Glycerol Carbonate Solventless Synthesis Using Ethylene Carbonate, Glycerol and a Tunisian Smectite Clay: Activity, Stability and Kinetic Studies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Purification of Clay
2.2.2. Characterization of Clay Catalyst
2.2.3. Transcarbonation Reaction
2.2.4. Catalyst Reusability Procedure
2.2.5. Analytical Techniques
Qualitative Analysis
Quantitative Analysis
2.2.6. Statistical Methods
3. Results and Discussion
3.1. Further Characterization of the Selected Catalyst
3.1.1. XRD Studies
3.1.2. FTIR Analysis
3.1.3. Scanning Electron Microscopy (SEM)-Electron Dispersion Spectroscopy (EDS)
3.1.4. Porosimetry Analysis: BET Specific Surface
3.2. Qualitative and Quantitative Reaction Analysis
3.3. Catalytic Activity: Transesterification of Glycerol with Ethylene Carbonate
3.3.1. Effect of the Catalyst Concentration
3.3.2. Effect of Molar Ratio
3.3.3. Effect of Temperature
3.4. Catalyst Reusability Tests
3.5. Kinetic Modelling
3.5.1. Model Proposal
3.5.2. Parameters Estimation
3.5.3. Kinetic Model Fitting at Several Temperature Runs
3.5.4. Stability and Deactivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoque, N.; Mazhar, I.; Biswas, W. Application of life cycle assessment for sustainability evaluation of transportation fuels. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–369. [Google Scholar]
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Sonnati, M.O.S.; Amigoni, E.P.; Taffin de Givenchy, T.; Darmanin, O.; Choulet, D.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Rackemann, D.W.; Doherty, W.O.S.; O’Hara, I.M. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnol. Biofuels 2013, 6, 153. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Villaflores, O.B.; Ordono, E.E.; Caparanga, A.R. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresour. Technol. 2017, 228, 264–271. [Google Scholar] [CrossRef]
- Christy, S.; Noschese, A.; Lomeli-Rodriguez, M.; Greeves, N.; Lopez-Sanchez, J.A. Recent progress in the synthesis and applications of glycerol carbonate. Curr. Opin. Green Sustain. Chem. 2018, 14, 99–107. [Google Scholar] [CrossRef]
- Parameswaram, G.; Rao, P.S.N.; Srivani, A.; Rao, G.N.; Lingaiah, N. Magnesia-ceria mixed oxide catalysts for the selective transesterification of glycerol to glycerol carbonate. Mol. Catal. 2018, 451, 135–142. [Google Scholar] [CrossRef]
- Granados-Reyes, J.; Salagre, L.; Cesteros, Y. Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate. Appl. Catal. A Gen. 2017, 536, 9–17. [Google Scholar] [CrossRef]
- Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Wang, Y.; Yu, X.; Wu, Z.; Zhao, F. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem. 2017, 19, 1775–1781. [Google Scholar] [CrossRef]
- Kumar, P.; With, P.; Srivastava, V.C.; Glaser, R.; Mishra, I.M. Glycerol carbonate synthesis by hierarchically structured catalysts: Catalytic activity and characterization. Ind. Eng. Chem. Res. 2015, 54, 12543–12552. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Akpan, U.G.; Kabir, G.; Asif, M.; Hameed, B.H. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts. Energy Convers. Manag. 2017, 138, 183–189. [Google Scholar] [CrossRef]
- Mouloungui, Z.; Yoo, J.W.; Gachen, C.-A.; Gaset, A. Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal. Lett. 1998, 56, 245–247. [Google Scholar]
- Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: Glycerol carbonate. Green Chem. 2005, 7, 529–539. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Sun, P.; Xu, L.; Okoye, P.U.; Li, S.; Zhang, L.; Guo, A.; Zhang, J.; Zhang, A. Disposable baby diapers waste derived catalyst for synthesizing glycerol carbonate by the transesterification of glycerol with dimethyl carbonate. J. Clean. Prod. 2019, 211, 330–341. [Google Scholar] [CrossRef]
