Foliar Applications of Calcium, Silicon and Their Combination: A Tool to Improve Grape Composition and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard, Treatments and Grape Samples
2.2. Must Physico-Chemical Parameters
2.3. Volatile Compound Determination
2.4. Analysis of Phenolic Compounds
2.4.1. Grape Phenolic Compound Extraction
2.4.2. Extract of Non-Anthocyanin Phenolic Compounds
2.4.3. Phenolic Compound Determination
2.5. Nitrogen Compound Determination
2.6. Statistical Analyses
3. Results and Discussion
3.1. Must Enological Parameters
3.2. Effect of the Ca, Si and Ca + Si Foliar Treatments on Must Volatile Composition
3.3. Influence of Foliar Ca, Si and Ca + Si Treatments on Grape Phenolic Compounds
3.4. Influence of the Ca, Si and Ca + Si Foliar Treatments on Must Nitrogen Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape composition under abiotic constrains: Water stress and salinity. Front. Plant. Sci. 2017, 8, 851. [Google Scholar] [CrossRef] [Green Version]
- Hazelrigg, A.L.; Bradshaw, T.L.; Maia, G.S. Disease susceptibility of interspecific cold-hardy grape cultivars in northeastern USA. Horticulturae 2021, 7, 216. [Google Scholar] [CrossRef]
- Bonomelli, C.; Ruiz, R. Effects of foliar and soil calcium application on yield and quality of table grape cv. ‘Thompson Seedless’. J. Plant Nutr. 2010, 33, 299–314. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Ramírez-Rodríguez, G.B.; Carmona, F.J.; Martínez-Vidaurre, J.M.; Masciocchi, N.; Guagliardi, A.; Garde-Cerdán, T.; Delgado-López, J.M. Towards a more sustainable viticulture: Foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. J. Sci. Food Agric. 2021, 101, 1307–1313. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S. Further evidence that calcium, magnesium and seaweed mixtures reduce grapevine leaf stripe symptoms and increase grape yield. Phytopathol. Mediterr. 2018, 57, 459–471. [Google Scholar] [CrossRef]
- Gur, L.; Cohen, Y.; Frenkel, O.; Schweitzer, R.; Shlisel, M.; Reuveni, M. Mixtures of macro and micronutrients control grape powdery mildew and alter berry metabolites. Plants 2022, 11, 978. [Google Scholar] [CrossRef]
- Leibar, U.; Pascual, I.; Aizpurua, A.; Morales, F.; Unamunzaga, O. Grapevine nutritional status and K concentration of must under future expected climatic conditions texturally different soils. J. Soil Sci. Plant Nutr. 2017, 17, 385–397. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Song, W.; Yi, J.; Kurniadinata, O.F.; Wang, H.; Huang, X. Linking fruit Ca uptake capacity to fruit growth and pedicel anatomy, a cross-species study. Front. Plant Sci. 2018, 9, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomelli, C.; Alcalde, C.; Aguilera, C.; Videla, X.; Rojas-Silva, X.; Nario, A.; Fernandez, V. Absorption and mobility of radio-labelled calcium in chili pepper plants and sweet cherry trees. Sci. Agric. 2021, 78, e20200092. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Xiloyannis, C. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit. J. Plant Physiol. 2015, 181, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Nuzzo, V.; Clearwater, M.J.; Xiloyannis, C. Internal versus external control of calcium nutrition in kiwifruit. J. Plant Nutr. Soil Sci. 2014, 177, 819–830. [Google Scholar] [CrossRef]
