The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental
2.1. Samples
2.2. Instruments and Methods
2.2.1. Optical Microscopy
2.2.2. Scanning Electron Microscopy Coupled with Energy-Dispersive X-ray Spectroscopy (SEM/EDS)
2.2.3. Micro-Raman Spectroscopy
2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.5. Gas Chromatography—Mass Spectrometry (GC/MS)
2.3. The Conservation Project
3. Results and Discussion
3.1. Identification of Pigments by Means of Raman Spectroscopy
3.2. Analysis of Mortars by Means of SEM/EDS
3.3. Characterization of the Organic Binders by Means of Micro-FT-IR Spectroscopy and GC/MS
3.3.1. Micro-FT-IR Spectroscopy Measurements
3.3.2. GC/MS Analyses
3.4. The Conservation Project
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caronti, E. Gli affreschi del Biagetti nella cattedrale di Parma. In Aurea Parma; Anno VII, Fasc. 6; Libreria Palatina Editrice: Parma, Italy, 1923; pp. 333–336. [Google Scholar]
- Pauri, G. La cappella espiatoria nella cattedrale di Parma per i caduti in guerra. In Arte Cristiana; Società Amici Dell’arte Cristiana: Milan, Italy, 1923; pp. 235–243. [Google Scholar]
- Burgio, C. Documenti inediti per la Cappella ei Caduti, già Baiardi, della Cattedrale di Parma. In Aurea Parma; Anno CIV, F., III, Ed.; Libreria Palatina Editrice: Parma, Italy, 2020; pp. 317–351. [Google Scholar]
- Magrini, D.; Bracci, S.; Cantisani, E.; Conti, C.; Rava, A.; Sansonetti, A.; Shank, W.; Colombini, M.P. A multi-analytical approach for the characterization of wall painting materials on contemporary buildings. Spectrochim. Acta A 2017, 173, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.M.; Madkour, F.S.; Afifi, H.M.; Abdel-Ghani, M.; Abd Elfatah, M. Comprehensive study of an ancient Egyptian foot case cartonnage using Raman, ESEM-EDS, XRD and FTIR. Vib. Spectrosc. 2020, 106, 102987. [Google Scholar] [CrossRef]
- Martins, A.; Albertson, C.; McGlinchey, C.; Dik, J. Piet Mondrian’s Broadway Boogie Woogie: Non invasive analysis using macro X-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least square (MCR-ALS). Herit. Sci. 2016, 4, 418. [Google Scholar] [CrossRef] [Green Version]
- Costantini, I.; Lottici, P.P.; Bersani, D.; Pontiroli, D.; Casoli, A.; Castro, K.; Madariaga, J.M. Darkening of lead-and iron-based pigments on late Gothic Italian wall paintings: Energy dispersive X-ray fluorescence, μ-Raman, and powder X-ray diffraction analyses for diagnosis: Presence of β-PbO2 (plattnerite) and α-PbO2 (scrutinyite). J. Raman Spectrosc. 2020, 51, 680–692. [Google Scholar] [CrossRef]
- Casadio, F.; Toniolo, L. The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J. Cult. Herit. 2001, 2, 71–78. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Barone, G.; Crisci, G.M.; Mazzoleni, P.; Pezzino, A. The Use of FTIR and Micro-FTIR Spectroscopy: An Example of Application to Cultural Heritage. Int. J. Spectrosc. 2009, 2009, 893528. [Google Scholar] [CrossRef] [Green Version]
- Bersani, D.; Lottici, P.P.; Casoli, A. Micro-Raman and GC/MS of Frescoes. In Raman Spectroscopy in Archaeology and Art History; Edwards, H.G.M., Chalmers, J.M., Eds.; Royal Society of Chemistry, Analytical Spectroscopy Monographs: London, UK, 2005; pp. 130–141. [Google Scholar]
