2 × 2 real-valued kernels were realized with a convolution operation
precision of 5 bit. Kernels were reconfigured by adjusting phase shifters, the compute
density of 12.74 TMACs/s/mm2 was demonstrated, and a classification accuracy of 92.17%
was realized on handwritten digits in the MNIST database. The greatest advantage of the
proposed OCPU is that the number of reconfigurable units scales linearly with the scale of
the kernel size, which translates into solid potential for large-scale integration.
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Figure 5. Schemes of optical CNNs based on optical interference. (a) Scheme of optical CNN based on
rectangular architecture MZI mesh [85]. (b) Scheme of optical CNN based on triangular architecture
MZI mesh [89]. (c) Scheme of optical coherent dot-product chip (OCDC) to realize optical CNN [88].
(d) Scheme of optical CNN based on the combination of WDM and MZI mesh [93]. (e) Scheme of
optical CNN based on the combination of WDM and multimode interference [37]. (a) Reprinted from
Ref. [85] with permission of the authors. (b,c,e) Reprinted with permission from Refs. [37,88,89] under
a CC BY 4.0 license. (d) Reprinted with permission from Ref. [93]. 2022, American Chemical Society.

2.3. Optical CNN Based on Wavelength Division Multiplexing

A WDM-based CNN offers a new solution by comprehensive use of the multidimen-
sional physical information of light waves in terms of the wavelength, amplitude, spatial,
temporal, polarization, and so on. By leading into the wavelength dimension in Figure 6,
VVM operation is divided into the multiplication process and the addition process, where
the multiplication process is accomplished using electrooptic modulations, and the addition
process is achieved via wavelength multiplexing and photoelectrical conversion at the
photoelectric detector. WDM-based VVMs are familiarly split into two categories: one is the
wavelength-independent weight-loaded architecture (shown in Figure 6a), and the other
is the wavelength-sensitive weight-loaded architecture (Figure 6b), in which the division
criteria is whether wavelength-sensitive variable optical amplitude modulators (VOAMs)
are used.
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Figure 6. The principle of vector-vector multiplication (VVM) with WDM technology. (a) Wavelength-
independent weight-loaded VVM architecture. (b) Wavelength-sensitive weight-loaded VVM archi-
tecture. (c) Classical MRR-based real-valued VMM architecture. (d) WDM-based VMM with data
input serially by introducing optical delay. VOAM: variable optical amplitude modulator, MUX:
multiplexing, PD: photodetector, OC: optical coupler, TIA: transimpedance amplifier, IM: intensity
modulator, DCF: dispersion compensation fiber.

First, for the wavelength-independent weight-loaded VVM shown in Figure 6a, n
wavelength components loaded with input data vector X were parallelly sent into the
computing hardware, where each light wave carried one element of the data vector X.
Then, wavelength components underwent amplitude modulation to load the weight vector
W, which was the multiplication process of elements in two vectors. As a main optical
device in the WDM-based CNN, the variable optical amplitude modulators can be imple-
mented using MZIs [95], microring resonators (MRRs) [96–103], phase change materials
(PCMs) [39,104], and waveshapers [35,105–109]. The addition process was conducted
using square-law photoelectric detection and the summation of the optical intensity of
wavelength components at the photodetector. To obtain the summation signal of different
wavelength components, the beat of optical sidebands between adjacent wavelength com-
ponents should be effectively avoided. Therefore, in the WDM-based CNN system, the
wavelength interval of wavelengths fed to the photodetector as well as the bandwidth for
both the modulator and photodetector need to satisfy the following condition:

fw − 2 fm > fp, (11)

where fw is the wavelength interval of adjacent wavelength components, fm is the modula-
tion bandwidth, and fp is the bandwidth of the photodetectors.

Figure 6b shows a wavelength-sensitive weight-loaded VVM architecture where the
process of multiplication was performed with wavelength-sensitive variable optical am-
plitude modulators [97–102]. Wavelength components loaded with data vector X were
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transmitted through one physical channel by wavelength-division multiplexing. Then, n
wavelength-sensitive variable optical amplitude modulators serially loaded n elements of
the weight vector W and completed the process of multiplication. Finally, the weighted
light waves were fed to a photodetector to complete the addition function.