- Saure, M.C. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Sci. Hortic. 2005, 105, 65–89. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, C.; Song, S.; Ma, C.; Zhang, C.; Xu, W.; Bondada, B.; Wang, L.; Wang, S. Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine. Sci. Rep. 2022, 12, 3233. [Google Scholar] [CrossRef] [PubMed]
- Bonomelli, C.; Fernández, V.; Martiz, J.; Videla, X.; Arias, M.I.; Rojas-Silva, X.; Nario, A. Absorption and distribution of root, fruit, and foliar-applied 45Ca in ‘Clemenules’ mandarin trees. J. Sci. Food Agric. 2020, 100, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
- Manganaris, G.A.; Vasilakakis, M.; Diamantidis, G.; Mignani, I. Diverse metabolism of cell wall components of melting and non-melting peach genotypes during ripening after harvest or cold storage. J. Sci. Food Agric. 2006, 86, 243–250. [Google Scholar] [CrossRef]
- Val, J.; Fernández, V. In-season calcium-spray formulations improve calcium balance and fruit quality traits of peach. J. Plant Nutr. Soil Sci. 2011, 174, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.C.; Nikolic, M.; Ye, M.J.; Xiao, Z.X.; Liang, Y.C. Silicon acquisition and accumulation in plant and its significance for agriculture. J. Integr. Agric. 2018, 17, 2138–2150. [Google Scholar] [CrossRef]
- Schabl, P.; Gabler, C.; Kührer, E.; Wenzel, W. Effects of silicon amendments on grapevine, soil and wine. Plant Soil Environ. 2020, 66, 403–414. [Google Scholar] [CrossRef]
- Kara, Z.; Yazar, K.; Ekinci, H.; Doğan, O.; Özer, A. The effects of ortho silicone applications on the acclimatization process of grapevine rootstocks. Selcuk J. Agric. Food Sci. 2022, 36, 233–237. [Google Scholar] [CrossRef]
- Losada, M.M.; Hernández-Apaolaza, L.; Morata, A.; Revilla, E. Impact of the application of monosilicic acid to grapevine (Vitis vinifera L.) on the chemical composition of young red Mencía wines. Food Chem. 2022, 378, 132140. [Google Scholar] [CrossRef] [PubMed]
- Laane, H.M. The effects of the application of foliar sprays with stabilized silicic acid: An overview of the results from 2003–2014. Silicon 2017, 9, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Laane, H.M. The effects of foliar sprays with different silicon compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Eichert, T. Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Gil-Pelegrín, E.; Eichert, T. Foliar water and solute absorption: An update. Plant J. 2021, 105, 870–883. [Google Scholar] [CrossRef]
- Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008, 134, 151–160. [Google Scholar] [CrossRef]
- Guzmán, P.; Fernández, V.; Graça, J.; Cabral, V.; Kayali, N.; Khayet, M.; Gil, L. Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: A lipidized cell wall region. Front. Plant Sci. 2014, 5, 481. [Google Scholar] [CrossRef] [Green Version]
- González Moreno, A.; Domínguez, E.; Mayer, K.; Xiao, N.; Bock, P.; Heredia, A.; Gierlinger, N. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development. Plant Physiol. 2022, 191, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Reynoud, N.; Geneix, N.; Petit, J.; D’Orlando, A.; Fanuel, M.; Marion, D.; Rothan, C.; Lahaye, M.; Bakan, B. The cutin polymer matrix undergoes a fine architectural tuning from early tomato fruit development to ripening. Plant Physiol. 2022, 190, 1821–1840. [Google Scholar] [CrossRef] [PubMed]
- Almonte, L.; Pimentel, C.; Rodríguez-Cañas, E.; Abad, J.; Fernández, V.; Colchero, J. Rose petal effect: A subtle combination of nano-scale roughness and chemical variability. Nano Select 2022, 3, 977–989. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2003. [Google Scholar]
- Garde-Cerdán, T.; Rubio-Bretón, P.; Marín-San Román, S.; Sáenz de Urturi, I.; Pérez-Álvarez, E.P. Pre-fermentative maceration with SO2 enhanced the must aromatic composition. Food Chem. 2021, 345, 128870. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Sáenz de Urturi, I.; Rubio-Bretón, P.; Marín-San Román, S.; Baroja, E.; Ramírez-Rodríguez, G.B.; Delgado-López, J.M.; Pérez-Álvarez, E.P. Foliar application of methyl jasmonate and methyl jasmonate supported on nanoparticles: Incidence on grape phenolic composition over two seasons. Food Chem. 2023, 402, 134244. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chem. 2016, 203, 536–539. [Google Scholar] [CrossRef]
- Martins, V.; Unlubayir, M.; Teixeira, A.; Lanoue, A.; Gerós, H. Exogenous calcium delays grape berry maturation in the white cv. Loureiro while increasing fruit firmness and flavonol content. Front. Plant Sci. 2021, 12, 742887. [Google Scholar] [CrossRef]
- Gomes, T.M.; Mazon, L.F.; Panceri, C.P.; Machado, B.D.; Brighenti, A.; Burin, V.M.; Bordignon-Luiz, M.T. Changes in vineyard productive attributes and phytochemical composition of sauvignon blanc grape and wine induced by the application of silicon and calcium. J. Sci. Food Agric. 2020, 100, 1547–1557. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. In The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley, & Sons: Chichester, UK, 2006. [Google Scholar]
- Moreno-Arribas, M.V.; Polo, M.C. Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zalacain, A.; Marín, J.; Alonso, G.L.; Salinas, M.R. Analysis of wine primary aroma compounds by stir bar sorptive extraction. Talanta 2007, 71, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Baroja, E.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages. Food Res. Int. 2018, 112, 274–283. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef]
