Changes in Body Mass and Movement Strategy Maintain Jump Height Immediately after Soccer Match
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Collection
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.; Comfort, P.; Lake, J.; McMahon, J.J. Agreement among countermovement jump force-time variables obtained from a wireless dual force plate system and an industry gold standard system. ISBS Proc. Arch. 2022, 40, 14. [Google Scholar]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Galster, S.M.; Hagen, J.A. Analyzing Force-Time Curves: Comparison of Commercially Available Automated Software and Custom MATLAB Analyses. J. Strength Cond. Res. 2022, 36, 2387–2402. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative Countermovement-Jump Analysis to Quantify Acute Neuromuscular Fatigue. Int. J. Sport. Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends assessing neuromuscular fatigue in team sports: A narrative review. Sports 2022, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Pethick, J.; Tallent, J. The Neuromuscular Fatigue-Induced Loss of Muscle Force Control. Sports 2022, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.G.; Struber, L.; Daniel, O.; Nougier, V. Effects of a lower limb muscular fatigue on posture-movement interaction during a lower limb pointing task. Eur. J. Appl. Physiol. 2021, 121, 287–295. [Google Scholar] [CrossRef]
- Carling, C.; McCall, A.; Le Gall, F.; Dupont, G. The impact of short periods of match congestion on injury risk and patterns in an elite football club. Br. J. Sports Med. 2016, 50, 764–768. [Google Scholar] [CrossRef]
- Guthrie, B.; Jagim, A.R.; Jones, M.T. Ready or Not, Here I Come: A Scoping Review of Methods Used to Assess Player Readiness Via Indicators of Neuromuscular Function in Football Code Athletes. Strength Cond. J. 2022, 45, 93–110. [Google Scholar] [CrossRef]
- Thorlund, J.B.; Aagaard, P.; Madsen, K. Rapid Muscle Force Capacity Changes after Soccer Match Play. Int. J. Sports Med. 2009, 30, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Bromley, T.; Turner, A.; Read, P.; Lake, J.; Maloney, S.; Chavda, S.; Bishop, C. Effects of a competitive soccer match on jump performance and interlimb asymmetries in elite academy soccer players. J. Strength Cond. Res. 2021, 35, 1707–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, M.; Myers, T.; Taylor, R.; Morris, R.; Akubat, I. The Dose–Response Relationship Between Training-Load Measures and Changes in Force–Time Components During a Countermovement Jump in Male Academy Soccer Players. Int. J. Sport. Physiol. Perform. 2022, 17, 1634–1641. [Google Scholar] [CrossRef]
- Ishida, A.; Bazyler, C.D.; Sayers, A.L.; Mizuguchi, S.; Gentles, J.A. Acute Effects of Match-Play on Neuromuscular and Subjective Recovery and Stress State in Division I Collegiate Female Soccer Players. J. Strength Cond. Res. 2021, 35, 976–982. [Google Scholar] [CrossRef]
- Andersson, H.M.; Raastad, T.; Nilsson, J.; Paulsen, G.; Garthe, I.; Kadi, F. Neuromuscular fatigue and recovery in elite female soccer: Effects of active recovery. Med. Sci. Sport. Exerc. 2008, 40, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.M.; Clark, N.A. Thermoregulatory observations in soccer match play: Professional and recreational level applications using an intestinal pill system to measure core temperature. Br. J. Sports Med. 2006, 40, 133–138. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sport. Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The validity of Hawkin Dynamics wireless dual force plates for measuring countermovement jump and drop jump variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef]