The classical MRR-based real-valued VMM architecture on the parallel data inputting
is shown in Figure 6c, where the MRR weight banks were used as the wavelength-sensitive
variable optical amplitude modulator to implement the multiplication process. The wave-
length components after wavelength multiplexing were loaded with data X and then
divided into k channels using an optical coupler, where each channel contained n wave-
length components. In each channel, n add-drop MRRs were used to couple the light
waves with n wavelengths to the drop port of the MRR. The proportion of light that each
microring couples to the drop port hij depends on the weight wij. Then, the transfer matrix
for the drop ports and through ports of MRRs can be written as

Hdrop =

h11 h12 · · · h1n
...

hk1 hk2 · · · hkn

, (12)

Hthrough =

1− h11 1− h12 · · · 1− h1n
...

1− hk1 1− hk2 · · · 1− hkn

. (13)

Hdrop at the drop port and Hthrough at the through port were sent into the balanced photode-
tector (BPD) to make both the photoelectric conversion and difference. The transfer matrix
H of the MRR weight banks coupled with BPDs can be written as

H = Hthrough − Hdrop

=

1− 2h11 1− 2h12 · · · 1− 2h1n
...

1− 2hk1 1− 2hk2 · · · 1− 2hkn

.
(14)

As seen from Equation (14), real-valued VMM can be performed by adjusting the coupling
coefficient of each MRR.

Additionally, WDM-based CNNs with serial data input approaches have also been
reported [35,96,101–103,105–110]. As shown in Figure 6d, the weight vector W was still
weighted on the amplitudes of the wavelength components, and the 1D data X were serially
modulated to the amplitude of the wavelength components. Owing to the delay between
different wavelengths via the delay unit (single mode fiber, dispersion compensating fiber,
optical tunable delay lines, etc.), the weighted optical signal generated a time delay among
the adjacent wavelength components. Following this method, the input data X were serially
loaded into the light waves with a single intensity modulator, and different elements of
input data X were fed to the photodetector at the same time with precise delay control.
Owing to using a single modulator to load the data in the CNN system, it released the
demand for full clock synchronization.

In 2018, Reference [99] proposed a WDM-based photonics convolutional neural net-
work accelerator (PCNNA). Here, the MRR weight banks were the wavelength-sensitive
variable optical amplitude modulators to adjust the kernels. The input data were modulated
into intensities of different wavelengths. The weights were loaded while passing through
the MRR weight banks, and wavelength-based weight components were summed at the
photodetectors to generate the convolutional results. In Figure 7a, the analog–digital hybrid
CNN computing architecture (e.g., digital electronics and analog photonics (DEAP)), as
the most popular architecture, was proposed in 2019 [97]. Two MRR arrays were occupied
to load the data matrix and the weight matrix. The simulation recognition accuracy on
500 images from the MNIST test dataset reached 97.6%. After that, optical tunable delay
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lines were introduced to serially load the input data [102,103,111] and were experimen-
tally demonstrated in 2022 [101]. As shown in Figure 7b, different from other schemes,
one convolution operation only needs a single wavelength component, and the WDM
technology enables the multiple wavelength channel to form an on-chip photonic tensor
flow processor (PTFP). Using the multi-dimensional multiplexing of light waves, including
wavelength, space, and time, high-order tensors can be directly processed in the optical
domain. The integrated photonics tensor core on phase change materials is demonstrated
in Figure 7c [39]. In this scheme, phase change materials work as wavelength-independent
variable optical amplitude modulators to enable efficient calculation without power to
maintain the state. A chip-based optical frequency comb was introduced as the light source
to perform high parallelism optical convolution processing with a speed of 2 tera-MAC op-
erations per second. The experimental recognition accuracy on 10,000 images in the MNIST
test dataset was up to 95.3%. A phase-change metasurface mode converter (PMMC) was
also fabricated to form an optical CNN with 6-bit weight precision [104]. The waveguide
of two spatial modes was controlled by the phase change material-based phase-gradient
metasurface, and 2 × 2 real-valued kernels were experimentally demonstrated.

Informatics 2023, 1, 0 4 of 13

Table 1. Number of tweets for each organization.