- Kalua, C.M.; Boss, P.K. Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (Vitis vinifera L.). J. Agric. Food Chem. 2009, 57, 3818–3830. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Santamaría, P.; Rubio-Bretón, P.; González-Arenzana, L.; López-Alfaro, I.; López, R. Foliar application of proline, phenylalanine and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT-Food Sci. Technol. 2015, 60, 684–689. [Google Scholar] [CrossRef]
- Canuti, V.; Conversano, M.; Li Calzi, M.; Heymann, H.; Matthews, M.A.; Ebeler, S.E. Headspace solid-phase microextraction–gas chromatography–mass spectrometry for profiling free volatile compounds in Cabernet sauvignon grapes and wines. J. Chromatogr. A 2009, 1216, 3012–3022. [Google Scholar] [CrossRef] [PubMed]
- Herzan, J.; Prokes, K.; Baron, M.; Kumsta, M.; Pavlousek, P.; Sochor, J. Study of carbonyl compounds in white wine production. Food Sci. Nutr. 2020, 8, 5850–5859. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Belal, B.E.A.; EL-Sharkawy, H.H.A. The role of some elicitors on the management of Roumy Ahmar grapevines downy mildew disease and it’s related to inducing growth and yield characters. Sci. Hortic. 2017, 225, 646–658. [Google Scholar] [CrossRef]
- Sut, S.; Malagoli, M.; Dall’Acqua, S. Foliar application of silicon in Vitis vinifera: Targeted metabolomics analysis as a tool to investigate the chemical variations in berries of four grapevine cultivars. Plants 2022, 11, 2998. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, M.; Wang, M.; Xu, Y.; Chen, W.; Yang, G. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin. Sci. Hortic. 2020, 260, 108871. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Smith, P.A.; McRae, J.M.; Bindon, K.A. Impact of winemaking practices on the concentration and composition of tannins in red wine. Aust. J. Grape Wine Res. 2015, 21, 601–614. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Stines, A.P.; Grubb, J.; Gockowiak, H.; Henschke, P.A.; Høj, P.B.; Van Heeswijck, R. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine Res. 2000, 6, 150–158. [Google Scholar] [CrossRef]
Control | Ca | Si | Ca + Si | |
---|---|---|---|---|
Weight of 100 berries (g) | 235.30 ± 25.45 b | 183.03 ± 33.68 a | 222.00 ± 19.29 ab | 239.63 ± 0.60 b |
°Brix | 22.80 ± 1.73 a | 22.53 ± 1.10 a | 24.83 ± 1.76 a | 24.00 ± 1.11 a |
Probable alcohol (% v/v) | 13.33 ± 1.18 a | 13.13 ± 0.76 a | 14.72 ± 1.22 a | 14.14 ± 0.77 a |
Glucose + Fructose (g/L) | 231.95 ± 19.45 a | 232.52 ± 11.04 a | 265.52 ± 23.85 a | 249.23 ± 19.62 a |
Glucose (g/L) | 116.27 ± 10.39 a | 115.63 ± 5.28 a | 130.83 ± 11.32 a | 124.31 ± 1048 a |
Fructose (g/L) | 115.68 ± 9.09 a | 111.68 ± 9.22 a | 133.02 ± 31.74 b | 118.19 ± 16.90 a |
