Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter
Abstract
:1. Introduction
2. Hybrid Wind-PV System Modeling
2.1. Wind Turbine System Modeling
2.1.1. Turbine Model
2.1.2. PMSG Modeling
2.1.3. Wind MPPT Controller
2.2. PV System Modeling
2.3. PV Panels Model
PV MPPT Controller
2.4. Battery Storge System
2.5. Multiport DC Converter Modeling
2.5.1. Port 1 and Port 2 Model
2.5.2. Port 3 Model
- Boost mode (0 < α < 0.5): In this case, switch T3 is turned off and the control is performed only by switch T4 (Figure 11).
- 2.
- Buck mode (0.5 < α < 1): In this case, switch T4 is turned off and the control is performed only by switch T3 (Figure 12).
2.5.3. Output Model
2.5.4. Stabilization of DC Voltage Output
3. Robust Current Control Design Based on Lyapunov Approach
4. Experimental Implementation
4.1. Wind Turbine Emulator
4.2. Photovoltaic Panel Emulator
4.3. Profiles
5. Experimental Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
HRES | Hybrid renewable energy system |
PV | Photovotaic |
RES | Renewable energy system |
DC | Direct current |
AC | Alternating current |
RES | Renewable energy system |
MP | Multiport |
MPC | Multiport converters |
PV | Photovoltaic |
WBG | Wide bandgap |
Cp | Power coefficient |
PMSG | Permanent magnet synchronous generator |
MPPT | Maximum power point tracking |
PWM | Pulse width modulation |
IGBT | Insulated-gate bipolar transistor |
T | Transistor |
D | Diode |
SOC | State of charge |
PT | Turbine Aerodynamic power |
A | The area swept by the rotor blades |
v | Wind speed |
β | Pitch angle |
λ | Tip-Speed Ratio (TSR) |
ω | Rotor electric speed |
Ω | Mechanical speed |
Rs | Stator resistance of PMSG |
Id | Stator direct current of PMSG |
Iq | Stator quadrature current of PMSG |
Vd | Stator direct voltage of PMSG |
Vq | Stator quadrature voltage of PMSG |
Ld | Stator direct inductance of PMSG |
Lq | Stator quadrature inductance of PMSG |
ϕf | Flux of the permanent magnet. |
Isat | Reverse saturation current |
K | Boltzmann’s constant |
T | Temperature |
e | electron charge |
n | Ideality factor |
Iph | Photonic current |
Vpv | PV voltage |
Ipv | PV current |
Np | Parallel cells |
Ns | Series cells |
Isc | Storage current |
Iwc | Output wind current |
Ipvc | Output PV current |
Irew | Renewable current |
References
- Praveen Kumar, T.; Subrahmanyam, N.; Sydulu, M. Power flow management of the grid-connected hybrid renewable energy system: A PLSANN control approach. IETE J. Res. 2021, 67, 569–584. [Google Scholar] [CrossRef]
- Nazari, M.A.; Rungamornrat, J.; Prokop, L.; Blazek, V.; Misak, S.; Al-Bahrani, M.; Ahmadi, M.H. An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy Sustain. Dev. 2023, 72, 230–242. [Google Scholar] [CrossRef]
- Tagayi, R.K.; Han, S.; Lee, H.; Kim, J. Reliable Frequency Control Support Scheme Based on Wind Power Generator Combined with Rechargeable Energy Storage System Applying Adaptive Power Reference. Appl. Sci. 2023, 13, 5302. [Google Scholar] [CrossRef]
- Alayi, R.; Seydnouri, S.R.; Jahangeri, M.; Maarif, A. Optimization, sensitivity analysis, and techno-economic evaluation of a multi-source system for an urban community: A case study. Renew. Energy Res. Appl. 2022, 3, 21–30. [Google Scholar]
- Fatah, A.; Benlaloui, I.; Mechnane, F.; Boutabba, T.; Khamari, D.; Drid, S.; Chrifi-Alaoui, L. A Modified Perturbe and Observe MPPT Technique for Standalone Hybrid PV-Wind with Power Management. In Proceedings of the International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble, France, 3–5 November 2021. [Google Scholar]
- Elbaset, A.A.; Ali, H.; Abd-El Sattar, M.; Khaled, M. Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller. IET Renew. Power Gener. 2016, 10, 551–560. [Google Scholar] [CrossRef]
- Feng, S.; Wang, K.; Lei, J.; Tang, Y. Influences of DC bus voltage dynamics in modulation algorithm on power oscillations in PMSG-based wind farms. Int. J. Electr. Power Energy Syst. 2021, 124, 106387. [Google Scholar] [CrossRef]
- Deshmukh, R.; Phadke, A.; Callaway, D. Least-cost targets and avoided fossil fuel capacity in India’s pursuit of renewable energy. Proc. Natl. Acad. Sci. USA 2021, 118, e2008128118. [Google Scholar] [CrossRef]
- Akbari, E.; Sheikholeslami, A.R.; Zishan, F. Participation of Renewable Energy in Providing Demand Response in Presence of Energy Storage. Renew. Energy Res. Appl. 2023, 4, 225–234. [Google Scholar]
