Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Statistical Analyses
3. Results
3.1. Comparison between Skip-30 s and Skip-3 min
3.2. Concurrent Validity
3.3. Between-Day Test–Retest Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sport. Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, F.; Weakley, J.; Townshend, A.D.; Timmins, R.G.; Morrison, M.; McLaren, S.J. The acute demands of repeated-sprint training on physiological, neuromuscular, perceptual and performance outcomes in team sport athletes: A systematic review and meta-analysis. Sport. Med. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Held, S.; Rappelt, L.; Giesen, R.; Wiedenmann, T.; Deutsch, J.P.; Wicker, P.; Donath, L. Increased oxygen uptake in well-trained runners during uphill high intensity running intervals: A randomized crossover testing. Front. Physiol. 2023, 14, 1117314. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Teske, A.; Sturdy, R.; Thomas, H.; Stavrinou, P.S.; Bogdanis, G.C. Shorter versus longer durations of rowing-based interval exercise attenuate the physiological and perceptual response. Res. Q. Exerc. Sport 2022, 1–9. ahead-of-print. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sport. Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Trecroci, A.; Cavaggioni, L.; Caccia, R.; Alberti, G. Jump rope training: Balance and motor coordination in preadolescent soccer players. J. Sport. Sci. Med. 2015, 14, 792–798. [Google Scholar]
- Ramirez-Campillo, R.; Andrade, D.C.; García-Pinillos, F.; Negra, Y.; Boullosa, D.; Moran, J. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis. J. Sport. Sci. 2021, 39, 2030–2050. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Lago-Fuentes, C.; Latorre-Román, P.A.; Pantoja-Vallejo, A.; Ramirez-Campillo, R. Jump-rope training: Improved 3-km time-trial performance in endurance runners via enhanced lower-limb reactivity and foot-arch stiffness. Int. J. Sport. Physiol. Perform. 2020, 15, 927–933. [Google Scholar] [CrossRef]
- Makaruk, H. Acute effects of rope jumping warm-up on power and jumping ability in track and field athletes. Pol. J. Sport Tour. 2013, 20, 200–204. [Google Scholar] [CrossRef]
- Ha, A.S.; Lonsdale, C.; Ng, J.Y.Y.; Lubans, D.R. A school-based rope skipping program for adolescents: Results of a randomized trial. Prev. Med. 2017, 101, 188–194. [Google Scholar] [CrossRef]
- Baumgartner, L.; Postler, T.; Graf, C.; Ferrari, N.; Haller, B.; Oberhoffer-Fritz, R.; Schulz, T. Can school-based physical activity projects such as skipping hearts have a long-term impact on health and health behavior. Front. Public Health 2020, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- National Heart Foundation of Australia. (n.d.). Jump Rope for Heart. Available online: https://www.jumprope.org.au/ (accessed on 6 October 2022).
- Haskell, W.L.; Lee, I.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sport. Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Ridley, K.; Olds, T.S. Assigning energy costs to activities in children: A review and synthesis. Med. Sci. Sport. Exerc. 2008, 40, 1439–1446. [Google Scholar] [CrossRef]
- Harrell, J.S.; McMurray, R.G.; Baggett, C.D.; Pennell, M.L.; Pearce, P.F.; Bangdiwala, S.I. Energy costs of physical activities in children and adolescents. Med. Sci. Sport. Exerc. 2005, 37, 329–336. [Google Scholar] [CrossRef]
- Town, G.P.; Sol, N.; Sinning, W.E. The effect of rope skipping rate on energy expenditure of males and females. Med. Sci. Sport. Exerc. 1980, 12, 295–298. [Google Scholar] [CrossRef]
- Getchell, B.; Cleary, P. The caloric costs of rope skipping and running. Phys. Sportsmed. 1980, 8, 55–60. [Google Scholar] [CrossRef]
- Solis, K.; Foster, C.; Thompson, N.; Cefalu, C. Aerobic requirements for and heart rate responses to variations in rope jumping techniques. Phys. Sportsmed. 1988, 16, 121–128. [Google Scholar] [CrossRef]
- Kilpatrick, M.W.; Martinez, N.; Little, J.P.; Jung, M.E.; Jones, A.M.; Price, N.W.; Lende, D.H. Impact of high-intensity interval duration on perceived exertion. Med. Sci. Sport. Exerc. 2015, 47, 1038–1045. [Google Scholar] [CrossRef]
- Hall-López, J.A.; Ochoa-Martínez, P.Y.; Moncada-Jiménez, J.; Ocampo Méndez, M.A.; Martínez García, I.; Martínez García, M.A. Reliability of the maximal oxygen uptake following two consecutive trials by indirect calorimetry. Nutr. Hosp. 2015, 31, 1726–1732. [Google Scholar] [CrossRef]
- International Jump Rope Union. Timing Tracks. 2019. Available online: https://ijru.sport/rules/timing-tracks-and-score-sheets (accessed on 6 July 2021).