pH | 3.53 ± 0.14 a | 3.73 ± 0.14 a | 3.61 ± 0.02 a | 3.68 ± 0.24 a |
Total acidity (g/L) * | 5.23 ± 0.89 a | 4.72 ± 0.16 a | 4.95 ± 0.10 a | 5.40 ± 0.89 a |
Tartaric acid (g/L) | 5.02 ± 0.37 a | 5.03 ± 0.59 a | 4.42 ± 0.13 a | 4.48 ± 0.86 a |
Malic acid (g/L) | 2.64 ± 0.05 a | 2.21 ± 0.26 a | 2.23 ± 0.18 a | 2.63 ± 0.46 a |
Total phenols (mg/L) | 472.47 ± 42.30 a | 722 ± 172.75 b | 625.57 ± 6.58 ab | 592.33 ± 50.60 ab |
Ammonium nitrogen (mg N/L) | 91.78 ± 15.13 a | 123.50 ± 5.07 ab | 98.02 ± 13.29 a | 138.84 ± 27.30 b |
Amino nitrogen (mg N/L) | 108.24 ± 7.92 a | 205.92 ± 30.80 b | 119.97 ± 17.16 a | 97.97 ± 9.24 a |
YAN (mg N/L) ** | 200.02 ± 22.12 a | 329.42 ± 35.87 b | 217.99 ± 26.04 a | 236.81 ± 23.80 a |
Control | Ca | Si | Ca + Si | |
---|---|---|---|---|
Benzenoid compounds | ||||
2-Phenylethanol | 6.68 ± 1.23 a | 11.32 ± 1.07 b | 14.86 ± 2.54 b | 14.84 ± 3.53 b |
2-Phenylethanal | 8.25 ± 1.35 a | 18.58 ± 4.08 b | 16.69 ± 2.10 b | 26.84 ± 5.05 c |
Benzyl alcohol | 2.40 ± 0.48 ab | 1.85 ± 0.47 a | 2.46 ± 0.49 ab | 2.78 ± 0.12 b |
Eugenol | 0.02 ± 0.00 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.06 ± 0.01 b |
Total | 17.35 ± 3.05 a | 31.78 ± 2.62 b | 34.04 ± 3.53 b | 44.52 ± 8.47 c |
Esters | ||||
Hexyl acetate | 0.07 ± 0.01 ab | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 0.09 ± 0.02 b |
Methyl salicylate | 0.12 ± 0.01 b | 0.11± 0.02 b | 0.06 ± 0.01 a | 0.33 ± 0.02 c |
Total | 0.20 ± 0.02 b | 0.18 ± 0.01 b | 0.12 ± 0.01 a | 0.42 ± 0.01 c |
Alcohols | ||||
1-Heptanol | 0.05 ± 0.01 a | 0.13 ± 0.02 b | 0.18 ± 0.02 b | 0.30 ± 0.06 c |
1-Octanol | 0.48 ± 0.08 a | 0.76 ± 0.12 a | 0.70 ± 0.10 a | 1.83 ± 0.34 b |
1-Nonanol | 0.24 ± 0.04 a | 0.27 ± 0.05 a | 0.51 ± 0.09 b | 0.96 ± 0.14 c |
1-Octen-3-ol | 0.80 ± 0.08 a | 0.70 ± 0.14 a | 0.67 ± 0.03 a | 1.19 ± 0.12 b |
2-Ethyl-1-hexanol | 0.89 ± 0.15 b | 0.57 ± 0.12 a | 0.56 ± 0.12 a | 2.38 ± 0.11 c |
Total | 2.46 ± 0.34 a | 2.44 ± 0.24 a | 2.62 ± 0.12 a | 6.66 ± 0.42 b |
Carbonyl compounds | ||||
Heptanal | 0.06 ± 0.00 a | 0.08 ± 0.02 a | 0.05 ± 0.01 a | 0.11 ± 0.02 b |
Octanal | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.06 ± 0.01 a |
(E)-2-Octenal | 0.15 ± 0.03 a | 0.16 ± 0.03 a | 0.14 ± 0.01 a | 0.17 ± 0.03 a |
Nonanal | 0.94 ± 0.08 a | 1.37 ± 0.32 b | 0.79 ± 0.14 a | 1.63 ± 0.19 b |
(E)-2-Nonenal | 0.14 ± 0.03 a | 0.23 ± 0.05 b | 0.12 ± 0.02 a | 0.21 ± 0.02 b |
Decanal | 0.22 ± 0.04 c | 0.15 ± 0.02 b | 0.12 ± 0.02 ab | 0.09 ± 0.02 a |
(E,E)-2,4-Hexadienal | 2.83 ± 0.17 b | 1.79 ± 0.41 a | 1.12 ± 0.20 a | 2.86 ± 0.55 b |
(E,E)-2,4-Heptadienal | 2.29 ± 0.42 c | 1.16 ± 0.20 b | 0.56 ± 0.12 a | 2.57 ± 0.34 c |
(E,E)-2,4-Nonadienal | 0.16 ± 0.02 b | 0.15 ± 0.02 ab | 0.11 ± 0.02 a | 0.26 ± 0.03 c |
(E,E)-2,4-Decadienal | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.06 ± 0.01 b |