- Scherrer, N.C.; Stefan, Z.; Francoise, D.; Annette, F.; Renate, K. Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim. Acta A 2009, 73, 505–524. [Google Scholar] [CrossRef]
- Casadio, F.; Daher, C.; Bellot-Gurlet, L. Raman spectroscopy of cultural heritage materials: Overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 2016, 374, 62. [Google Scholar] [CrossRef] [Green Version]
- Surowiec, I. Application of high-performance separation techniques in archaeometry. Microchim. Acta 2008, 162, 289–302. [Google Scholar] [CrossRef]
- Casoli, A. Research on the organic binders in archaeological wall paintings. Appl. Sci. 2021, 11, 9179. [Google Scholar] [CrossRef]
- Bonaduce, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects. In Analytical Chemistry for Cultural Heritage; Topics in Current Chemistry Collections; Springer: Cham, Switzerland, 2017; pp. 374–376. [Google Scholar]
- Bonaduce, I.; Andreotti, A. Py-GC/MS of Organic Paint Binders. In Organic Mass Spectrometry in Art and Archeology; Colombini, M.P., Modugno, F., Eds.; Wiley: Chichester, UK, 2009; pp. 303–326. [Google Scholar] [CrossRef]
- Bersani, D.; Berzioli, M.; Caglio, S.; Casoli, A.; Lottici, P.P.; Medeghini, L.; Poldi, G.; Zannini, P. An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem. J. 2014, 114, 80–88. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, X.; Qin, Y.; Lu, Z.; Ma, Q.; Zhao, X.; Li, L. Visualization and mapping of literature on the scientific analysis of wall paintings: A bibliometric analysis from 2011 to 2021. Herit. Sci. 2022, 10, 105. [Google Scholar] [CrossRef]
- Borg, B.; Dunn, M.; Ang, A.; Villis, C. The application of state-of-the-art technologies to support artwork conservation: Literature review. J. Cult. Herit. 2020, 44, 239–259. [Google Scholar] [CrossRef]
- Bracci, S.; Bartolozzi, G. Wall paintings diagnostic and archaeometric studies. Phys. Sci. Rev. 2019, 4, 13. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Sciutto, G.; Lluveras Tenorio, A.; Mazurek, J.; Bonaduce, I.; Prati, S.; Mazzeo, R.; Schilling, M.; Colombini, M.P. Advanced analytical investigation on degradation markers in wall paintings. Microchem. J. 2018, 139, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.C.; Capogrosso, V.; Gironda, M.; Alberti, R.; Mazzei, C.; Nodari, L.; Gambirasi, A.; Zendri, E.; Nevin, A. Multi-Analytical non-invasive study of modern yellow paints from postwar Italian paintings from the International Gallery of Modern Art Cà Pesaro, Venice. X-ray Spectrom. 2015, 44, 296–304. [Google Scholar] [CrossRef]
- Favero, P.A.; Mass, J.; Delaney, J.K.; Woll, A.R.; Hull, A.M.; Dooley, K.A.; Finnefrock, A.C. Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescence mapping used in a technical study of The Blue Room by Pablo Picasso. Herit. Sci. 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Rosi, F.; Grazia, C.; Fontana, R.; Gabrieli, F.; Buemi, L.P.; Pampaloni, E.; Romani, A.; Stringari, C.; Miliani, C. Disclosing Jackson Pollock’s palette in Alchemy (1947) by non-invasive spectroscopies. Herit. Sci. 2016, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Colombini, M.P.; Modugno, F.; Gohde Sandbakken, E.; Storevik Tveit, E.; Zanaboni, M. Chemical investigation of paint media in Edvard Munch’s monumental Aula sketches (1909–1916). In Public Paintings by Edvard Munch and His Contemporaries—Change and Conservation Challenges; Frøysaker, T., Streeton, N., Kutzke, H., Hanssen-Bauer, F., Topolova-Casadiego, B., Eds.; Archetype Publication: London, UK, 2015; pp. 197–204. [Google Scholar]