- Maleki, A.; Nazari, M.A.; Pourfayaz, F. Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Rep. 2020, 6, 102–111. [Google Scholar] [CrossRef]
- Kadam, A.H.; Menon, R.; Williamson, S.S. A novel bidirectional three-phase ac-dc/dc-ac converter for pmsm virtual machine system with common dc bus. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1944–1951. [Google Scholar]
- Naik, M.V.; Samuel, P. Analysis of ripple current, power losses and high efficiency of DC–DC converters for fuel cell power generating systems. Renew. Sustain. Energy Rev. 2016, 59, 1080–1088. [Google Scholar] [CrossRef]
- Mahjoub, S.; Ayadi, M.; Derbel, N. Comparative study of smart energy management control strategies for hybrid renewable system based Dual Input-Single Output DC-DC Converter. J. Electr. Syst. 2020, 16, 218–234. [Google Scholar]
- Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Eng. J. 2021, 12, 3747–3763. [Google Scholar] [CrossRef]
- Asghari Gorji, S.; Sahebi, H.G.; Ektesabi, M.M.; Rad, A.B. Topologies and control schemes of bidirectional DC–DC power converters: An overview. IEEE Access 2019, 7, 117997–118019. [Google Scholar] [CrossRef]
- Hadmer, B.; Drid, S.; Kouzou, A.; Mechnane, F.; Chrifi-Alaoui, L.; Drid, M.D. SPWM and Third Harmonique Injection Techniques for 7-Level Packed U-Cell Inverter. In Proceedings of the IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 19–21 December 2022; pp. 508–511. [Google Scholar]
- Aderinto, T.; Li, H. Review on power performance and efficiency of wave energy converters. Energies 2019, 12, 4329. [Google Scholar] [CrossRef] [Green Version]
- Kish, G.J. On the emerging class of non-isolated modular multilevel DC–DC converters for DC and hybrid AC–DC systems. IEEE Trans. Smart Grid 2017, 10, 1762–1771. [Google Scholar] [CrossRef]
- Ye, Y.-M.; Cheng, K.W.E. Multi-input voltage-summation converter based on switched-capacitor. IET Power Electron. 2013, 6, 1909–1916. [Google Scholar]
- Mechnane, F.; Drid, S.; Hadmer, B.; Nait-Said, N.; Chrifi-Alaoui, L.; Delahoche, L. Robust Control of a PV-Wind Hybrid System Using DISO DC/DC Converter. In Proceedings of the 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif, Algeria, 6–10 May 2022; pp. 1788–1794. [Google Scholar]
- Mahjoub, S.; Labdai, S.; Chrifi-Alaoui, L.; Drid, S.; Derbel, N. Design and implementation of a Fuzzy logic supervisory based on SMC controller for a Dual Input-Single Output converter. Int. J. Electr. Power Energy Syst. 2023, 150, 109053. [Google Scholar] [CrossRef]
- Babaei, E.; Abbasi, O. Structure for multi-input multi-output dc–dc boost converter. IET Power Electron. 2016, 9, 9–19. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Padmanaban, S.; Blaabjerg, F.; Neelakandan, R.B.; Prabhu, K.R. Power electronic converter configurations integration with hybrid energy sources–a comprehensive review for state-of the-art in research. Electr. Power Compon. Syst. 2019, 47, 1623–1650. [Google Scholar] [CrossRef]
- Rehman, Z.; Al-Bahadly, I.; Mukhopadhyay, S. Multiinput DC–DC converters in renewable energy applications–An overview. Renew. Sustain. Energy Rev. 2015, 41, 521–539. [Google Scholar] [CrossRef]
- Gevorkov, L.; Domínguez-García, J.L.; Romero, L.T.; Martínez, À.F. Modern MultiPort Converter Technologies: A Systematic Review. Appl. Sci. 2023, 13, 2579. [Google Scholar] [CrossRef]
- Litrán, S.P.; Durán, E.; Semião, J.; Díaz-Martín, C. Multiple-Output DC–DC Converters: Applications and Solutions. Electronics 2022, 11, 1258. [Google Scholar] [CrossRef]
- Fong, Y.C.; Cheng, K.W.E.; Raman, S.R.; Wang, X. Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications. Energies 2018, 11, 1934. [Google Scholar] [CrossRef] [Green Version]
- Yalla, S.P.; Subudhi, P.S.; Ramachandaramurthy, V.K. Topological review of hybrid RES based multi-port converters. IET Renew. Power Gener. 2022, 16, 1087–1106. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, D.; Wang, L.; Shen, Z.; Li, Y. A Review of Single-Stage Multiport Inverters for Multisource Applications. IEEE Trans. Power Electron. 2023, 38, 6566–6584. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Lee, S.H.; Jeong, S.G.; Kwon, J.M.; Kwon, B.H. High-efficiency bidirectional grid-tied converter using single power conversion with high-quality grid current. IEEE Trans. Ind. Electron. 2017, 64, 8504–8513. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Duong, T.D.; Lim, Y.C.; Kim, Y.J. Isolated boost DC–DC converter with three switches. IEEE Trans. Power Electron. 2017, 33, 1389–1398. [Google Scholar] [CrossRef]