- Wagner, H.; Stadlmann, M.; Wicker, A.; Papamichalopoulos, C.; von Duvillard, S.P. Comparison of stationary ZAN 600 to portable Cosmed K4b2 metabolic cart in experienced game sport athletes. Int. J. Sport Exerc. Health Res. 2017, 1, 41–44. [Google Scholar] [CrossRef]
- Tavares, F.; Healey, P.; Brett Smith, T.; Driller, M. Short-term effect of training and competition on muscle soreness and neuromuscular performance in elite rugby athletes. J. Aust. Strength Cond. 2018, 26, 11–17. [Google Scholar]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2020. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Moghetti, P.; Bacchi, E.; Brangani, C.; Donà, S.; Negri, C. Metabolic effects of exercise. Front. Horm. Res. 2016, 47, 44–57. [Google Scholar] [CrossRef]
- Xu, F.; Rhodes, E.C. Oxygen uptake kinetics during exercise. Sport. Med. 1999, 27, 313–327. [Google Scholar] [CrossRef]
- Van Loon, L.J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.M.; Wagenmakers, A.J.M. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sport. Med. 2014, 44, 87–96. [Google Scholar] [CrossRef]
- Herda, T.J.; Cramer, J.T. Bioenergetics of exercise and training. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 43–63. [Google Scholar]
- Lorke, N.; Keller, S.; Rein, R.; Zedler, M.; Drescher, C.; Weil, P.; Schwerhoff, M.; Braunstein, B. Speed rope skipping—Performance and coordination in a four-limb task. J. Mot. Behav. 2022, 54, 599–612. [Google Scholar] [CrossRef]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.; Huang, C. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Bruce, O.; Ramsay, M.; Kennedy, G.; Edwards, W.B. Lower-limb joint kinetics in jump rope skills performed by competitive athletes. Sport. Biomech. 2020, 1–14. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
Variables | Participants | Mean (SD) |
---|---|---|
Sex (male: female) | n = 23 | 13: 10 |
Age (years) | n = 23 | 23.23 (2.62) |
Height (cm) | n = 23 | 169.18 (8.63) |
Weight (kg) | n = 23 | 62.21 (11.10) |
Rope-skipping experience (years) | n = 23 | 5.09 (6.00) |
O2max (mL·min−1·kg−1) | * n = 22 | 49.39 (6.93) |
Skip-30 s (I) | Skip-3 min (J) | 95% Confidence Interval (I)–(J) | |d| | p-Value | ||
---|---|---|---|---|---|---|
Skipping Performance (n = 23) | ||||||
Total count of loops by IJRU | 82.91 (28.88) | 445.00 (141.02) | −411.52, | −312.65 | 3.17 | <0.01 |
Skipping rate (skips·min−1) | 165.83 (57.77) | 148.33 (47.01) | 8.36, | 26.62 | 0.83 | <0.01 |
Metabolic Responses * (n = 22) | ||||||
MET | 4.79 (1.01) | 8.00 (1.26) | −3.63, | −2.78 | 3.27 | <0.01 |
Peak O2 (mL·min−1·kg−1) | 29.20 (6.41) | 41.99 (8.68) | −16.36, | −9.23 | 1.55 | <0.01 |
Average O2 (mL·min−1·kg−1) | 16.76 (3.53) | 27.98 (4.42) | −12.71, | −9.74 | 3.44 | <0.01 |
Average HR (beats·min−1) | 148.88 (24.66) | 166.29 (14.86) | −25.10, | −9.71 | 1.00 | <0.01 |
% of O2max (%) | 59.28 (14.45) | 84.86 (20.38) | −34.18, | −16.97 | 1.32 | <0.01 |
Perceptual Responses (n = 23) | ||||||
Post-exercise RPE | 11.53 (2.29) | 14.26 (2.28) | −3.47, | −2.36 | 2.28 | <0.01 |
Shoulder MS | 2.17 (0.94) | 3.17 (0.89) | −1.43, | −0.57 | 1.00 | <0.01 |
Chest MS | 1.96 (0.82) | 2.61 (0.94) | −1.01, | −0.29 | 0.78 | <0.01 |
Groin MS | 1.78 (0.74) | 2.52 (0.85) | −1.06, | −0.41 | 0.98 | <0.01 |
Quadricep MS | 2.26 (1.05) | 3.39 (1.16) | −1.51, | −0.75 | 1.30 | <0.01 |
Upper Back MS | 1.91 (0.79) | 2.70 (1.06) | −1.13, | −0.44 | 0.98 | <0.01 |
Lower Back MS | 2.04 (0.88) | 2.48 (0.95) | −0.72, | −0.15 | 0.66 | <0.01 |
Gluteus MS | 2.35 (1.11) | 3.04 (1.07) | −1.03, | −0.36 | 0.91 | <0.01 |
Hamstring MS | 2.26 (1.14) | 3.39 (1.07) | −1.46, | −0.80 | 1.49 | <0.01 |
Calf MS | 3.00 (1.31) | 4.09 (0.90) | −1.48, | −0.70 | 1.21 | <0.01 |
Overall MS in Upper Body # | 7.96 (3.05) | 10.78 (3.05) | −4.03, | −1.63 | 1.02 | <0.01 |
Overall MS in Lower Body ^ | 11.49 (4.62) | 16.13 (3.90) | −5.86, | −3.45 | 1.67 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, G.C.-C.; Sun, F.; Kam, K.W.-K.; Kong, Y.-H.; Zhang, B. Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses. Appl. Sci. 2023, 13, 7072. https://doi.org/10.3390/app13127072
Chow GC-C, Sun F, Kam KW-K, Kong Y-H, Zhang B. Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses. Applied Sciences. 2023; 13(12):7072. https://doi.org/10.3390/app13127072
Chicago/Turabian StyleChow, Gary Chi-Ching, Fenghua Sun, Kevin Wai-Keung Kam, Yu-Hin Kong, and Borui Zhang. 2023. "Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses" Applied Sciences 13, no. 12: 7072. https://doi.org/10.3390/app13127072
APA StyleChow, G. C.-C., Sun, F., Kam, K. W.-K., Kong, Y.-H., & Zhang, B. (2023). Short vs. Long Bouts of All-Out Rope Skipping: Effects on Metabolic and Perceptual Responses. Applied Sciences, 13(12), 7072. https://doi.org/10.3390/app13127072