- Moretti, P.; Gallegos, D.; Marte, F.; Brunetti, B.; Sgamellotti, A.; Miliani, C. Materials and Techniques of Twentieth Century Argentinean Murals. Procedia Chem. 2013, 8, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.C.; Falchi, L.; Zendri, E.; Biscotin, G. A study on materials and painting techniques of 1930s Italian mural paintings: Two cases by Mario Sironi and Edmondo Bacci in Venice. In Conservation Issues in Modern and Contemporary Murals; Cambridge Scholar Publishing: Newcastle upon Tyne, UK, 2015; pp. 28, 35–51. [Google Scholar]
- Lama, E.; Prieto-Taboada, N.; Etxebarria, I.; Bermejo, J.; Castro, K.; Arana, G.; Rodríguez Laso, M.D.; Madariaga, J.M. Spectroscopic characterization of xx century mural paintings of punta begoña’s galleries under conservation works. Microchem. J. 2021, 168, 106423. [Google Scholar] [CrossRef]
- Moretti, P.; Zumbühl, S.; Caruso, O.; Gammaldi, N.; Iazurlo, P.; Piqué, F. The characterization of the materials used by Gino Severini in his 20th C wall paintings at Semsales in Switzerland. Appl. Sci. 2021, 11, 9161. [Google Scholar] [CrossRef]
- Iazurlo, P.; Piqué, F.; Moretti, P. Gino Severini in Switzerland: A Technical Study of the Wall Paintings of Saint Nicolas de Myre in Semsales. Stud. Conserv. 2023, 68, 171–192. [Google Scholar] [CrossRef]
- Plesters, J. Cross-sections and chemical analysis of paint samples. Stud. Conserv. 1956, 2, 110–157. [Google Scholar] [CrossRef]
- Bergamonti, L.; Cirlini, M.; Graiff, C.; Lottici, P.P.; Palla, G.; Casoli, A. Characterization of Waxes in the Roman Wall Paintings of the Herculaneum Site (Italy). Appl. Sci. 2022, 12, 11264. [Google Scholar] [CrossRef]
- Casoli, A.; Santoro, S. Organic materials in the wall paintings in Pompei: A case study of Insula del Centenario. Chem. Cent. J. 2012, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Fremout, W.; Saverwyns, S. Identification of synthetic organic pigments: The role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 2012, 43, 1536–1544. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Moens, L.; Edwards, H.G.M.; Dams, R. Raman spectroscopic database of azo pigments and application to modern art studies. J. Raman Spectrosc. 2000, 31, 509–517. [Google Scholar] [CrossRef]
- SOPRANO. Synthetic Organic Pigments Research Aggregation Network. Available online: https://soprano.kikirpa.be/ (accessed on 3 March 2023).
- Aliatis, I.; Bersani, D.; Campani, E.; Casoli, A.; Lottici, P.P.; Mantovan, S.; Marino, I.G. Pigments used in Roman wall paintings in the Vesuvian area. J. Raman Spectrosc. 2010, 41, 1537–1542. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta A 2001, 57, 1491–1521. [Google Scholar] [CrossRef] [PubMed]
- Bersani, D.; Lottici, P.P. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Maguregui, M.; Knuutinen, U.; Castro, K.; Madariaga, J.M. Raman spectroscopy as a tool to diagnose the impact and conservation state of Pompeian second and fourth style wall paintings exposed to diverse environments (House of Marcus Lucretius). J. Raman Spectrosc. 2010, 41, 1110–1119. [Google Scholar] [CrossRef]
- Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.irug.org (accessed on 20 May 2023).