- Khayoon, M.S.; Hameed, B.H. Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Appl. Catal. A Gen. 2011, 102, 9229–9235. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Derchi, M.; Hensen, E.J.M. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Appl. Catal. A Gen. 2013, 467, 124–131. [Google Scholar] [CrossRef]
- Liu, P.; Derchi, M.; Hensen, E.J.M. Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl. Catal. B Environ. 2014, 144, 135–143. [Google Scholar] [CrossRef]
- Malyaadri, M.; Jagadeeswaraiah, K.; Sai Prasad, P.S.; Lingaiah, N. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl. Catal. A Gen. 2011, 401, 153–157. [Google Scholar] [CrossRef]
- Philippou, A.; Anderson, M.W. Aldol-type reactions over basic microporous titanosilicate ETS-10 type catalysts. J. Catal. 2000, 189, 395–400. [Google Scholar] [CrossRef]
- Philippou, A.; Rocha, J.; Anderson, M.W. The strong basicity of the microporous titanosilicate ETS-10. Catal. Lett. 1999, 57, 151–153. [Google Scholar] [CrossRef]
- Alali, K.; Lebsir, F.; Amri, S.; Rahmouni, A.; Srasra, E.; Besbes, N. Algerian acid activated clays as efficient catalysts for a green synthesis of solketal by chemoselective. Bull. Chem. React. Eng. Catal. 2019, 14, 130–141. [Google Scholar] [CrossRef]
- Okoye, P.U.; Wang, S.; Khanday, W.A.; Li, S.; Tang, T.; Zhang, L. Box-Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst. Renew. Energy 2020, 146, 2676–2687. [Google Scholar] [CrossRef]
- Reddy, C.R.; Iyengar, P.; Nagendrappa, G.; Prakash, B.S. Esterification of dicarboxylic acids to diesters over Mn+-montmorillonite clay catalysts. J. Catal. Lett. 2005, 101, 87–91. [Google Scholar] [CrossRef]
- Bhorodwaj, S.K.; Dutta, D.K. Heteropoly acid supported modified Montmorillonite clay: An effective catalyst for the esterification of acetic acid with sec-butanol. Appl. Catal. A 2010, 378, 221–226. [Google Scholar] [CrossRef]
- Hammond, C.; Lopez-Sanchez, J.A.; Ab Rahim, M.H.; Dimitratos, N.; Jenkins, R.L.; Carley, Q.H.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans. 2011, 40, 3927–3937. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Gomez, J.R.; Gomez-Jimenez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodriguez, A.; Ramirez-Lopez, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villaran-Velasco, M.C. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A Gen. 2009, 366, 315–324. [Google Scholar] [CrossRef]
- Besbes, N.; Jellali, H.; Pale, P.; Srasra, E.; Efrit, M.L. Transformations of N-acylaziridines catalyzed by silica- and alumina-based supports: A mechanistic elucidation. Comptes Rendus Chim. 2010, 13, 358–364. [Google Scholar] [CrossRef]
- Besbes, N.; Jellali, H.; Pale, P.; Efrit, M.L.; Srasra, E. Catalyzed isomerization by silica gel and active clay of n-acyl-2,2-dimethylaziridines: Mechanistic Approach. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 883–889. [Google Scholar] [CrossRef]
- Mnasri, S.; Besbes, N.; Frini-Srasra, N.; Srasra, E. Study of the catalytic activity of aluminum, zirconium and cerium bridged clays in the synthesis of 2,2-dimethyl-1,3-dioxolane. Comptes Rendus Chim. 2012, 15, 437–443.3. [Google Scholar] [CrossRef]
- Hagui, W.; Essid, R.; Amri, S.; Feris, N.; Khabbouchi, M.; Tabbene, O.; Limam, F.; Srasra, E.; Besbes, N. Acid activated clay as heterogeneous and reusable catalyst for the synthesis of bioactive cyclic ketal derivatives. Turk. J. Chem. 2019, 43, 435–451. [Google Scholar] [CrossRef]
- Amri, S.; Gómez, J.; Balea, A.; Merayo, N.; Srasra, E.; Besbes, N.; Ladero, M. Green production of glycerol ketals with a clay-based heterogeneous acid catalyst. Appl. Sci. 2019, 9, 4488. [Google Scholar] [CrossRef] [Green Version]