γ-Decalactone | 0.31 ± 0.06 a | 0.42 ± 0.07 ab | 0.43 ± 0.10 ab | 0.63 ± 0.17 b |
6-Methyl-3,5-heptadien-2-one | 0.05 ± 0.01 b | 0.02 ± 0.00 a | 0.03 ± 0.00 a | 0.07 ± 0.01 c |
Total | 4.95 ± 0.19 b | 4.49 ± 0.13 b | 2.99 ± 0.36 a | 6.15 ± 0.77 c |
C6 compounds | ||||
Hexanal | 80.75 ± 18.07 a | 100.09 ± 17.52 a | 86.51 ± 13.31 a | 111.05 ± 20.55 a |
n-Hexanol | 46.85 ± 5.20 a | 45.33 ± 10.17 a | 66.65 ± 2.15 b | 65.55 ± 11.66 b |
(E)-2-Hexenal | 36.31 ± 7.23 a | 43.23 ± 4.70 a | 35.66 ± 6.12 a | 46.02 ± 9.12 a |
(Z)-3-Hexen-1-ol+(E)-2-Hexen-1-ol | 2.95 ± 0.57 ab | 2.09 ± 0.39 ab | 1.95 ± 0.40 a | 3.01 ± 0.69 b |
Total | 166.86 ± 22.47 a | 190.74 ± 22.85 ab | 190.78 ± 19.23 ab | 225.63 ± 41.71 b |
Control | Ca | Si | Ca + Si | |
---|---|---|---|---|
Anthocyanins | ||||
Delphinidin-3-glc | 78.63 ± 7.06 a | 73.38 ± 16.52 a | 117.93 ± 13.51 b | 93.43 ± 8.72 ab |
Cyanidin-3-glc | 13.36 ± 0.27 a | 11.78 ± 3.35 a | 25.50 ± 7.91 b | 16.47 ± 4.16 ab |
Petunidin-3-glc | 61.52 ± 3.98 a | 59.88 ± 11.44 a | 50.19 ± 56.05 a | 72.35 ± 3.09 a |
Peonidin-3-glc | 26.46 ± 1.77 a | 27.53 ± 7.04 a | 44.99 ± 13.29 a | 35.04 ± 0.83 a |
Malvidin-3-glc | 188.29 ± 8.85 a | 217.85 ± 27.95 a | 216.19 ± 4.13 a | 225.16 ± 47.53 a |
Delphinidin-3-acglc | 7.59 ± 0.56 a | 7.56 ± 0.80 a | 8.55 ± 0.29 a | 8.04 ± 0.55 a |
Cyanidin-3-acglc | 3.86 ± 0.04 a | 3.83 ± 0.14 a | 3.79 ± 0.17 a | 3.84 ± 0.04 a |
Petunidin-3-acglc | 5.89 ± 0.34 a | 5.82 ± 0.44 a | 6.05 ± 0.08 a | 6.05 ± 0.36 a |
Peonidin-3-acglc | 16.72 ± 0.57 a | 16.07 ± 1.86 a | 18.33 ± 1.12 a | 17.62 ± 1.24 a |
Malvidin-3-acglc | 3.68 ± 0.11 a | 3.64 ± 0.08 a | 3.54 ± 0.11 a | 3.61 ± 0.03 a |
Delphinidin-3-cmglc | 11.23 ± 1.01 a | 12.89 ± 0.81 a | 10.92 ± 1.15 a | 12.33 ± 1.02 a |
Cyanidin-3-cmglc | 5.30 ± 0.13 ab | 4.82 ± 0.38 a | 6.22 ± 0.63 b | 5.61 ± 0.81 ab |
Petunidin-3-cmglc | 4.14 ± 0.09 a | 4.33 ± 0.22 a | 3.71 ± 0.06 a | 4.23 ± 0.48 a |
Peonidin-3-cmglc | 13.96 ± 0.17 a | 14.21 ± 2.08 a | 14.57 ± 1.19 a | 14.56 ± 0.53 a |
Malvidin-3-cis-cmglc | 4.92 ± 0.31 ab | 5.18 ± 0.16 b | 4.38 ± 0.17 a | 4.98 ± 0.48 ab |
Malvidin-3-trans-cmglc | 9.03 ± 0.42 a | 9.14 ± 1.01 a | 10.44 ± 0.73 a | 10.41 ± 0.24 a |
Malvidin-3-cfglc | 55.04 ± 3.91 a | 62.37 ± 8.52 a | 49.38 ± 11.05 a | 58.57 ± 11.17 a |
Total | 509.62 ± 15.49 a | 540.28 ± 68.71 a | 594.69 ± 82.25 a | 592.32 ± 40.16 a |
Flavonols | ||||
Myricetin-3-glcU+3-gal | 23.61 ± 1.16 a | 32.53 ± 7.83 a | 29.08 ± 1.15 a | 31.82 ± 3.84 a |
Myricetin-3-glc | 78.09 ± 2.09 a | 111.54 ± 32.97 a | 110.22 ± 8.88 a | 121.79 ± 16.72 a |
Quercetin-3-glcU | 27.17 ± 2.55 a | 42.39 ± 17.18 a | 36.57 ± 4.26 a | 35.06 ± 3.43 a |
Quercetin-3-glc | 31.39 ± 5.88 a | 50.16 ± 23.86 a | 49.84 ± 4.98 a | 61.51 ± 12.84 a |
Laricitrin-3-glc | 13.31 ± 0.59 a | 21.15 ± 5.21 ab | 20.06 ± 1.54 ab | 23.91 ± 4.28 b |
Kaempferol-3-gal | 8.30 ± 0.02 a | 8.64 ± 0.17 a | 8.99 ± 0.55 a | 9.30 ± 0.74 a |