- Harry, J.R.; Blinch, J.; Barker, L.A.; Krzyszkowski, J.; Chowning, L. Low-Pass Filter Effects on Metrics of Countermovement Vertical Jump Performance. J. Strength Cond. Res. 2020, 36, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a Criterion Method to Determine Peak Mechanical Power Output in a Countermovement Jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.J.; Jones, P.A.; Comfort, P. Comparison of countermovement jump-derived reactive strength index modified and underpinning force-time variables between super league and championship rugby league players. J. Strength Cond. Res. 2022, 36, 226–231. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Comfort, P. Vertical jump testing in rugby league: A rationale for calculating take-off momentum. J. Appl. Biomech. 2020, 36, 370–374. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, J.J.; Lake, J.P.; Comfort, P. Reliability of and Relationship between Flight Time to Contraction Time Ratio and Reactive Strength Index Modified. Sports 2018, 6, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Everyday data analysis with estimation plots. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Vanrenterghem, J.; De Clercq, D.; Cleven, P.V. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Ergonomics 2001, 44, 814–818. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sport. Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Mohr, M.; Ermidis, G.; Jamurtas, A.Z.; Vigh-Larsen, J.F.; Poulios, A.; Draganidis, D.; Papanikolaou, K.; Tsimeas, P.; Batsilas, D.; Loules, G. Extended Match Time Exacerbates Fatigue and Impacts Physiological Responses in Male Soccer Players. Med. Sci. Sport. Exerc. 2023, 55, 80. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Spriet, L.L.; Overgaard, K.; Mohr, M. Muscle glycogen metabolism and high-intensity exercise performance: A narrative review. Sport. Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Vigh-Larsen, J.F.; Krustrup, P. Muscle Glycogen in Elite Soccer–A Perspective on the Implication for Performance, Fatigue, and Recovery. Front. Sport. Act. Living 2022, 4, 151. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.P.; Sterkenburg, N.; Everett, K.; Chapman, D.W.; White, N.; Mengersen, K. Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS ONE 2019, 14, e0219295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, M.; Nólsøe, E.L.; Krustrup, P.; Fatouros, I.G.; Jamurtas, A.Z. Improving hydration in elite male footballers during a national team training camp—An observational case study. Phys. Act. Nutr. 2021, 25, 10. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Briggs, M.A.; McNamee, G.; West, D.J.; Kilduff, L.P.; Stevenson, E.; Russell, M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport 2016, 19, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Sixto, A.; Harrison, A.J.; Floría, P. Larger Countermovement Increases the Jump Height of Countermovement Jump. Sports 2018, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Castilla, A.; Weakley, J.; García-Pinillos, F.; Rojas, F.J.; García-Ramos, A. Influence of countermovement depth on the countermovement jump-derived reactive strength index modified. Eur. J. Sport Sci. 2021, 21, 1606–1616. [Google Scholar] [CrossRef]
- Mandic, R.; Knezevic, O.M.; Mirkov, D.M.; Jaric, S. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. J. Hum. Kinet. 2016, 52, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Markovic, S.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. Body size and countermovement depth confound relationship between muscle power output and jumping performance. Hum. Mov. Sci. 2014, 33, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Gannon, E.A.; Higham, D.G.; Gardner, B.W.; Nan, N.; Zhao, J.; Bisson, L.J. Changes in Neuromuscular Status Across a Season of Professional Men’s Ice Hockey. J. Strength Cond. Res. 2021, 35, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Vigne, G.; Gaudino, C.; Rogowski, I.; Alloatti, G.; Hautier, C. Activity profile in elite Italian soccer team. Int. J. Sport. Med. 2010, 31, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sport. Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Hecksteden, A.; Kellner, R.; Donath, L. Dealing with small samples in football research. Sci. Med. Footb. 2022, 6, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; McMahon, J.J. Within-subject consistency of unimodal and bimodal force application during the countermovement jump. Sports 2018, 6, 143. [Google Scholar] [CrossRef] [Green Version]