Organization (Twitter Account) Number of Tweets
Public Health Agencies

Centers for Disease Control and Prevention (@CDCgov) 8,629
Indian Health Service (@IHSgov) 1,832
Health Canada and PHAC (@GovCanHealth) 52,518
Government of Canada for Indigenous (@GCIndigenous) 3,833

Total 66,812
Pharmaceutical Companies

Pfizer (@pfizer) 2,813
Johnson & Johnson (@JNJNews) 2,538
Eli Lilly and Company (@LillyPad) 2,078
Merck (@Merck) 2,204
AbbVie (@abbvie) 1,913

Total 11,546
Non-governmental Organization

World Health Organization (@WHO) 25,989

Centers for Disease Control and 
Prevention (@CDCgov)

Indian Health Service (@IHSgov)

Health Canada and PHAC 
(@GovCanHealth)

Government of Canada for 
Indigenous (@GCIndigenous)

Pfizer (@pfizer)

Johnson & Johnson (@JNJNews)

Eli Lilly and Company (@LillyPad)

Merck (@Merck)

AbbVie (@abbvie)

World Health Organization 
(@WHO)

of health agencies and pharmaceutical companies in the US and Canada with that of the
WHO allows us to gain insights into the differences in content and messaging strategies
employed by organizations with different levels of reach and influence. This is valuable for
organizations looking to improve their own social media strategies, as the WHO’s Twitter
usage may serve as a benchmark for best practices in health communication on social
media. We collected a total of 104,347 tweets from January 01, 2020, to December 31, 2022,
using Twitter Academic API for Research v2. National public health agencies, indigenous
health agencies, and the top 5 pharmaceutical companies by market capitalization2 in the
United States and Canada were selected for this research. Table 1 outlines the number of
tweets for each organization, and Fig. 1 presents an overview of the research framework.

Figure 1. Overview of research framework.

2.2. Content Analysis

In order to understand the textual content of the tweets, we perform the following
analyses:

2.2.1. Topic Modeling

Topic modeling is a statistical technique widely used in natural language processing
to identify latent topics within a collection of documents. In social media, it can be used
to analyze the content of tweets shared by healthcare organizations and identify the key

2 https://www.globaldata.com/companies/top-companies-by-sector/healthcare/us-companies-by-market-
cap/

Figure 7. WDM-based optical CNN realizations. (a) The principle of digital electronics and analog
photonics (DEAP) architecture CNNs with MRRs as the variable optical amplitude modulators
(VOAMs) [97]. (b) Integrated photonic tensor flow processor (PTFP) based on MRRs [101]. (c) The first
realization of a photonics tensor core with phase change material (PCM) as the VOAM [39]. (d) Photonic
convolution accelerator [35]. (e) On-demand reconfigurable optical matrix operator [106]. (f) Optical
realization of binary convolution based on a dual-drive Mach–Zender (DD-MZM) modulator [110].
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(g) MRR-based photonic processing unit (PPU) [36]. (a) Reprinted with permission from Ref. [97].
2020, IEEE. (b,f,g) Reprinted with permission from Refs. [36,101,110] under a CC BY 4.0 license.
(c) and (d) Reprinted with permission from Refs. [35,39]. 2021, Springer Nature. (e) Reprinted with
permission from Ref. [106]. 2023, IEEE.

Otherwise, a parallel photonics convolution accelerator with ten 3 × 3 kernels in
Figure 7d is illustrated using a soliton optical frequency comb as the light source to operate
with a speed of 11 TOPS [35]. Herein, the 2D image data are flattened into a 1D vector
and modulated to multiple wavelengths to achieve electro-optical conversion in the single
intensity modulator with the serial data input approach. The weight matrix is represented
by the amplitude of optical combs and adjusted with a waveshaper. The proposed photonic
convolution accelerator cooperates with a fully connected optical layer to classify hand-
written digits with an experimental accuracy of 88% on 50 images. With the homologous
function (Figure 7e), laser arrays are used to replace the optical frequency comb to improve
the robustness of the computing system and obtain an experimental recognition accuracy
of 96.01% [106]. The on-demand real-time reconfiguration between the optical perceptron
and optical convolution operator is also experimentally demonstrated. As illustrated in
Figure 7f, the binary optical convolution operation [110] is also realized by controlling the
dual-drive Mach–Zehnder modulators to work at two quadrature points, where the input
data and the weights simultaneously drive two arms of the modulator and an optical fiber is
occupied for dispersive delay. In 2023, a compact MRR-based photonic processing unit was
reported (Figure 7g) with all the essential photonic components integrated, and a photonic-
core compute density of over 1 TOPS/mm2 was achieved [36]. Using the through port of
the MRR as the monitor port, a weight precision of 9 bit was realized. Negative elements in
kernels were accomplished via subtraction between two channels, and a handwritten digit
recognition accuracy of 96.6% was experimentally illustrated, which is comparable with a
digital computer.