Kaempferol-3-glcU+3-glc | 1.92 ± 0.20 a | 3.74 ± 2.55 a | 2.70 ± 0.25 a | 4.13 ± 1.65 a |
Isorhamnetin-3-glc | 3.05 ± 0.92 a | 4.91 ± 2.12 a | 9.29 ± 0.56 b | 11.78 ± 1.66 b |
Syringetin-3-glc | 7.71 ± 0.35 a | 12.75 ± 3.74 a | 12.11 ± 1.81 a | 15.74 ± 4.55 a |
Total | 195.55 ± 9.54 a | 287.80 ± 94.12 a | 278.85 ± 17.29 a | 315.04 ± 48.23 a |
Flavanols | ||||
Catechin | 29.28 ± 2.27 a | 35.94 ± 4.41 a | 33.92 ± 18.41 a | 24.07 ± 4.65 a |
Epicatechin | 34.33 ± 3.82 b | 50.48 ± 6.35 c | 17.37 ± 3.02 a | 22.28 ± 3.30 a |
Epicatechin-3-gallate | 6.45 ± 0.75 a | 7.16 ± 1.41 a | 4.18 ± 2.29 a | 3.83 ± 1.62 a |
Epigallocatechin | 3.35 ± 0.12 a | 5.35 ± 1.28 a | 4.47 ± 0.43 a | 4.98 ± 0.62 a |
Procyanidin B1 | 8.89 ± 0.15 b | 10.05 ± 0.84 b | 2.37 ± 0.01 a | 2.98 ± 0.20 a |
Procyanidin B2 | 13.93 ± 2.75 ab | 20.54 ± 2.34 c | 17.50 ± 2.09 bc | 11.09 ± 1.01 a |
Total | 96.23 ± 8.13 ab | 129.53 ± 16.02 b | 79.80 ± 25.37 a | 69.22 ± 3.56 a |
Hydroxybenzoic acids | ||||
Gallic acid | 3.73 ± 0.33 a | 5.06 ± 0.27 a | 4.41 ± 0.64 a | 5.76 ± 1.62 a |
Hydroxycinnamic acids | ||||
trans-Caftaric acid | 4.85 ± 0.75 bc | 5.84 ± 0.24 c | 4.34 ± 0.65 b | 3.05 ± 0.42 a |
trans+cis-Coutaric acids | 3.46 ± 1.30 ab | 4.07 ± 0.23 b | 3.23 ± 0.49 ab | 2.17 ± 0.02 a |
trans-Fertaric acid | 0.91 ± 0.04 a | 1.18 ± 0.16 a | 1.00 ± 0.03 a | 1.14 ± 0.21 a |
Caffeic acid | 0.15 ± 0.01 ab | 0.22 ± 0.06 b | 0.06 ± 0.02 a | 0.09 ± 0.02 a |
p-Coumaric acid | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.12 ± 0.01 a | 0.29 ± 0.20 a |
Ferulic acid | 0.80 ± 0.03 a | 1.09 ± 0.46 a | 1.43 ± 0.12 a | 1.35 ± 0.01 a |
Total | 10.23 ± 2.06 ab | 12.45 ± 1.09 b | 10.18 ± 1.08 ab | 8.08 ± 0.05 a |
Stilbenes | ||||
trans-Piceid | 0.53 ± 0.01 a | 0.73 ± 0.24 a | 0.85 ± 0.07 a | 0.74 ± 0.23 a |
cis-Piceid | 0.88 ± 0.06 a | 1.38 ± 0.37 a | 1.13 ± 0.00 a | 1.41 ± 0.17 a |
trans-Resveratrol | 0.16 ± 0.02 a | 0.30 ± 0.13 a | 0.22 ± 0.06 a | 0.28 ± 0.03 a |
cis-Resveratrol | 0.16 ± 0.01 a | 0.32 ± 0.09 a | 0.40 ± 0.06 a | 0.37 ± 0.16 a |
Total | 1.73 ± 0.06 a | 2.73 ± 0.67 a | 2.61 ± 0.07 a | 2.80 ± 0.12 a |
Control | Ca | Si | Ca + Si | |
---|---|---|---|---|
Aspartic acid (Asp) | 12.49 ± 0.45 a | 14.59 ± 1.41 a | 15.57 ± 2.31 a | 19.37 ± 1.10 b |
Glutamic acid (Glu) | 21.47 ± 3.69 a | 32.89 ± 6.33 b | 29.34 ± 2.71 ab | 35.82 ± 6.34 b |
Asparagine (Asn) | 1.85 ± 0.12 a | 2.72 ± 0.04 b | 1.82 ± 0.26 a | 3.86 ± 0.16 c |
Serine (Ser) | 27.13 ± 2.48 a | 38.85 ± 7.02 b | 30.79 ± 2.74 ab | 31.36 ± 3.54 ab |
Histidine (His) | 13.69 ± 2.79 a | 31.33 ± 12.12 ab | 13.93 ± 1.00 a | 37.87 ± 18.12 b |
Glycine (Gly) | 2.02 ± 1.71 a | 5.40 ± 0.16 b | 5.20 ± 0.60 b | 5.18 ± 0.12 b |
Threonine (Thr) | 34.10 ± 2.02 a | 54.43 ± 4.71 c | 40.60 ± 7.09 ab | 47.28 ± 8.83 bc |
Citrulline (Cit) | 4.86 ± 0.47 a | 8.83 ± 1.55 a | 8.27 ± 2.94 a | 19.47 ± 7.20 b |