- Osticioli, I.; Mendes, N.C.; Nevin, A.; Gil, F.P.; Becucci, M.; Castellucci, E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta A 2009, 73, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aceto, M.; Gatti, G.; Agostino, A.; Fenoglio, G.; Giordano, V.; Varetto, M.; Castagneri, G. The mural paintings of Ala di Stura (Piedmont, Italy): A hidden treasure investigated. J. Raman Spectrosc. 2012, 43, 1754–1760. [Google Scholar] [CrossRef]
- Rousaki, A.; Vandenabeele, P.; Berzioli, M.; Saccani, I.; Fornasini, L.; Bersani, D. An in-and-out-the-lab Raman spectroscopy study on street art murals from Reggio Emilia in Italy. Eur. Phys. J. Plus 2022, 137, 252. [Google Scholar] [CrossRef]
- Castro, K.; Pérez-Alonso, M.; Rodríguez-Laso, M.D.; Fernández, L.A.; Madariaga, J.M. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal. Bioanal. Chem. 2005, 382, 248–258. [Google Scholar] [CrossRef]
- Böke, H.; Akkurt, S.; Özdemir, S.; Göktürk, E.H.; Saltik, E.N.C. Quantification of CaCO3–CaSO3·0.5 H2O–CaSO4·2H2O mixtures by FTIR analysis and its ANN model. Mater. Lett. 2004, 58, 723–726. [Google Scholar] [CrossRef] [Green Version]
- Duran, A.; Perez-Rodriguez, J.L. Revealing Andalusian wall paintings from the 15th century by mainly using infrared spectroscopy and colorimetry. Vib. Spectrosc. 2020, 111, 103153. [Google Scholar] [CrossRef]
- Cheilakou, E.; Troullinos, M.; Koui, M. Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive fiber optics diffuse reflectance spectroscopy (FORS). J. Archaeol. Sci. 2014, 41, 541–555. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C. Earth pigments in painting: Characterisation and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Anal. Bioanal. Chem. 2005, 382, 269–274. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Casadio, F.; Toniolo, L. Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vib. Spectrosc. 1999, 20, 15–25. [Google Scholar] [CrossRef]
- Vetter, W.; Schreiner, M. Characterization of pigment binding media systems comparison of non invasive in situ reflection FTIR with transmission FTIR microscopy. e-Preserv. Sci. 2011, 8, 10–22. [Google Scholar]
- Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, M.P.; Bonaduce, I. The development of a new analytical model for the identification of saccharide binders in paint samples. PLoS ONE 2012, 7, e49383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. Int. J. Anal. Chem. 2018, 2018, 7823248. [Google Scholar] [CrossRef] [PubMed]
- Blasko, J.; Kubinec, R.; Husová, B.; Prikryl, P.; Pacáková, V.; Stulík, K.; Hradilová, J. Gas chromatography/mass spectrometry of oils and oil binders in paintings. J. Sep. Sci. 2008, 31, 1067–1073. [Google Scholar] [CrossRef]
- Manzano, E.; Rodríguez-Simón, L.; Navas, N.; Checa-Moreno, R.; Romero-Gámez, M.; Capitán-Vallvey, L. Study of the GC–MS determination of the palmitic–stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study. Talanta 2011, 84, 1148–1154. [Google Scholar] [CrossRef]
- Lanterna, G.; Mairani, A.; Matteini, M.; Rizzi, M.; Vigato, P.A. Characterisation of Decay Markers on Pictorial Models Simulating Ancient Polychromies: Target 2.2.2 of the Special Project on Cultural Heritage—CNR—Italy. In Proceedings of the 2nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris, France, 5–9 July 1999; Guarino, A., Ed.; Elsevier: Paris, France, 2000; pp. 487–489. [Google Scholar]
- Casoli, A.; Alberici, L.; Cauzzi, D.; Palla, G. Study of models simulating ancient polychromies. In Proceedings of the 2nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris, France, 5–9 July 1999; Guarino, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 591–593. [Google Scholar]
- Casoli, A.; Montanari, A.; Palla, L. Painted models simulating ancient polychromies: A statistical analysis of chemical results. In Proceedings of the 3rd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Alcalá De Henares, Spain, 9–14 July 2001; pp. 839–845. [Google Scholar]