2.4. Optical CNN Based on Tunable Optical Attenuation of Coherent Light

The last category of optical CNNs is generally based on the tunable attenuation of
coherent light. In this architecture, the data matrix and the weight matrix are represented
by the intensities of light waves, and two cascaded intensity modulations are used to load
the input data and weights to accomplish the dot-product operation in the optical domain.
In addition, optical-electrical conversion is achieved on each optical path, and the sum
operation is conducted in the electrical domain.

As shown in Figure 8a [112], two acousto-optical modulator (AOM) arrays were
utilized, with one for data loading and the other for kernel weighing. A single laser was
employed as the coherent light and divided into several equal power beams. Then, the light
waves passed through two acousto-optical modulator arrays and converted the optical
power into electrical voltage at the PD array. Subsequently, a switching array decided
whether the voltages were accumulated positively or negatively to realize real-valued
computing. The proof-of-concept experiment was verified with a recognition accuracy of
98.9% on the MNIST dataset and 91.5% on the Fashion-MNIST dataset. P-doped–intrinsic–
N-doped (PIN) current-controlled attenuators have also been reported to adjust the optical
power for the weight matrix (Figure 8b) [113]. The PIN junction works in the forward bias
state, and the optical power is tuned by changing the injected carriers. The input data are
also represented by the optical power, and the linear dot-product process is realized with
tunable optical attenuation. The addition operation is conducted in the electrical domain
on the PD, and nonlinear activation is accomplished with an on-chip microring modulator.
An integrated end-to-end photonic deep neural network (PDNN) with one convolutional
layer and two fully connected layers was experimentally demonstrated. In this architecture,
through the design of the physical connection mode of the photoelectric link, convolution
and full connection were realized by the combination of photoelectricity, and nonlinearity
was realized by using a microring modulator. The classification results can be directly
generated at the output port of the integrated chip. The printed letters were demonstrated
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with a two-class classification accuracy of 93.8% and a four-class classification accuracy
of 89.8%. In addition, serial dot-product coupled with integrated balanced homodyne
detection was also proposed [114]. The VVM was completed in each optical channel and
the parallel multiple channels enabled the VMM operation. In addition, other elements,
such as MRR and MZI, have also been reported as tunable optical attenuators to realize
optical CNNs [88,101].
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Figure 8. Optical CNN schemes based on tunable optical attenuation. (a) Optical CNN realization
with acousto-optical modulator arrays [112]. (b) Integrated end-to-end photonic deep neural network
(PDNN) [113]. (a) Reprinted with permission from Ref. [112] under a CC BY 4.0 license. (b) Reprinted
with permission from Ref. [113]. 2022, Springer Nature.

3. Discussion and Conclusions

As an emerging research direction, optical CNNs have garnered significant atten-
tion since their inception. Table 1 presents a comparison of four optical CNN schemes,
highlighting their parallelism, computing speed, integration density, and reconfigurability.

Table 1. Comparison of optical CNN schemes.

Type Parallelism Computing Speed Integration Density Reconfigurability

Diffraction high high low low

Interference low medium medium high

WDM high high high high

Diffraction-based optical CNNs exhibit advantages in terms of parallelism, computing
speed, and scalability due to their utilization of spatial light. The presence of spatial light
allows for a large number of neurons in each layer, facilitating the expansion of multiple
channels and kernels in the spatial domain, thus enabling high parallelism. The abun-
dance of neurons and high parallelism contributes to achieving high computing speeds.
However, diffraction-based optical CNNs also suffer from notable disadvantages. The
discrete components used make the system bulky, and attempts at integration result in per-
formance degradation. Moreover, kernel-loading devices such as DOE and metamaterials
are nearly impossible to reconfigure, while SLM and DMD devices have low data rates
(typically ~kHz).