- Aghdam, B.A.; Nia, P.H.; Nazarpour, D. A new multi-port DC/DC converter for PV/battery/DC gird energy systems. In Proceedings of the 9th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), Mashhad, Iran, 23–24 February 2022. [Google Scholar]
- Shi, H.; Sun, K.; Wu, H.; Li, Y.; Xiao, X. Unified state-space modeling method for dual-active-bridge converters considering bidirectional phase shift. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 643–649. [Google Scholar]
- Zeng, J.; Qiao, W.; Qu, L.; Jiao, Y. An isolated multiport DC–DC converter for simultaneous power management of multiple different renewable energy sources. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 2, 70–78. [Google Scholar] [CrossRef]
- Baek, S.; Bhattacharya, S. Analytical modeling and implementation of a coaxially wound transformer with integrated filter inductance for isolated soft-switching DC–DC converters. IEEE Trans. Ind. Electron. 2017, 65, 2245–2255. [Google Scholar] [CrossRef]
- Zhang, Z.; Pittini, R.; Andersen, M.A.; Thomsena, O.C. A review and design of power electronics converters for fuel cell hybrid system applications. Energy Procedia 2012, 20, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Farjah, E.; Rezaee, S.; Ghanbari, T. Sliding mode control of a novel multi-input split-inductor buck-boost converter. In Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012. [Google Scholar]
- Deshmukh, N.B.; Thombare, R.D.; Jadhav, P.T.; More, D.S. MISO Luo DC-DC converter for renewable energy applications. In Proceedings of the International Conference on Energy Systems and Applications, Pune, India, 30 October–1 November 2015; pp. 63–68. [Google Scholar]
- Irmak, E.; Güler, N. Application of a boost based multi-input single-output DC/DC converter. In Proceedings of the IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 955–961. [Google Scholar]
- Bossoufi, B.; Karim, M.; Lagrioui, A.; Taoussi, M.; Derouich, A. Observer backstepping control of DFIG-Generators for wind turbines variable-speed: FPGA-based implementation. Renew. Energy 2015, 81, 903–917. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Mechnane, F.; Drid, S.; Sahraoui, H.; Benlaloui, I.; Boutabba, T.; Nait-Said, N.; Chrifi-Alaoui, L. Implementation of Super-twisting control with Photovoltaic System Emulator. In Proceedings of the International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble, France, 3–5 November 2021. [Google Scholar]
- Khalil, H. Nonlinear Systems, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
Description | Value |
---|---|
Radius R | 0.62 m |
Air density | 1.25 kg/m3 |
Gear ratio G | 20 A |
Flux of permanent magnet | 0.06 Web |
Stator inductances Ld = Lq | 10 mH |
Stator resistance Rs | 0.0675 Ω |
Pole numbers p | 3 |
Total inertia, J | 0.00176 kg.m2 |
Friction coefficient | 0.38 × 10−4 (SI) |
Optimal Tip-Speed Ratio | 0.78 |
Maximal power coefficient Cpmax | 0.515 |
Description | Value |
---|---|
Maximum power | 105 W |
Voltage at p max (Vmp) | 24 V |
Current at p max (Imp) | 4.4 A |
Open-circuit voltage (Voc) | 32 V |
Short-circuit current (Isc) | 5 A |
Description | Value |
---|---|
Two batteries in series | LifeP04 |
Voltage | 12.8 V |
Capacity | 10 Ah |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechnane, F.; Drid, S.; Nait-Said, N.; Chrifi-Alaoui, L. Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter. Appl. Sci. 2023, 13, 7047. https://doi.org/10.3390/app13127047
Mechnane F, Drid S, Nait-Said N, Chrifi-Alaoui L. Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter. Applied Sciences. 2023; 13(12):7047. https://doi.org/10.3390/app13127047
Chicago/Turabian StyleMechnane, Farouk, Said Drid, Nasreddine Nait-Said, and Larbi Chrifi-Alaoui. 2023. "Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter" Applied Sciences 13, no. 12: 7047. https://doi.org/10.3390/app13127047
APA StyleMechnane, F., Drid, S., Nait-Said, N., & Chrifi-Alaoui, L. (2023). Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter. Applied Sciences, 13(12), 7047. https://doi.org/10.3390/app13127047