- Barret, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances: Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Nagendrappa, G. Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 2011, 53, 106–138. [Google Scholar] [CrossRef]
- Fatimah, I.; Sahroni, I.; Fadillah, G.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O. Glycerol to solketal for fuel Additive: Recent progress in heterogeneous catalysts. Energies 2019, 12, 2872. [Google Scholar] [CrossRef] [Green Version]
- Namazifar, Z.; Saadati, F.; Miranbeigi, A.A. Synthesis and characterization of novel phenolic derivatives with the glycerol ketal group as an efficient antioxidant for gasoline stabilization. New J. Chem. 2019, 43, 10038–10044. [Google Scholar] [CrossRef]
- Nobre, P.C.; Vargas, H.A.; Jacoby, C.G.; Schneider, P.H.; Casaril, A.M.; Savegnago, L.; Schumacher, R.F.; Lenardão, E.J.; Ávila, D.S.; Rodrigues Junior, L.B.L.; et al. Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: In vitro and in vivo antioxidant activity. Arab. J. Chem. 2017, 13, 883–899. [Google Scholar] [CrossRef]
- Kaur, A.; Prakash, R.; Ali, A. 1H NMR-assisted quantification of glycerol carbonate in the mixture of glycerol and glycerol carbonate. Talanta 2018, 178, 1001–1005. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; De Frutos, P.; Iborra, S.; Noy, M.; Velty, A. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. J. Catal. 2010, 269, 140–149. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Liu, S.; Lu, L.; Ma, X.; Deng, Y. Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol over binary zinc-yttrium oxides. Catal. Commun. 2011, 16, 45–49. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, J.; Liu, G.; Liu, Y.; Wang, Z.; Zhang, W.; Jia, M. Efficient porous carbon-supported MgO catalysts for the transesterification of dimethyl carbonate with diethyl carbonate. J. Mol. Catal. A 2010, 327, 32–37. [Google Scholar] [CrossRef]
- Du, M.; Li, Q.; Dong, W.; Geng, T.; Jiang, Y. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by K2CO3/MgO. Res. Chem. Intermed. 2012, 38, 1069–1077. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. On the deactivation of alkali solid catalysts for the synthesis of glycerol, carbonate from glycerol and dimethyl carbonate. Reac. Kinet. Mech. Catal. 2011, 102, 113–126. [Google Scholar] [CrossRef]
- Da Silva, M.J.; Julio, A.A.; Ferreira, S.O.; Da Silva, R.C.; Chaves, D.M. Tin (II) phosphotung- state heteropoly salt: An efficient solid catalyst to synthesize bioadditives ethers from glycerol. Fuel 2019, 254, 115607. [Google Scholar] [CrossRef]
- Esteban, J.; Fuente, E.; Blanco, A.; Ladero, M.; Garcia-Ochoa, F. Phenomenological kinetic model of the synthesis of glycerol carbonate assisted by focused beam reflectance measurements. Chem. Eng. J. 2015, 260, 434–443. [Google Scholar] [CrossRef]
- Alvarez Serafini, M.; Gonzalez-Miranda, D.; Tonetto, G.; Garcia-Ochoa, F.; Ladero, M. Synthesis of glycerol carbonate from ethylene carbonate using zinc stearate as a catalyst: Operating conditions and kinetic modeling. Molecules 2023, 28, 1311. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.; Gertisser, R.; Zholobenko, V. Structural features and stability of Spanish sepiolite as a potential catalyst. Appl. Clay Sci. 2018, 162, 297–304. [Google Scholar] [CrossRef]
- Ali, B.; Yusup, S.; Quitain, A.T.; Alnarabiji, M.S.; Kamil, R.N.M.; Kida, T. Synthesis of novel graphene oxide/bentonite bi-functional heterogeneous catalyst for one-pot esterification and transesterification reactions. Energy Convers. Manag. 2018, 171, 1801–1812. [Google Scholar] [CrossRef]
- Jurado, E.; Camacho, F.; Luzón, G.; Fernández-Serrano, M.; García-Román, M. Kinetics of the enzymatic hydrolysis of triglycerides in o/w emulsions: Study of the initial rates and the reaction time course. Biochem. Eng. J. 2008, 40, 473–484. [Google Scholar] [CrossRef]