An interference-based optical CNN excels in reconfigurability. This scheme often
utilizes MZI for kernel matrix loading, enabling rapid refresh rates in the range of tens of
GHz. Despite the advantages of high-speed reconstruction offered by MZIs, their relatively
large volume limits the integration density of interference-based schemes. Furthermore,
the use of coherent light restricts the transmission of only one light at a time in the optical
waveguide, thereby constraining parallelism and computing speed.
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WDM-based optical CNN represents a promising and extensively researched solution.
This scheme fully exploits the optical wavelength dimension, leading to high parallelism.
The use of MRR as a wavelength-sensitive optical attenuator, with its radius as small as
several micrometers and modulation rate reaching tens of GHz, further enhances computing
speed, integration density, and reconfigurability.

The optical CNN based on tunable optical attenuation depends on the specific charac-
teristics of the optical attenuator used. Due to the absence of a unified conclusion, it is not
listed in the table. Additionally, apart from the four types of optical CNNs discussed above,
there are other noteworthy optical CNN solutions, such as photon frequency synthesis [115]
and photodetectors with adjustable responsivity [116], which warrant further research.

Presently, although optical CNNs exhibit advantages in terms of bandwidth, latency,
and computational speed compared with electrical architectures, optical CNNs face chal-
lenges in surpassing the limitations of small realizable matrix sizes, a limited range of
realizable functions, and low computing precision. Consequently, extensive efforts are
required for optical CNNs to gain widespread usage.

First, on-chip large-scale integration needs to be broken through. The reported on-chip
integrated optical accelerated computing architectures only realize the integration of tens
of thousands devices at present, which is far less than their electrical counterparts. In
optical computing, the power required for calculations such as electro-optical conversion,
photoelectric conversion, and analog-to-digital conversion remains basically unchanged.
By integrating more photonic devices, the common power required for computing will be
averaged, thereby improving the energy efficiency of optical computing and giving full
play to the advantages of optical computing.

Second, more functions should be realized with optical methods. Most optical CNN
solutions primarily focus on the optical implementation of convolutions. Although there
are related studies on the optical implementation of nonlinear activation and full connec-
tion [35,38,91,113,117–120], these studies remain relatively limited and warrant further
exploration. In particular, limited by the small matrix size, it is still a challenge to achieve
large-scale full connections using optical methods. Implementing more functions using
optical methods will be conducive to expanding the application field of optical computing
and promoting the practical application of optical computing.

Finally, the development of an in situ trainable arbitrary reconfigurable computing
architecture is essential. At present, most optical CNN implementations adopt the offline
training method, and the weight matrix is pretrained in the neural network simulation
model. As a result, a deviation between the simulation model and the experimental system
inevitably appears. In situ training, which updates the weight directly and performs the
computation at the original place, offers a new form to accelerate the reconfiguration
performance of the neural network and improve its precision. Several recently proposed in
situ training schemes, such as physics-aware training [121], adaptive training [122], and
other relevant methods [123,124], have been successfully introduced to optical computing.
These approaches can be effectively incorporated into the optical CNN framework. By
incorporating in situ training, it is more convenient to reconstruct the network structure
(such as changing the size and number of convolution kernels, changing the number of
convolution layers, etc.), and the influence of errors can be considered during the training
process. In this way, the refactoring of more different, more complex classification tasks on
the same hardware will become a reality, rather than the simple tasks that are fixed today
(such as classifying handwritten digits).

In summary, various optical methods have been used to conduct convolution oper-
ations with the benefit of high computing speed, low power consumption, and robust
parallelism. Here, the review primarily introduces the recent advancements in optical
CNNs, classifying them into four categories and summarizing their respective strengths
and weaknesses. The challenges faced by optical CNNs are also summarized, and the
future prospects of this technology are discussed. Next, the untapped potential of opti-
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cal CNNs warrants further exploration, as they hold promise in shaping next-generation
artificial neural network platforms.
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