Arginine (Arg) | 559.42 ± 40.36 a | 745.72 ± 178.86 a | 708.59 ± 81.93 a | 587.11 ± 156.69 a |
Alanine (Ala) | 58.21 ± 18.68 a | 93.29 ± 3.97 b | 84.24 ± 6.84 b | 88.15 ± 10.66 b |
γ-Aminobutyric acid (Gaba) | 137.71 ± 19.97 a | 152.83 ± 16.78 a | 160.01 ± 19.39 a | 169.63 ± 5.92 a |
Tyrosine (Tyr) | n.d. | n.d. | n.d. | n.d. |
Cysteine (Cys) | n.d. | n.d. | n.d. | n.d. |
Valine (Val) | 4.43 ± 0.59 a | 23.00 ± 3.55 c | 11.50 ± 0.07 b | 22.08 ± 0.11 c |
Methionine (Met) | 3.42 ± 1.01 a | 9.35 ± 1.78 c | 5.23 ± 0.37 ab | 7.28 ± 1.63 bc |
Tryptophan (Trp) | 21.05 ± 2.06 a | 29.00 ± 3.24 b | 22.73 ± 2.94 ab | 24.84 ± 2.90 ab |
Phenylalanine (Phe) | 4.88 ± 0.57 a | 9.42 ± 0.72 b | 9.55 ± 1.35 b | 9.75 ± 0.60 b |
Isoleucine (Ile) | 2.94 ± 0.46 a | 13.65 ± 2.09 c | 5.58 ± 0.55 b | 13.09 ± 0.29 c |
Ornithine (Orn) | 2.12 ± 0.89 a | 3.58 ± 0.70 a | 2.89 ± 0.28 a | 2.50 ± 0.65 a |
Leucine (Leu) | 5.71 ± 0.70 a | 22.51 ± 4.77 b | 9.52 ± 1.85 a | 18.74 ± 1.90 b |
Lysine (Lys) | 2.07 ± 0.03 a | 3.20 ± 0.58 b | 2.63 ± 0.43 ab | 1.73 ± 0.41 a |
Proline (Pro) | 295.23 ± 41.76 a | 373.10 ± 28.58 b | 357.07 ± 16.24 b | 358.02 ± 28.96 b |
Total amino acids | 1214.78 ± 42.53 a | 1666.82 ± 232.04 b | 1525.07 ± 72.80 b | 1504.02 ± 101.89 b |
Total amino acids without Pro | 919.55 ± 32.39 a | 1293.71 ± 220.99 b | 1168.00 ± 66.85 ab | 1145.13 ± 121.64 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garde-Cerdán, T.; González-Lázaro, M.; Alonso-Ortiz de Urbina, D.; Sáenz de Urturi, I.; Marín-San Román, S.; Murillo-Peña, R.; Torres-Díaz, L.L.; Pérez-Álvarez, E.P.; Fernández, V. Foliar Applications of Calcium, Silicon and Their Combination: A Tool to Improve Grape Composition and Quality. Appl. Sci. 2023, 13, 7217. https://doi.org/10.3390/app13127217
Garde-Cerdán T, González-Lázaro M, Alonso-Ortiz de Urbina D, Sáenz de Urturi I, Marín-San Román S, Murillo-Peña R, Torres-Díaz LL, Pérez-Álvarez EP, Fernández V. Foliar Applications of Calcium, Silicon and Their Combination: A Tool to Improve Grape Composition and Quality. Applied Sciences. 2023; 13(12):7217. https://doi.org/10.3390/app13127217
Chicago/Turabian StyleGarde-Cerdán, Teresa, Miriam González-Lázaro, David Alonso-Ortiz de Urbina, Itziar Sáenz de Urturi, Sandra Marín-San Román, Rebeca Murillo-Peña, Lesly L. Torres-Díaz, Eva P. Pérez-Álvarez, and Victoria Fernández. 2023. "Foliar Applications of Calcium, Silicon and Their Combination: A Tool to Improve Grape Composition and Quality" Applied Sciences 13, no. 12: 7217. https://doi.org/10.3390/app13127217
APA StyleGarde-Cerdán, T., González-Lázaro, M., Alonso-Ortiz de Urbina, D., Sáenz de Urturi, I., Marín-San Román, S., Murillo-Peña, R., Torres-Díaz, L. L., Pérez-Álvarez, E. P., & Fernández, V. (2023). Foliar Applications of Calcium, Silicon and Their Combination: A Tool to Improve Grape Composition and Quality. Applied Sciences, 13(12), 7217. https://doi.org/10.3390/app13127217