Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Statistical Analyses
3. Results
3.1. Comparison between Skip-30 s and Skip-3 min
3.2. Concurrent Validity
3.3. Between-Day Test–Retest Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sport. Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, F.; Weakley, J.; Townshend, A.D.; Timmins, R.G.; Morrison, M.; McLaren, S.J. The acute demands of repeated-sprint training on physiological, neuromuscular, perceptual and performance outcomes in team sport athletes: A systematic review and meta-analysis. Sport. Med. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Held, S.; Rappelt, L.; Giesen, R.; Wiedenmann, T.; Deutsch, J.P.; Wicker, P.; Donath, L. Increased oxygen uptake in well-trained runners during uphill high intensity running intervals: A randomized crossover testing. Front. Physiol. 2023, 14, 1117314. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Teske, A.; Sturdy, R.; Thomas, H.; Stavrinou, P.S.; Bogdanis, G.C. Shorter versus longer durations of rowing-based interval exercise attenuate the physiological and perceptual response. Res. Q. Exerc. Sport 2022, 1–9. ahead-of-print. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sport. Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Trecroci, A.; Cavaggioni, L.; Caccia, R.; Alberti, G. Jump rope training: Balance and motor coordination in preadolescent soccer players. J. Sport. Sci. Med. 2015, 14, 792–798. [Google Scholar]
- Ramirez-Campillo, R.; Andrade, D.C.; García-Pinillos, F.; Negra, Y.; Boullosa, D.; Moran, J. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis. J. Sport. Sci. 2021, 39, 2030–2050. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Lago-Fuentes, C.; Latorre-Román, P.A.; Pantoja-Vallejo, A.; Ramirez-Campillo, R. Jump-rope training: Improved 3-km time-trial performance in endurance runners via enhanced lower-limb reactivity and foot-arch stiffness. Int. J. Sport. Physiol. Perform. 2020, 15, 927–933. [Google Scholar] [CrossRef]
- Makaruk, H. Acute effects of rope jumping warm-up on power and jumping ability in track and field athletes. Pol. J. Sport Tour. 2013, 20, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Ha, A.S.; Lonsdale, C.; Ng, J.Y.Y.; Lubans, D.R. A school-based rope skipping program for adolescents: Results of a randomized trial. Prev. Med. 2017, 101, 188–194. [Google Scholar] [CrossRef]
- Baumgartner, L.; Postler, T.; Graf, C.; Ferrari, N.; Haller, B.; Oberhoffer-Fritz, R.; Schulz, T. Can school-based physical activity projects such as skipping hearts have a long-term impact on health and health behavior. Front. Public Health 2020, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- National Heart Foundation of Australia. (n.d.). Jump Rope for Heart. Available online: https://www.jumprope.org.au/ (accessed on 6 October 2022).
- Haskell, W.L.; Lee, I.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sport. Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Ridley, K.; Olds, T.S. Assigning energy costs to activities in children: A review and synthesis. Med. Sci. Sport. Exerc. 2008, 40, 1439–1446. [Google Scholar] [CrossRef] [Green Version]
- Harrell, J.S.; McMurray, R.G.; Baggett, C.D.; Pennell, M.L.; Pearce, P.F.; Bangdiwala, S.I. Energy costs of physical activities in children and adolescents. Med. Sci. Sport. Exerc. 2005, 37, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Town, G.P.; Sol, N.; Sinning, W.E. The effect of rope skipping rate on energy expenditure of males and females. Med. Sci. Sport. Exerc. 1980, 12, 295–298. [Google Scholar] [CrossRef]
- Getchell, B.; Cleary, P. The caloric costs of rope skipping and running. Phys. Sportsmed. 1980, 8, 55–60. [Google Scholar] [CrossRef]
- Solis, K.; Foster, C.; Thompson, N.; Cefalu, C. Aerobic requirements for and heart rate responses to variations in rope jumping techniques. Phys. Sportsmed. 1988, 16, 121–128. [Google Scholar] [CrossRef]
- Kilpatrick, M.W.; Martinez, N.; Little, J.P.; Jung, M.E.; Jones, A.M.; Price, N.W.; Lende, D.H. Impact of high-intensity interval duration on perceived exertion. Med. Sci. Sport. Exerc. 2015, 47, 1038–1045. [Google Scholar] [CrossRef]
- Hall-López, J.A.; Ochoa-Martínez, P.Y.; Moncada-Jiménez, J.; Ocampo Méndez, M.A.; Martínez García, I.; Martínez García, M.A. Reliability of the maximal oxygen uptake following two consecutive trials by indirect calorimetry. Nutr. Hosp. 2015, 31, 1726–1732. [Google Scholar] [CrossRef]
- International Jump Rope Union. Timing Tracks. 2019. Available online: https://ijru.sport/rules/timing-tracks-and-score-sheets (accessed on 6 July 2021).