BB1 Blue | BB2 Orange | BB3 Dark green |
Sky; south sail vault “Prudentia”. | Weaving decoration, right rib, south sail vault. | Cypresses, exfoliated brushstroke, west wall. |
BB4 Dark Grey | BB5 Red | BB6 Grey-violet |
Exfoliated/decohesive material, central scene column, east wall. | Decorated area under left window, south wall. | Exfoliated material on the shoulder of first left soldier. Left scene, east wall. |
BB7 Mortar | BB8 Mortar | BB9 Red |
Mortar, with pictorial film, right edge of the window on the left, south wall | Mortar, with pictorial film, crown of thorns above right scene, east wall | Left angel, south wall. |
BB10 Pink | BB11 Blue | BB12 Yellow |
Above left angel, south wall. | Sky right side of the bezel, east wall. | Day attachment contour on the right, south wall. |
Wavenumbers (cm−1) | Assigned Species | Samples | Reference |
---|---|---|---|
224, 245, 291, 411, 611, 660 | Haematite [Fe2O3] | BB1, BB2, BB5, BB10 | [37,38,39,40] |
207, 465 | Quartz [SiO2] | BB5 | [37,38,39,40] |
463, 988 | Baryte [BaSO4] | BB2, BB4, BB9, BB12 | [37,38,39,40] |
415, 1008 | Gypsum [CaSO4·2(H2O)] | BB2, BB4, BB5, B11 | [37,38,39,40] |
155, 281, 711, 1085 | Calcite [CaCO3] | BB5, BB6, BB9, BB10, BB11 | [37,38,39,40] |
1584 | Graphite | BB10 | [41] |
1320, 1590 | Carbon | BB2, BB3, BB4, BB5, BB6, BB10 | [41] |
258, 548, 1096 | Ultramarine blue [Na7Ca(Al6Si6O24)] | BB1, BB6 | [42,43] |
868 | Copper (II) arsenate [Cu2(AsO4)(OH)n] | BB1, BB3 | [44] |
992, 1089, 1188, 1217, 1341, 1452, 1483 | Naphtol pigment (PR8?) [C24H17ClN4O4] | BB9 | [35,38,45,46,47] |
987, 1098, 1218, 1467, 1598, 1622 | Monoazo-pigment | BB6 | [35,38,45,46,47] |
537, 673 | Cerulean blue [CoO.nSnO2] | B11 | [42,46] |
1285, 1433, 1083, 1570 | Naphtol pigment (PR112?) [C24H16Cl3N3O2] | BB12 | [35,38,45,46,47] |
1139, 1218, 1340, 1489, 1623 | Pigment Yellow 1 (PY1) C17H16N4O4 | BB12 | [35,38,45,46,47] |
790, 950, 1136, 1326, 1392, 1487, 1535, 1623, 1670 | Permanent Yellow 65 (PY65) C18H18N4O6 | BB12 | [35,38,45,46,47] |
BB1 Blue Pigments: ultramarine blue, haematite, copper (II) arsenate | BB2 Orange Pigments: gypsum, haematite, baryte, carbon | BB3 Dark green Pigments: copper (II) arsenate, carbon Organic binders: egg and animal glue. |
BB4 Dark Grey Pigments: carbon, gypsum, baryte Organic binders: egg, animal glue, arabic gum. | BB5 Red Pigments: carbon, gypsum, haematite, quartz, calcite. Organic binders: egg, animal glue. | BB6 Grey-violet Pigments: carbon, calcite, gypsum, monoazo pigment, ultramarine blue Organic binders: egg, animal glue. |
BB7 Mortar Binder: lime, calcium carbonate, clays | BB8 Mortar Binder: lime, calcium carbonate, clays Pigments: baryte | BB9 Red Pigment: naphtol pigment (PR8?), baryte, calcite |
BB10 Pink Pigments: carbon, calcite, haematite, grafite | BB11 Blue Pigments: calcite, anhydrite, cerulean blue | BB12 Yellow Pigments: baryte, pigment yellow 1, naphtol pigment (PR112?), Permanent Yellow 65. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamonti, L.; Graiff, C.; Simeti, S.; Casoli, A. The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project. Appl. Sci. 2023, 13, 7235. https://doi.org/10.3390/app13127235
Bergamonti L, Graiff C, Simeti S, Casoli A. The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project. Applied Sciences. 2023; 13(12):7235. https://doi.org/10.3390/app13127235
Chicago/Turabian StyleBergamonti, Laura, Claudia Graiff, Silvia Simeti, and Antonella Casoli. 2023. "The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project" Applied Sciences 13, no. 12: 7235. https://doi.org/10.3390/app13127235
APA StyleBergamonti, L., Graiff, C., Simeti, S., & Casoli, A. (2023). The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project. Applied Sciences, 13(12), 7235. https://doi.org/10.3390/app13127235