- Esteban, J.; Domínguez, E.; Ladero, M.; Garcia-Ochoa, F. Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst. Fuel Process. Technol. 2015, 138, 243–251. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Appl. Catal. B Environ. 2013, 138–139, 236–242. [Google Scholar] [CrossRef]
- Shan, R.; Shi, J.; Yan, B.; Chen, G.; Yao, J.; Liu, C. Transesterification of palm oil to fatty acids methyl ester using K2CO3/palygorskite catalyst. Energy Convers. Manag. 2016, 116, 142–149. [Google Scholar] [CrossRef]
Pos. [°2Th.] | Height [cts] | FWHM [°2Th.] | d-spacing [Å] | Rel. Int. [%] |
---|---|---|---|---|
8.78 | 666.60 | 0.64 | 10.06 | 13.37 |
13.89 | 34.90 | 0.70 | 6.37 | 0.70 |
15.81 | 106.83 | 0.11 | 5.60 | 2.14 |
17.66 | 325.30 | 0.05 | 5.02 | 6.52 |
19.82 | 1084.46 | 0.29 | 4.47 | 21.75 |
20.87 | 1258.72 | 0.08 | 4.25 | 25.25 |
23.50 | 595.47 | 0.14 | 3.78 | 11.94 |
25.36 | 1107.46 | 0.17 | 3.51 | 22.21 |
26.66 | 4985.60 | 0.14 | 3.34 | 100.00 |
27.52 | 903.13 | 0.17 | 3.24 | 18.11 |
30.83 | 497.44 | 0.14 | 2.89 | 9.98 |
32 | 559.63 | 0.17 | 2.79 | 11.22 |
33.17 | 513.67 | 0.35 | 2.70 | 10.30 |
34.81 | 1125.76 | 0.17 | 2.57 | 22.58 |
36.57 | 627.99 | 0.17 | 2.45 | 12.60 |
37.88 | 405.44 | 0.23 | 2.37 | 8.13 |
39.48 | 488.74 | 0.08 | 2.28 | 9.80 |
Surface Area (m²/g) | BET Surface Area: 74.235 |
t-Plot Micropore Area: 11.963 | |
BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 45.847 | |
BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 71.768 | |
Pore Volume (cm³/g) | Single point adsorption total pore volume of pores less than 5369.337 Å diameter at P/Po = 0.996403834: 0.141 |
t-Plot micropore volume: 0.008 | |
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.119 | |
JH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.138 | |
Pore Size (Å) | Adsorption average pore width (4V/A by BET): 76.3032 |
BJH Adsorption average pore diameter (4V/A): 104.267 | |
BJH Desorption average pore diameter (4V/A): 76.954 |
Variable | K | Kcat |
---|---|---|
Catalyst concentration | 4.21·10−4 ± 5.45·10−6 | 2.726 ± 0.222 |
Reagent molar ratio | 1.70·10−3 ± 2.89·10−5 | 2.726 (fixed) |
Variable | RSS | Se | VE % | F |
---|---|---|---|---|
Catalyst concentration | 0.001631 | 0.62% | 99.85% | 44,206 |
Reagent molar ratio | 0.03712 | 2.90% | 98.71% | 16,400 |
k0 | Ea/R | RSS | Se | VE % | F |
---|---|---|---|---|---|
18.09 ± 0.68 | 9077 ± 251 | 0.0697 | 3.47% | 98.62 | 7444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snoussi, Y.; Escanciano, I.A.; Serafini, M.A.; Besbes, N.; Bolivar, J.M.; Ladero, M. Glycerol Carbonate Solventless Synthesis Using Ethylene Carbonate, Glycerol and a Tunisian Smectite Clay: Activity, Stability and Kinetic Studies. Appl. Sci. 2023, 13, 7182. https://doi.org/10.3390/app13127182
Snoussi Y, Escanciano IA, Serafini MA, Besbes N, Bolivar JM, Ladero M. Glycerol Carbonate Solventless Synthesis Using Ethylene Carbonate, Glycerol and a Tunisian Smectite Clay: Activity, Stability and Kinetic Studies. Applied Sciences. 2023; 13(12):7182. https://doi.org/10.3390/app13127182
Chicago/Turabian StyleSnoussi, Yosra, Itziar A. Escanciano, Mariana Alvarez Serafini, Neji Besbes, Juan M. Bolivar, and Miguel Ladero. 2023. "Glycerol Carbonate Solventless Synthesis Using Ethylene Carbonate, Glycerol and a Tunisian Smectite Clay: Activity, Stability and Kinetic Studies" Applied Sciences 13, no. 12: 7182. https://doi.org/10.3390/app13127182
APA StyleSnoussi, Y., Escanciano, I. A., Serafini, M. A., Besbes, N., Bolivar, J. M., & Ladero, M. (2023). Glycerol Carbonate Solventless Synthesis Using Ethylene Carbonate, Glycerol and a Tunisian Smectite Clay: Activity, Stability and Kinetic Studies. Applied Sciences, 13(12), 7182. https://doi.org/10.3390/app13127182