- Karamanoukian, A.; Boucher, J.P.; Labbé, R.; Vignais, N. Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces. Sensors 2022, 22, 3673. [Google Scholar] [CrossRef]
- McCall, A.; Nedelec, M.; Carling, C.; Le Gall, F.; Berthoin, S.; Dupont, G. Reliability and sensitivity of a simple isometric posterior lower limb muscle test in professional football players. J. Sport. Sci. 2015, 33, 1298–1304. [Google Scholar] [CrossRef]
- Constantine, E.; Taberner, M.; Richter, C.; Willett, M.; Cohen, D.D. Isometric posterior chain peak force recovery response following match-play in elite youth soccer players: Associations with relative posterior chain strength. Sports 2019, 7, 218. [Google Scholar] [CrossRef] [Green Version]
- Matinlauri, A.; Alcaraz, P.E.; Freitas, T.T.; Mendiguchia, J.; Abedin-Maghanaki, A.; Castillo, A.; Martínez-Ruiz, E.; Carlos-Vivas, J.; Cohen, D.D. A comparison of the isometric force fatigue-recovery profile in two posterior chain lower limb tests following simulated soccer competition. PLoS ONE 2019, 14, e0206561. [Google Scholar] [CrossRef]
GPS Variables | Mean | SD |
---|---|---|
Time Played (min) | 83.13 | 11.32 |
Total Distance (m) | 9550 | 1866 |
Sprint Distance (m) | 974.27 | 438.47 |
Distance/min (m·min−1) | 98.90 | 20.41 |
Top Speed (m·s−1) | 8.53 | 0.34 |
Power plays (count) | 71.29 | 21.95 |
Jump Variables | Pre-Match ICC | Post-Match ICC | Pre-Match CV% | Post-Match CV% |
---|---|---|---|---|
Body Mass (kg) | 0.99 | 1.00 | 0.15 | 0.13 |
Jump Height (m) | 0.86 | 0.81 | 3.88 | 3.97 |
Jump Momentum (kg∙m·s−1) | 0.98 | 0.98 | 1.51 | 1.26 |
Time to Take-off (s) | 0.67 | 0.87 | 9.83 | 8.16 |
Unweighting Phase Time (s) | 0.48 | 0.67 | 14.28 | 14.57 |
Braking Phase Time (s) | 0.77 | 0.48 | 8.84 | 10.01 |
Propulsive Phase Time (s) | 0.93 | 0.92 | 3.79 | 4.12 |
RSImod | 0.74 | 0.87 | 9.37 | 8.32 |
CM Depth (m) | 0.91 | 0.79 | 5.06 | 6.21 |
Jump Variables | Pre-Match | Post-Match | Mean Difference * | p | g |
---|---|---|---|---|---|
Body Mass (kg) | 79.8 ± 6.6 | 78.2 ± 6.5 | 1.62 | <0.001 † | 1.66 |
Jump Height (m) | 0.38 ± 0.04 | 0.38 ± 0.03 | <0.01 | 0.924 | 0.03 |
Jump Momentum (kg∙m·s−1) | 217.4 ± 20.2 | 212.7 ± 19.4 | 4.66 | 0.049 † | 0.56 |
Time to Take-off (s) | 0.81 ± 0.16 | 0.84 ± 0.19 | 0.03 | 0.303 | 0.28 |
Unweighting Phase Time (s) | 0.36 ± 0.06 ** | 0.40 ± 0.08 ** | 0.01 | 0.091 | 0.31 |
Braking Phase Time (s) | 0.17 ± 0.04 | 0.18 ± 0.05 | <0.01 | 0.640 | 0.12 |
Propulsive Phase Time (s) | 0.25 ± 0.05 | 0.25 ± 0.04 | <0.01 | 0.459 | 0.20 |
RSImod | 0.49 ± 0.10 | 0.47 ± 0.12 | 0.01 | 0.457 | 0.20 |
CM Depth (m) | 0.32 ± 0.07 | 0.30 ± 0.06 | 0.02 | 0.016 † | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, R.; Sindall, P.; Hammond, K.M.; Atkins, S.J.; Quinn, M.; McMahon, J.J. Changes in Body Mass and Movement Strategy Maintain Jump Height Immediately after Soccer Match. Appl. Sci. 2023, 13, 7188. https://doi.org/10.3390/app13127188
Spencer R, Sindall P, Hammond KM, Atkins SJ, Quinn M, McMahon JJ. Changes in Body Mass and Movement Strategy Maintain Jump Height Immediately after Soccer Match. Applied Sciences. 2023; 13(12):7188. https://doi.org/10.3390/app13127188
Chicago/Turabian StyleSpencer, Ryan, Paul Sindall, Kelly M. Hammond, Steve J. Atkins, Mark Quinn, and John J. McMahon. 2023. "Changes in Body Mass and Movement Strategy Maintain Jump Height Immediately after Soccer Match" Applied Sciences 13, no. 12: 7188. https://doi.org/10.3390/app13127188
APA StyleSpencer, R., Sindall, P., Hammond, K. M., Atkins, S. J., Quinn, M., & McMahon, J. J. (2023). Changes in Body Mass and Movement Strategy Maintain Jump Height Immediately after Soccer Match. Applied Sciences, 13(12), 7188. https://doi.org/10.3390/app13127188