- Wagner, H.; Stadlmann, M.; Wicker, A.; Papamichalopoulos, C.; von Duvillard, S.P. Comparison of stationary ZAN 600 to portable Cosmed K4b2 metabolic cart in experienced game sport athletes. Int. J. Sport Exerc. Health Res. 2017, 1, 41–44. [Google Scholar] [CrossRef]
- Tavares, F.; Healey, P.; Brett Smith, T.; Driller, M. Short-term effect of training and competition on muscle soreness and neuromuscular performance in elite rugby athletes. J. Aust. Strength Cond. 2018, 26, 11–17. [Google Scholar]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2020. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Moghetti, P.; Bacchi, E.; Brangani, C.; Donà, S.; Negri, C. Metabolic effects of exercise. Front. Horm. Res. 2016, 47, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Rhodes, E.C. Oxygen uptake kinetics during exercise. Sport. Med. 1999, 27, 313–327. [Google Scholar] [CrossRef]
- Van Loon, L.J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.M.; Wagenmakers, A.J.M. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sport. Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Herda, T.J.; Cramer, J.T. Bioenergetics of exercise and training. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 43–63. [Google Scholar]
- Lorke, N.; Keller, S.; Rein, R.; Zedler, M.; Drescher, C.; Weil, P.; Schwerhoff, M.; Braunstein, B. Speed rope skipping—Performance and coordination in a four-limb task. J. Mot. Behav. 2022, 54, 599–612. [Google Scholar] [CrossRef]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.; Huang, C. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Bruce, O.; Ramsay, M.; Kennedy, G.; Edwards, W.B. Lower-limb joint kinetics in jump rope skills performed by competitive athletes. Sport. Biomech. 2020, 1–14. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
Variables | Participants | Mean (SD) |
---|---|---|
Sex (male: female) | n = 23 | 13: 10 |
Age (years) | n = 23 | 23.23 (2.62) |
Height (cm) | n = 23 | 169.18 (8.63) |
Weight (kg) | n = 23 | 62.21 (11.10) |
Rope-skipping experience (years) | n = 23 | 5.09 (6.00) |
O2max (mL·min−1·kg−1) | * n = 22 | 49.39 (6.93) |
Skip-30 s (I) | Skip-3 min (J) | 95% Confidence Interval (I)–(J) | |d| | p-Value | ||
---|---|---|---|---|---|---|
Skipping Performance (n = 23) | ||||||
Total count of loops by IJRU | 82.91 (28.88) | 445.00 (141.02) | −411.52, | −312.65 | 3.17 | <0.01 |
Skipping rate (skips·min−1) | 165.83 (57.77) | 148.33 (47.01) | 8.36, | 26.62 | 0.83 | <0.01 |
Metabolic Responses * (n = 22) | ||||||
MET | 4.79 (1.01) | 8.00 (1.26) | −3.63, | −2.78 | 3.27 | <0.01 |
Peak O2 (mL·min−1·kg−1) | 29.20 (6.41) | 41.99 (8.68) | −16.36, | −9.23 | 1.55 | <0.01 |
Average O2 (mL·min−1·kg−1) | 16.76 (3.53) | 27.98 (4.42) | −12.71, | −9.74 | 3.44 | <0.01 |
Average HR (beats·min−1) | 148.88 (24.66) | 166.29 (14.86) | −25.10, | −9.71 | 1.00 | <0.01 |
% of O2max (%) | 59.28 (14.45) | 84.86 (20.38) | −34.18, | −16.97 | 1.32 | <0.01 |
Perceptual Responses (n = 23) | ||||||
Post-exercise RPE | 11.53 (2.29) | 14.26 (2.28) | −3.47, | −2.36 | 2.28 | <0.01 |
Shoulder MS | 2.17 (0.94) | 3.17 (0.89) | −1.43, | −0.57 | 1.00 | <0.01 |
Chest MS | 1.96 (0.82) | 2.61 (0.94) | −1.01, | −0.29 | 0.78 | <0.01 |
Groin MS | 1.78 (0.74) | 2.52 (0.85) | −1.06, | −0.41 | 0.98 | <0.01 |
Quadricep MS | 2.26 (1.05) | 3.39 (1.16) | −1.51, | −0.75 | 1.30 | <0.01 |
Upper Back MS | 1.91 (0.79) | 2.70 (1.06) | −1.13, | −0.44 | 0.98 | <0.01 |
Lower Back MS | 2.04 (0.88) | 2.48 (0.95) | −0.72, | −0.15 | 0.66 | <0.01 |
Gluteus MS | 2.35 (1.11) | 3.04 (1.07) | −1.03, | −0.36 | 0.91 | <0.01 |
Hamstring MS | 2.26 (1.14) | 3.39 (1.07) | −1.46, | −0.80 | 1.49 | <0.01 |
Calf MS | 3.00 (1.31) | 4.09 (0.90) | −1.48, | −0.70 | 1.21 | <0.01 |
Overall MS in Upper Body # | 7.96 (3.05) | 10.78 (3.05) | −4.03, | −1.63 | 1.02 | <0.01 |
Overall MS in Lower Body ^ | 11.49 (4.62) | 16.13 (3.90) | −5.86, | −3.45 | 1.67 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, G.C.-C.; Sun, F.; Kam, K.W.-K.; Kong, Y.-H.; Zhang, B. Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses. Appl. Sci. 2023, 13, 7072. https://doi.org/10.3390/app13127072
Chow GC-C, Sun F, Kam KW-K, Kong Y-H, Zhang B. Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses. Applied Sciences. 2023; 13(12):7072. https://doi.org/10.3390/app13127072
Chicago/Turabian StyleChow, Gary Chi-Ching, Fenghua Sun, Kevin Wai-Keung Kam, Yu-Hin Kong, and Borui Zhang. 2023. "Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses" Applied Sciences 13, no. 12: 7072. https://doi.org/10.3390/app13127072